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Abstract

Models of neural networks are developed from a biological point of view. Small networks
are analysed using techniques from dynamical systems. The behaviour of spatially and
temporally organized neural fields is then discussed from the point of view of pattern
formation. Bifurcation methods, analytic solutions and perturbation methods are applied to
these models.

0034-4885/98/040353+78$59.50c© 1998 IOP Publishing Ltd 353



354 B Ermentrout

Contents

Page
1. Introduction 355
2. An introduction to computational neuroscience 355

2.1. Firing properties of neurons 357
2.2. Synaptic connections 359

3. What constitutes a neural network? 360
3.1. Simplification 362
3.2. Generalizations and other ‘neural network’ models 364

4. Small networks 369
4.1. Scalar first-order networks 369
4.2. More general scalar networks 369
4.3. Two cells 371
4.4. Chaos in forced two- or three-dimensional networks 373
4.5. Coupled oscillatory nets 374

5. General considerations about large networks with no inherent spatial structure 377
5.1. McCulloch–Pitts neural networks 377
5.2. Feedforward networks 378
5.3. Hopfield networks as spin glasses 379
5.4. Statistical mechanics and the capacity of attractor networks 381
5.5. Line attractors 383
5.6. Winner-take-all networks 384
5.7. Oscillatory networks revisited 385

6. Models with spatial structure 386
6.1. Continuum models 387

7. Pattern formation in active media 389
7.1. Wavefronts 391
7.2. Travelling pulses 393
7.3. Solitary standing pulses 398
7.4. Continuous oscillatory networks 406
7.5. Two-dimensional active media 407

8. Bifurcation methods and neural networks 408
8.1. Single-layer models 409
8.2. Multiple bifurcations 415
8.3. Multilayer models 415
8.4. Two spatial dimensions 419

9. Conclusions 425
Acknowledgment 426
Appendix. Proof of theorem 2 426
References 427



Neural networks as spatio-temporal pattern-forming systems 355

1. Introduction

The advent of multi-electrode recordings and imaging techniques has enabled neuroscientists
to obtain high spatial and temporal resolution of the electrical activity for populations of
neurons in the brain. This has led to a resurgence of interest in the biological community
in large-scale models of neural activity. This in turn has engaged the interest of physicists
and mathematicians in the behaviour of these systems. There are many levels in which
one can model neural activity from detailed models of single-ion channels and synapses
(Destexheet al 1994) up to ‘black box’ models used to understand psychological phenomena
(McClelland and Rumelhart 1988). An ‘intermediate’ approach to modelling is the use of
‘neural networks’ where each neuron is represented by a low-dimensional dynamical system.
In this review, such models will be considered from the perspective of nonlinear dynamics
and general theories of spatio-temporal pattern formation. Most of the familiar work on
neural networks treats their behaviour using the methods of statistical mechanics. In these
models, the connectivity between elements has no topological or spatial structure. The types
of theories and the models that will be explored in this paper are structured models in that
the interactions between elements have some topological structure be it a line, circle, or two-
dimensional array. Furthermore, I will usually be interested in the steady-state behaviour
of these systems where inputs are either static in time or periodically varying. These types
of models were popular two decades ago, but there has been a renewed interest in their
behaviour now that experimental methods are able to provide the kinds of qualitative and
quantitative information required to make these models useful.

Most of the articles and reviews about neural networks have been concerned with their
computational properties in a formal sense. There has been little attempt to associate the
networks with any specific biological behaviour. In particular, the connections between
neural networks and physiology have not been made. In this review, our primary
applications are taken from the biological literature. Thus, for us, the main motivation for
the study of neural networks is to enable us to explain some particular biological experiment.
Some of the physics of neural networks will be very briefly described but the emphasis in
this review is on the classical methods of applied mathematics such as bifurcation theory
and singular perturbation and how the neural network equations can be used to understand
biological systems.

The first part of the review provides a brief introduction to computational neuroscience.
A number of related neural network models are then derived. Small networks of one,
two, three, and four neurons are analysed next. A brief overview of the physics of neural
networks is provided with attention paid to networks with no topological structure. Finally,
the bulk of this review describes the analysis of spatially structured neural networks.

2. An introduction to computational neuroscience

The brains of animals contain millions of interconnected neurons, specialized cells that are
responsible for both processing incoming information from the environment and producing
motor output. Here, we briefly review the biological details required for modelling
interconnected neurons. A comprehensive introduction to neuroscience can be found in
Kandel and Schwartz (1985) or Shepherd (1990). A single nerve cell consists of three main
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parts: the soma or cell body, the axon, and the dendrites. In the typical scenario (although
this has been overturned by recent experiments) information comes into the cells through
the dendrites where it is ‘integrated’ at the cell body and this transformed signal is output
through the axon. Thus, in the models that we will look at and, in most computational
models, the interactions between one cell and another occur via the axon of the first cell
to the dendrite of the second cell. The level of detail for each of these three parts of the
cell as well as the mechanism of ‘communication’ of the axon of one to the dendrite of the
other depends on the kinds of questions one is interested in and the sizes of the networks
that one wishes to simulate. Since our approach will be mainly from the point of view of
analysis, one of our aims is to simplify or reduce the single cell as much as possible and
yet still retain some of the important properties. Typically, if one wants a detailed model of
a single cell, the cell is broken into many smaller compartments each of which consists of
a simple RC circuit. Each of these compartments represents a single differential equation.
The resistances (called conductances in many cases) can be simple passive resistors or
themselves nonlinear dynamic variables. Indeed it is the latter property that gives rise to
the nonlinear and threshold behaviour of real and model neurons. The active conductances
are a consequence of ionic channels in the cell membrane whose channel states can depend
on many aspects of the cellular milieu, notably the transmembrane potential. Calcium and
other ionic species can also be responsible for the rates of opening and closing of channels.
The current through one of these resistors is usually modelled as ohmic and satisfies:

I = ḡmphq(V − Veq)

where, ḡ is the maximal conductance,m, h are fractions of open channels,p, q are non-
negative integers, andVeq is the equilibrium potential of the channel. The gating variables
themselves satisfy differential equations of the form:

dm

dt
= α(1−m)− βm (2.1)

which should be recognized as the master equation for a two-state Markov process (see
Destexheet al 1994). The rates,α, β are often functions of the voltage or other quantities.
If p, q are both zero, then the channel is said to be passive and is then just like a resistor.
In many modelling studies of single neurons, all the active conductances are on the soma
and the dendrites are passive.

Biophysically based (that is based on voltage clamp studies of individually recorded
nerve cells) computational models that ignore the dendritic architecture have the following
form:

C
dV

dt
= −

∑
k

ḡkm
pk
k h

qk
k (V − Ek)+ I (2.2)

where,mk, hk are gating variables that satisfy differential equations like (2.1),Ek is the
reversal potential of thekth channel, andI is an applied current.

A typical mammalian neuron has a resting potential of−65 mV. There are two basic
types of active currents: inward currents which when active tend to depolarize the nerve
cell and outward currents which hyperpolarize the cell. The main inward currents are due
to sodium and calcium while outward currents are due to potassium and chloride. There
are dozens of different currents and the interested reader is urged to consult Johnston and
Wu (1995). When the potential of a resting cell is raised sufficiently, inward currents
are activated and this leads to a further rise in the potential. This positive feedback
results in the production of an action-potential or spike of voltage which is recorded by
the experimentalist. The voltage usually comes back down due to two effects: (i) turning
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on of outward currents and (ii) inactivation of the inward currents. Thus, application of a
constant current causes the neuron to spike, repolarize, and spike again. The steady rate
of firing that occurs in the presence of a constant current results in the so-called FI curve
which will play a major role in the derivation and behaviour of neural networks. Many
cortical cells have the additional property that they initially fire quite rapidly but as the
stimulus persists, the firing rate goes down to a lower level. This is called spike adaptation
and it will also play an important role in the behaviour of models in networks. Huguenard
and McCormick (1996) have written a small manual on voltage gated models which gives
explicit formulae for many different channels and gates that are found in thalamic and
cortical neurons.

2.1. Firing properties of neurons

Since it will be important later in our discussion, we describe a number of different firing
functions and how they are related to the onset of rhythmic activity in biophysical models.
As the current,I is increased, most cortical neurons switch from a resting constant potential
to an active mode. In the active mode, either trains of spikes are generated or burst of spikes.
The firing pattern of bursting cells consists of a brief episode of spikes followed by a period
of quiescence, etc. We will concern ourselves with the cells that fire repetitive spike trains,
so-called ‘regular’ and ‘fast’ spike units which comprise the majority of cells in cortical
networks (White 1989). Bursting cells are important and have been the subject of much
recent research (Gray 1994). There are basically three ways in which a model can switch
from silence to repetitive firing: (a) Hopf bifurcation, (b) saddle–node limit cycle, and (c)
homoclinic. In the Hopf case, the oscillations appear with a finite frequency that is bounded
away from 0. Typically, the Hopf bifurcation is subcritical which means that in a limited
range of currents, there is bistability between a periodic and resting state. This behaviour is
known to occur in the squid axon, both by modelling and by experiments (see Guttmanet
al 1980). The appearance of repetitive firing at a non-zero frequency is called class or type
II firing and is rare in models of cortex (see Rinzel and Ermentrout 1989). More typical
of cortical models is that the firing rate appears at a zero frequency via one of the two
mechanisms, (b) or (c). Figure 1 illustrates these bifurcations. Firing models of the type
illustrated in (b) become active via a saddle–node bifurcation on an invariant circle. The
firing rate as a function of the current is

F = A
√
I − Ic (2.3)

near the critical value of the current. In the third scenario illustrated in (c), the periodic
behaviour arises via a homoclinic bifurcation. In this case the firing rate obeys

F = −A 1

ln(I − Ic) (2.4)

near the critical current. These latter firing patterns are difficult to distinguish
experimentally. Guckenheimeret al (1997) recently used the behaviour of bursting cells
to experimentally distinguish the saddle–node and homoclinic bifurcations. Note that the
homoclinic bifurcation model also has a current regime where the dynamics is bistable with
a stable fixed point and a stable limit cycle.

2.1.1. Integrate-and-fire models and their relatives.No discussion of spiking models would
be complete without a description of the ‘integrate-and-fire’ model:

C
dV

dt
= −g(V − E)+ I
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Figure 1. Firing rate functions of neurons and the onset of rhythmicity. (a) Subcritical Hopf
bifurcation. (b) Saddle–node limit cycle bifurcation. (c) Regular homoclinic bifurcation. (Full
circles are stable, open circles are unstable nodes, and grey circles are saddles.)

which is a simple linear integrator. The idea of this model is that the voltage rises until it
reaches a threshold potential,Vthr at which point it ‘fires a spike’ and is reset to some new
potential,Vreset. This model has been the subject of many theoretical papers because of its
simplicity. The firing rate is just:

F = − g

C ln
(
E+I/g−Vthr

E+I/g−Vreset

) . (2.5)

Note that this model is a hybrid of the two cases, (b) and (c) above in that it has the
monostability of the saddle–node model but has the logarithmic firing rate of the homoclinic
bifurcation.

Recently, Gerstner (1995) introduced a generalization of the integrate-and-fire model
that incorporates many more aspects of real neurons, such as refractory periods, adaptation,
and synaptic time constants. By integrating the integrate and fire model, we can rewrite it
as:

V (t) = V0+ (Vreset− V0)e
−t/τ

where,V0 = (I + gE)/g and τ = C/g. Gerstner and his collaborators, generalized this
concept to incorporate more complex integration and recovery of the neuron into their ‘spike
response model’ which has the following form. Letv(t, s) be the potential of a neuron at
time t that last fired a spike att − s, so thats is the time since the last spike. Then:

v(t, s) = Vext(t)+ Vsyn(t, s)+ ηrefr(s)

where the first two terms are the external inputs and the synaptic inputs respectively and
ηrefr(s) is the refractoriness of the neuron. For the integrate and fire, this is just

ηrefr(s) = E + (Vreset− E)e−s/τ .
The spike-response model generalizes the functional form of the refractoriness.



Neural networks as spatio-temporal pattern-forming systems 359

2.2. Synaptic connections

Now that we have described the firing properties of isolated nerve cells (and only in a very
cursory fashion—an entire book could easily be written on the dynamics of a single nerve
cell), we want to describe the mechanism by which they are coupled. When the soma of
a neuron fires, the potential invades a region called the axon hillock. This causes a train
of impulses to travel down the axon which terminates in a series of regions called synaptic
terminals. The potential invades these terminals and causes the release of a chemical called a
neurotransmitter. This transmitter binds to the dendritic or somatic membranes of other cells
and causes channels to open up. This in turn causes current to pass through the dendrites.
The current can either be depolarizing (excitatory), hyperpolarizing (inhibitory), or shunting.
Most neural network modellers are concerned with the first two types of interactions. Abbott
(1992b, 1994) derived a neural network model (which we discuss below) that takes shunting
interactions into account. Some of Grossberg’s (1990) models also take this into account.
Chemical synapses are modelled at the cellular level in the same way as the channels; the
current is ohmic:

Isyn= ḡs(t)(V − Vsyn).

The functions(t) is either of a predefined form or itself satisfies a differential equation
like the gating variablesm, h described above. In the case of predefined forms, when the
presynaptic cell fires a spike, thens(t) is reset to a function of the form:

s(t) = e−at − e−bt

1/a − 1/b
.

Whena = b, this simplifies toa2te−at and is often called an ‘alpha’ function. When
b → ∞ this is just the exponential function. The parameterb characterizes the rise
time of the synapse anda the decay time. A synapse is said to be excitatory if the
reversal potential,Vsyn, of the synapse is positive relative to the resting potential of the cell.
The primary neurotransmitter responsible for excitatory synapses is called glutamate. The
reversal potential of these synapses is usually around 0 mV, so that they provide quite a
large inward current for a cell that is resting at−65 mV. An inhibitory synapse is one
for which the synaptic reversal potential is negative relative to the resting potential. The
main neurotransmitter for inhibitory synapses isγ -aminobutyric acid or GABA. Reversal
potentials vary between−75 and−90 mV. Excitatory synapses are faster acting than
inhibitory synapses but inhibition often occurs close to the soma and so it can have a larger
effect on the neuron.

The response of a passive membrane to a synapse has a characteristic shape and is
called the post synaptic potential (PSP) or post synaptic current (PSC). If the decay of the
synapse is very fast, then the decay of the PSP is dominated by the passive decay of the
cell membrane. On the other hand, if the synapse decays slowly, then the decay of the PSP
is dominated by the synaptic time course. This difference will play a role in our derivation
of neural networks in the next section.

We have treated dendrites as discrete compartments in this discussion. However, they
are more truly continuous membranes and better modelled by partial differential equations
(PDEs) of the form:

τ
∂V

∂t
= −(V − Vrest)+ λ2∂

2V

∂x2
+ I (x, t). (2.6)

The parameterλ is called the space constant of the dendrite and is proportional to the
square root of the diameter of the dendrite. The constantτ is called the time constant and
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is independent of the geometry of the dendrite. A typical value forτ is 10 ms. In a highly
branched neuron, each branch would be modelled by this cable equation and the boundary
conditions determined by continuity of voltage and conservation of current. Abbott (1992a)
provided a lovely diagrammatic method for solving large sets of such PDEs iteratively. We
will return to this dendritic model later when we describe more complex models for neural
networks. For a good review of models that use the full dendritic structure see Bressloff
and Coombes (1997). Note that the solution to the steady-state cable equation consists of
a sum of exponentials, e±x/λ. Thus, steady stimuli are degraded as the distance from the
dendrites increases and the smallerλ is, the faster this decay.λ is proportional to the square
root of the transmembrane resistance so that the attenuation of current due to a shunt with
conductanceg is

Ashunt= e−a
√
gx (2.7)

wherea is a constant depending on the membrane properties andx is the distance from the
current source. Equation (2.7) is important, as a shunting synapse decreases the resistance
(increasesg) and thus dynamically ‘lengthens’ the dendrite.

3. What constitutes a neural network?

A neural network can mean different things depending on who is describing it. Our
perspective is to try to keep some connection to biology. Thus, such constructions as
asynchronously updated symmetric neural networks, while of great interest theoretically,
will not be considered in much detail in this review. There are many books available that
describe this perspective (Anderson and Rosenfeld 1988, Amit 1989, Hertzet al 1991,
Muller et al 1995, Arbib 1995).

Perhaps, we might better say ‘neuronal networks’ rather than ‘neural’ networks where
the difference lies in the use of the word neuronal instead of neural. Indeed, neural networks
have come to mean something quite formal that is related to algorithms and computation
and not to questions about how brains might work. Our emphasis will be on dynamics
and spatio-temporal behaviour. This type of organized activity is not often addressed in the
neural network literature. However recent experimental methods now allow brain scientists
to examine spacetime activity in real neural systems and this has led to some new modelling
efforts and the need for more structured types of networks.

Below we derive sets of discrete or continuous spacetime models and will examine
these from the point of view of stability, bifurcation, and pattern formation. In some ways,
this review will have the flavour of the article by Cross and Hohenberg (1993) but will be
narrowly focused on the particular class of models that arise in neural modelling. The types
of questions addressed are biological and mathematical.

We now turn to a derivation of general models for neural networks. There are many
approaches that can be used and there are almost as many variations on the derivation as
there are models. We will look at several derivations and examine the types of equations
that arise from these derivations.

The most straightforward derivation occurs when one considers the basic idea illustrated
in figure 2. We will cast this in a very general form. The general idea of this derivation
goes back to Freeman (1972) although his models were usually linear. A similar derivation
(although less general) is given in Ermentrout and Cowan (1980a). Leti andj be the indices
of two neurons which are connected in the sense that the axon of neuronj terminates on
the dendrite of neuroni. Let Vi(t) be the potential at theith neuron at timet . Suppose that
such a potential is converted by the axon hillock to a firing rateui(t) = S(Vi(t)). This firing
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Figure 2. Synaptically coupled neurons.

rate is often what is measured by biologists. There can be some delay due to the distance
travelled down the axon before the firing releases a neuro-transmitter. This delay could
depend on distance as well as the type of neurons. Call itδij . A single-action potential on
a dendrite is seen as a post-synaptic potential,PSPij (t− s) wheres is the time of the spike
hitting the terminal andt is the time after the spike. Suppose that the spikes come at times
t1, t2, . . . . Then the total potential is given by

8ij (t) = Gij (t1, t2, . . .)

whereGij depends on many aspects of the membrane. For example, in more complicated
neural models, the effect of successive firings can actually depend on how frequently they
come. The result of two closely timed pulses can be more or less than the sum of the
two impulses depending on things like synaptic facilitation, fatigue, or random misfires.
These aspects are usually ignored in neural network literature; we will also ignore them
for now. However, we want to point out that it is at this point in the modelling that one
would incorporate such processes. Often spike adaptation or facilitation is modelled as an
amplitude factor.

Returning to our derivation, we assume that the spikes sum linearly so that the network
potential is

8ij (t) =
∑
k

PSPij (t − tk).

To close the equations, recall thatuj (t) is the instantaneous firing rate. The number of
impulses arriving betweent and t + dt is uj (t) dt . Thus, the total potential contributed by
the cell firing at rateuj (t) to the celli is

8ij (t) =
∫ t

t0

PSPij (t − s)uj (s − δij ) ds.

This closes the system and we are left with a set of nonlinear Volterra integral equations:

Vj (t) =
∑
j

∫ t

t0

PSPij (t − s)Sj (Vj (s − δij )) ds. (3.1)

ThePSPij itself may depend on other variables in order to account for such phenomena
as adaptation, learning, facilitation and fatigue. The model as described above is not well
defined as we see att = t0 we have set the potentials all to be 0. Since one often takes
t0 = −∞ this is not a big problem. At this point our neural model bears little resemblance
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to the types of models that one usually associates with neural network literature. We will
now manipulate it into the form that is most well known.

First, we note that changing the ‘starting point’ of the model we can also write:

ui(t) = Si
(∑

j

∫ t

t0

PSPij (t − s)uj (s − δij ) ds

)
(3.2)

which is called the firing rate formulation.

3.0.1. The firing rate function. The nonlinear form of the firing rate function is very
important; there are many choices that various authors have used. The simplest is the step
function, where the neuron fires maximally or not at all depending on whether the potential
is above or below threshold. If one uses a statistical-mechanical approach to derive ‘mean-
field’ equations (Cowan 1968, Amari 1972) then this sharp step function is smoothed out
to the well known squashing functions:

S(V ) = Smax

1+ e−(V−VT )/Vs
logistic

S(V ) = Smax

2
(1+ erf(V − VT )/Vs) Gaussian.

The logistic is usually easier for use in computational models. Both of these may be
regarded, not as firing rates, but as probabilities of a cell firing in which case,Smax = 1.
For Vs → 0 both go to the step function, often called the ‘zero-temperature’ model.

Another firing rate function that is convenient is the piecewise linear model,

S(V ) =


0 for V < VT

a(V − VT ) for VT 6 V 6 Smax/a + VT
Smax for Smax/a + VT < V .

If Smax= ∞ this is the linear rectifier model and ifa = ∞, this is the step function model.
Equations (2.3) and (2.4) provide another set of firing rate models that are quantitatively
based on biophysical properties of neurons.

3.1. Simplification

There are two simplifying assumptions that lead to two different and not quite equivalent
models.

3.1.1. The voltage-based model.This is the model that Hopfield (1984) used and is well
known to physicists. Suppose that the post-synaptic potential on neuroni always has the
same shape no matter which presynaptic cellj caused it. The sign and the amplitude can
be different, but the shape of the potential is the same. That is

PSPij (t) = wijPSPi(t).
As we mentioned in section 2.2, this is the case if the time course of the post-synaptic
potential is dominated by the membrane properties of the post-synaptic cell and not the
kinetics of the synapse. Next, suppose that the PSP is a sum of exponentials (either real or
complex) and powers,PSP (t) = E(t). Then it is well known that the inverse of the linear
integral operator:

Ku ≡
∫ t

t0

E(t − s)u(s) ds
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is just a linear differential operatorL with constant coefficients. Thus, (3.1) becomes

LiVi =
∑
j

wijSj (Vj (t − δij ))

which is just a delay-differential equation. Finally, ifLi is first order and there are no
delays, we obtain

τi
dVi
dt
+ Vi =

∑
j

wijSj (Vj )

which is the Hopfield (1984) model. Recapitulating, to obtain the Hopfield’s model, the
shape of the PSP depends only on thepostsynaptic cell. Since the decay is governed by the
membrane properties of the post-synaptic cell,τi is legitimately called the membrane time
constant of the model.

3.1.2. The activity-based model.Suppose that the shape of a PSP depends only on the
nature of the presynaptic cell except for possibly the amplitude. (Although here, the sign
will usually be the same from cell to cell since the sign of a synaptically induced voltage
change is determined by the transmitter released from the presynaptic cell.) That is

PSPij (t) = wijPSPj (t).
As above suppose that the PSP is also a function of exponentials and powers. We define

Uj(t) =
∫ t

t0

PSPj (t − s)uj (s) ds

to be the time-averaged firing rate. Then once again, we see that

LjUj (t) = uj (t)
whereLj is a linear differential operator. Substituting this into (3.2) we see that

LiUi(t) = Si
(∑

j

wijUj (t − δij )
)
.

which is now a delay-differential equation. Finally ifLi is a first-order differential equation
and there is no delay we find that

τi
dUi
dt
+ Ui = Si

(∑
j

wijUj

)
which is another standard neural network model. Since theτi depends on thepresynaptic
neuron, this time constant is related to the synaptic decay and not the membrane time
constant. Furthermore, it is incorrect to callUi the ‘firing rate’ of the cell. The true firing
rate is in fact the right-hand side. Pintoet al (1996) referred toUi as the ‘synaptic drive’.

3.1.3. Which model to use.It is useful to think about which of these models is the more
reasonable. If the synapses are very short lasting, then the dominant time constant is the
membrane time constant and the assumptions underlying the voltage-based model are more
reasonable. On the other hand, if the membrane time constant is small and the synaptic
time course is longer, the activity or firing rate model is the reasonable choice. These
may seem like minor points, but if one wants to say something about biology, then these
considerations are necessary (see for example, Pintoet al 1996).
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More usually, can we use the same inversion tricks if the PSPs are sums of exponentials
and powers but do not have time courses that are dependentonly on the pre- or post-synaptic
cell? The answer is yes, although the solution is hardly satisfying. Let

Qij (t) =
∫ t

t0

PSPij (t − s)uj (s) ds.

ThenLijQij (t) = uj (t) so (3.2) becomes

LjkQjk(t) = Sj
(∑

i

Qji(t − δji)
)

j, k = 1, . . . , N.

Note that the right-hand sides of these equations are the same for allk for any particular
j . However, if the linear differential operators are all different, then this is not a
redundantly determined system. As far as the author knows, differences between this type
of model and the simple firing rate model have not been explored. The simplest situation
would involve two mutually coupled neurons with independent exponential time courses
resulting in a four-dimensional dynamical system. For example, a pair of mutually coupled
excitatory/inhibitory neurons would have the form:

τeeQ
′
ee +Qee = Se(weeQee − wieQie)

τeiQ
′
ei +Qei = Se(weeQee − wieQie)

τieQ
′
ie +Qie = Si(weiQei − wiiQii)

τiiQ
′
ii +Qii = Si(weiQei − wiiQii).

Under which conditions is there a difference in this model and the simpler case where
there are only two time constants remains an open question. For example, letSj (u) =
1/(1+ e−(u−θj )) and setwee = wei = wii = wie = 8, θe = −1, θi = −1.5. The excitatory
time constants are both 1 and the inhibitory time constants are one of two values, 1.2 or 0.1.
If τie = τii then the fixed point is stable but ifτii < τie then the fixed point is unstable and
there is an oscillatory solution. This makes intuitive sense since the inhibitory cell inhibits
itself much faster than the excitatory cell which essentially disinhibits the network. This
example makes it clear that the behaviour of this more complicated system is different from
that of the activity- or voltage-based analogues.

3.2. Generalizations and other ‘neural network’ models

Abbott (1992a, 1994) generalized the ideas of the previous section to derive a model for
a neural network in which there are two types of inhibition: shunting and hyperpolarizing.
The hyperpolarizing inhibition is slower than the shunting inhibition but is due to the same
population of cells. Both the excitation and the hyperpolarizing inhibition occur at the
terminal end of the dendrite and the shunting inhibition occurs on the body of the dendrite.
Since this shunting inhibition is assumed to uniformly cover the dendrite, its effect on any
inputs at the terminal end of the dendrite is to attenuate the network input by an amount:

Ashunt= e−β
√
G

whereβ is a constant andG is the conductance of the shunting synapse, proportional to the
activity of the inhibitory cell (see equation (2.7)). For example, in a small network consisting
of an inhibitory and excitatory cell with ‘exponential’ synapses, the model equations are:

τe
dUe
dt
= −Ue + Fe(e−wge

√
Ug (weeUe − wieUi))
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τi
dUi
dt
= −Ui + Fi(e−wgi

√
Ug (weiUe − wiiUi))

τg
dUg
dt
= −Ug + Fi(e−wgi

√
Ug (weiUe − wiiUi)).

The analysis of this simple network has not yet been done in any comprehensive fashion.
Milton et al (1993, 1995) described a Markov model for a neural network which arises

from an attempt to produce a dynamic model from a cellular automaton (CA) formulation.
In the CA, a cell has a rest state, 0, an excited state,E andk refractory states. Whenk = 1,
this is the Greenberg–Hastings model and was first used as a model for neurons by Beurle
(1956). This model has been popular as the simplest example of an excitable medium. For
simplicity, suppose thatk = 1 so the cells have only one refractory state. Letu denote the
fraction of cells that are at rest. Letf denote the fraction that are firing and letr be the
fraction that are refractory. The total population of cells in each of these three states is 1 so
thatu+ f + r = 1. The rate at which cells leave the resting state and enter the firing state
is some function of all cells that are firing and the number at rest. The number of cells that
re-enter the resting state is proportional to the rate at which they leave the refractory state.
Thus,

u′ = −Kuf u+Kru(1− u− f )
and

f ′ = Kuf u−Kfrf.
In general, onlyKuf will be dependent on other cells and coupling between them. The
generalization to many populations and multiple degrees of refractoriness is obvious. As
with the previous model, little analysis has been done on this particular class of models.

The original Wilson and Cowan (1972) model incorporated refractoriness by
premultiplying the firing rates by

1−
∫ t

t−r
u(s) ds

to compensate for all cells that had fired within a period,r, of t . Wilson and Cowan
approximated this integral by:

1− ru.
Thus, their firing rate model has the form:

τi
dUi
dt
= −Ui + (1− riUi)Fi (3.3)

where Fi is the usual firing rate term. In their small network model, there were two
populations of neurons, excitatory and inhibitory.

Grossberg (1990) considered models of the form:

C
dVi
dt
= −gL(Vi − EL)− (Vi − Eex)

∑
j

Aij (Vj )− (Vi − Ein)
∑
j

Cij (Vj )+ Ii (3.4)

which is like a passive membrane coupled with instantaneous nonlinear synapses.
There have been numerous other derivations of neural models which include a variety

of anatomical and physiological aspects. Mallot and Giannakopoulos (1996) considered
continuum models which have very general spatial and temporal properties including axonal
spread and delays that depend on the axonal distance. Wrightet al (1987) and Wright and
Liley (1995) considered continuum models where there are distributions of delays, axonal
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diameters, and varying density of cells. Koch and Leisman (1996) also developed a general
theory for neuronal networks with an emphasis on how delays can destabilize certain spatial
modes.

3.2.1. Averaging models.We mention several methods that have been successfully
employed to obtain simplified neural models from biophysical models such as (2.2). These
techniques have an advantage in that every step of the way, we can exactly quantify the
parameters. The idea is that there is a small parameter that allows us, through changes
of variables, to apply the method of averaging and thus obtain a simplified model. We
only describe one method in detail and then discuss other methods that lead to a variety of
different greatly simplified models. In all cases, we start with biophysically based models.
We want to emphasize the point that in networks with many neurons and in systems where
the neurons have complex firing patterns, such as bursting, then these reduction methods
are not likely to be a good representation of the actual firing patterns of individual cells.
The averaging methods, however, do suggest certain reasonable forms for firing rate models
that go beyond anad hocchoice for a nonlinear ‘squashing function’.

Suppose that the time course of the synapses is ‘slow’ compared with the firing patterns
of the neuron. That is,

ds

dt
= ε[α(V )(1− s)− βs] (3.5)

whereα(V ) is a sigmoidal nonlinearity andε is a small positive parameter. We assume that
s is the gating variable for the synapse so that ifs is held constant, the voltage dynamics
go to a steady state; either repetitive firing or a fixed point. For simplicity in the derivation,
we assume only a single self-coupled cell with this slow synapse:

C
dV

dt
= −Iion− gs(V − Vrev)

whereIion contains all the gating variables for the active channels andVrev is the reversal
potential of the synapse. We now treatG ≡ gs as a bifurcation parameter. For the moment
assume that the synapse is ‘excitatory’ so that increasingG results in the system switching
from rest to periodic behaviour via a saddle–node limit cycle bifurcation atG = Gc (see
figure 1(b)). We have:

V (t) = v(t;G)
wherev is a function that is constant int for G < Gc and periodic with periodT (G−Cc)
for G > Gc. Sinceε is small, we can substitute this value of voltage into equation (3.5) to
obtain:

ds

dt
= ε[α(v(t; gs))(1− s)− βs]. (3.6)

For G < Gc v is a constant. ForG > Gc the system oscillates and we can average over
the periodT . Thus, we obtain the closed scalar system:

ds

dt
= ε[S(gs)(1− s)− βs] (3.7)

where

S(G) = 1

T

∫ T

0
α(v(t;G)) dt.
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(In the case of a fixed point takeT = ∞.) Now if we assume that when the cell is not
firing, the potential is below the threshold for the synapse,S(G) = 0 for G < Gc. If the
spikes are very narrow, then the averageS(G) is approximately

S(G) = κ

T (G)
= κF(G)

whereF(G) is the firing rate as a function of the synaptic conductance. Thus, we recover
essentially a firing rate model. For simple additive synaptic currents, the general model has
the form:

dsi
dt
= ε

(
Si

[∑
i

gij sj + Ii
]
(1− si)− βisi

)
which is quite similar to the original Wilson–Cowan equation (3.3), withr = 1. The
main point of this derivation is that the functionS can be numerically evaluated and then
fitted with known functions to yield a quantitatively correct model of the full membrane
dynamics (Chenet al 1997a, Ermentrout 1994). Adaptation and other slow processes are
easily included within this formulation.

In the same manner as was done for general ionic models, a reduction of integrate-
and-fire models can also be made. Here, I will take the model of Somerset al (1995) and
reduce it to a simple neural network. Somerset al considered a spatially interconnected
network of excitatory and inhibitory cells. We ignore the spatial aspect. The model cells
have the form:

C
dVj
dt
= −gjl(Vj − VL)− gjazj (V − Va)− gej se(Vj − Vex)− gij si(Vj − Vin)+ Ij

wherezj , se, si are time-dependent gating variables, andVj is the potential of the cell. The
index, j = {e, i}. The gating variables,zj represent adaptation; in the simplest case, there
is no adaptation for the inhibitory cells. IfVj crossesVthr the threshold, then, the synaptic
gating variable,sj is ‘turned on’ and decays with some characteristic time course. If we fix
se, si, zj to be constant, then the voltage equation is readily solved for any initial condition.
From this, we can determine the firing time of the next spike. This gives us essentially a
firing rate model. This can then be substituted into the dynamics for the gating variables
to obtain a closed system involving no actual potentials. If we assume that the potential is
reset toVreset after a spike, and synapses are simple exponentials, then the formally reduced
version of Somerset al is just:

τes
′
e = −se +Gefe/C

τis
′
i = −si +Gifi/C

τas
′
a = −sa +Gefe/C

Ge = gel + geese + giesi + gasa
Gi = gil + geise + giisi
ve = (Ie + geeseVex + giesiVin + gelVl + gasaVa)/Ge

vi = (Ii + geiseVex + giisiVin + gilVl)/Ge

f (v) = −1/ ln[(v − Vthr)/(v − Vreset)]

fe = min(f (ve), fe,max)

fi = min(f (vi), fi,max)

where we have clipped the firing rates to be less than some prescribed maximum (since
there is no refractory period) and define the firing rate function,f (v) to be 0 if v < Vthr.



368 B Ermentrout

While this looks complicated a plot of the nullclines of the(se, si)-system reveals a nearly
piecewise linear system.

3.2.2. Weakly connected neural networks.Hoppensteadt and Izhikevich (1997) developed
a general theory of weakly connected neural models. The idea is to suppose that for each
neuron, the dynamics are near a bifurcation and then allow these neurons to interact weakly
with other similar neurons. The result is that each high-dimensional ‘neuron’ is represented
by a much lower-dimensional system that is the normal form for this bifurcation, and
coupling is linear. For example, Hoppensteadt and Izhikevich showed that near a Hopf
bifurcation, each neuron is represented by a complex scalar,zj and the equations have the
form:

dzj
dt
= zj (aj − bjzj z̄j )+

∑
k

wjkzk

where all constants are complex numbers. The analysis of models of this form remains an
open question. Even in the case of just two cells, the behaviour can be remarkably complex
(Aronsonet al 1990).

Another reduction presumes that each cell is firing periodically at roughly the same rate.
Each neuron can be represented as a phase,θi and the reduction (Kuramoto 1984) is:

dθi
dt
= ωi +

∑
j

Hij (θj − θj ).

These models have been the object of a great deal of recent research along two lines: (i)
general behaviour and (ii) the form of the interaction functionsHij . In section 4.5.1 we
discuss these models in detail.

A final example which we will return to in section 7.2.3 is the behaviour of a network
with weak coupling near a saddle–node bifurcation on a circle. That is, there is an invariant
circle with two fixed points and at the bifurcation, these merge and then disappear leaving a
limit cycle oscillation (cf figure 1(b)). Hoppensteadt and Izhikevich showed that in this case,
each neuron can be represented by a single-phase variable,θi which satisfies the differential
equation:

dθi
dt
= 1− cosθi + ri(1+ cosθi)+

∑
j

gij (θi)δ(θj − π) (3.8)

gij (θ) = 2 arctan

(
tan

θ

2
+ wij

)
− θ (3.9)

wherewij is proportional to the coupling strength,δ(θ) is the Dirac delta or unit impulse
function, andri is a bias term which is positive if the system oscillates and negative if the
system is excitable. (Note that the formula in proposition 8.12 in their book contains a
misprint and (3.8) is the correct form.)

These three examples of weakly connected networks arise in three different regimes.
The first when there aresmall amplitudelimit cycles weakly connected, the second when
there are large amplitude limit cycles weakly connected, and the last when there are excitable
systems near threshold weakly connected. The latter two are more relevant to neurobiology
as most neural oscillations occur far from the small amplitude bifurcation.
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Figure 3. Two-parameter bifurcation diagram of the scalar neural network. Inside the cusp, there
are three fixed points and outside there is one. The curves outlining the cusp are saddle–node
or fold points.

4. Small networks

We now address the behaviour of small neural networks. We are interested in the dynamics
of these systems. We will not attempt to completely classify their behaviour, although this
is probably possible for small systems with first-order or exponential synapses. Beer (1995)
made the effort to classify two-dimensional models with a variety of connections. Here we
will build on this work adding a few cases that he missed. We will work in the ‘activity’
coordinate system, so that the models that we are interested in have the form:

τju
′
j = −uj + Fj

(∑
k

wjkuk

)
.

4.1. Scalar first-order networks

The simplest neural network is the first-order scalar one:

u′ = −u+ f (wu− θ) (4.1)

wheref is the usual squashing function, for example,f (u) = 1/(1 + e−u). There are
two parameters in this simple network, the synaptic weight,w and the threshold,θ . Inputs
and time constants can all be scaled out of this model. Since the model is a scalar one,
all solutions tend to fixed points and these lie between 0 and 1. Thus, all that remains to
determine is the number of fixed points and their stability. It is easy to plot a two-parameter
bifurcation diagram which we summarize in figure 3. Along the cusp are fold points where
an unstable and stable fixed point coalesce. Inside the cusp are two stable fixed points and
one unstable fixed point. Outside the cusp, there is a single stable fixed point. While this
is a very simple model, it is canonical and it is the ability of the neural network through
recurrent excitation to produce bistability that allows these networks to generate such a vast
array of spatio-temporal patterns.

4.2. More general scalar networks

The simplest scalar network uses a first-order temporal operator. Can we expect anything
new to happen if we use a higher-order PSP? The steady states remain the same in both
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models. Thus, one possible difference could be the appearance of limit cycles. There
are two ways to increase the order of the synapse. One is to use a sum of more than
one exponential for the PSP function. Since a synaptic time course is well fitted by a
pair of exponentials and the membrane properties of a passive dendrite are fit by a single
exponential, the maximum number of exponentials that we will consider is three. A second
way to increase the order is to incorporate fixed time delays (an der Heiden 1979).

4.2.1. Multiple exponentials.Suppose the PSP is the sum of two exponentials, e−β1t , e−β2t .
Then the simple nonlinear feedback model becomes:

ut = v
vt = −(β1+ β2)v + β1β2(−u+ f (wu− θ)).

Bendixson’s negative criterion (Edelstein-Keshet 1988) implies that there are no oscillations
for this model. After transients, there is little difference between the first- and second-order
PSP models.

The same cannot be said of third-order models. Suppose that the PSP is the sum of
three real exponentials, e−β1t , e−β2t , e−β3t . The equations are:

ut = v
vt = z
zt = −(β1+ β2+ β3)z+ (β1β2+ β1β3+ β2β3)vβ1β2β3(−u+ f (wu− θ)).

Oscillations can occur in this network if the weight is negative! It is simple to show
that if we letwf ′(wū− θ) ≡ −κ be a parameter, then asκ increases past

κc = −1+ (β1+ β2+ β3)(β1β2+ β1β3+ β2β3)

β1β2β3
(4.2)

there is a Hopf bifurcation and oscillations can occur. (This is a consequence of the Routh–
Hurwitz criterion. See Edelstein-Keshet (1988).)

4.2.2. Delays. Consider the simplest delayed-feedback neural model:

ut (t) = −u(t)+ f (wu(t − δ)− θ).

This is the essence of a model that has been used by Milton in his analysis of the pupillary
reflex (Mackey and Milton 1988). The parameter,δ is the delay. Following the prescription
of MacDonald (1989) it is easy to determine whether or not the delay can destabilize a fixed
point. Lettingκ = wf ′(wū− θ) whereū is the fixed point, the fixed point is stable if and
only if all roots, s to

s + 1= κe−sδ

have negative real parts. It is easy to show that ifκ > 0, no delay-induced stability can
occur, but ifκ < 0, then for delays that are large enough, oscillations occur. Similar delayed
negative feedback systems are analysed in Glass and Mackey (1988) and Murray (1989).
Large networks with delays have been considered by Marcus and Westervelt (1989).
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4.3. Two cells

Now we consider two coupled cells:

τ1u
′
1 = −u1+ f (w11u1+ w12u2− θ1)

τ2u
′
2 = −u2+ f (w21u1+ w22u2− θ2)

wheref is a monotonic function like the squashing function. The behaviour of this model
system can be analysed by using phase-plane methods. Since this is a planar system, the
only attractors are limit cycles and fixed points. Limit cycles are impossible in the one-
dimensional network with single and double exponential synapses so that they represent a
new class of behaviour in this simple network. Many theorems on neural networks apply
when the weights are symmetric and these invariably show that all initial conditions go to
fixed points (see section 5.4). We can eliminate most of the ‘uninteresting’ cases by using
a result from Ermentrout (1995): ifw12w21 > 0 then there are no limit cycles. This is
a generalization of the symmetry condition on the weights; certainly ifw12 = w21 then
the non-negativity condition holds. Furthermore, we can apply the Bendixson’s criterion
to conclude that if bothw11 andw22 are negative, then there can also be no limit cycles.
In the cases: (i)w12w21 > 0 or (ii) w11, w22 < 0; the only possible long-term behaviour
is the approach to fixed points. The use of nullclines serves to completely classify the
number of the fixed points. Recall that nullclines are the curves defined in the plane
where u′j = 0. Thus, their intersections yield fixed points. For the logistic squashing
function, f , the nullclines can be monotone or ‘cubic’ like. This implies that there are
at most nine fixed points or as few as one fixed point. If there is a unique fixed point,
it is globally asymptotically stable. Generically there will be an odd number of fixed
points. Cases where there are an even number of fixed points, say, for example four, will
perturb to three or five fixed points with a small change in some parameter. Since there
are always an odd number of fixed points, the number of stable and unstable fixed points
is not equal. There will usually be stable nodes, saddle points, and unstable nodes. The
saddle points have one-dimensional stable manifolds which play the role of separating the
domains of stability of the stable fixed points. Figure 4 shows several examples of this
type of network. There are several observations which are useful. The nullclines have
outer and inner branches if they are cubic in shape. If the nullcline is not kinked then
there is one branch and it is defined to be an outer one. If the nullclines intersect so that
the resulting fixed point is on an outer branch from each nullcline, then that fixed point
is a stable node. If the fixed point is on an inner branch of one nullcline and the outer
branch of the other, then it is a saddle point. Finally, if the fixed point lies on inner
branches of both nullclines, it is an unstable node. Thus, one needs only to draw the
nullclines and look at the intersections to determine both the fixed point and stability. A
similar situation occurs in higher dimensions (Beer 1995) although it is not as simple to
visualize.

In Beer’s analysis, he found 11 different phase planes in his two-neuron network. We
will show that there are several others that he missed in his analysis that involve multiple
limit cycles. We do not claim that this appended list is exhaustive, although it is tempting
to conjecture that there can be no more than two stable limit cycles in these systems. He
found the following systems ordered by the number of fixed points (1) 1 stable FP, (1lc)
1 unstable FP and 1 stable LC, (3a) 2 stable FP, 1 saddle; (3b) 1 stable FP, 1 saddle, 1
unstable FP; (3lc) same as (3b) with 1 stable LC; (5a) 3 stable FP and 2 saddles; (5b) 2
stable FP, 2 saddles, 1 unstable FP; (5lc) same as (5b) with a stable limit cycle; (7) 3 stable
FP, 1 unstable FP, 3 saddles; (9) 4 stable fixed points, 4 saddles, 1 unstable FP. (Here
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Figure 4. Phase-plane of two-neuron models which have only fixed points. Nullclines and
stable manifolds of the saddle points are shown. Circles are stable nodes and squares are
unstable nodes. (a) Three fixed points: one saddle and two attractors. (b) Five fixed points:
two saddles and three attractors. (c) Nine fixed points: four attractors, four saddles, and one
unstable node.

when we say ‘unstable FP’, we mean either a node or a spiral but not a saddle which is
topologically distinct.)

The most interesting dynamics occur when there is a negative feedback loop between the
two neurons and there is some self-excitation (wjj > 0). In this case, we cannot eliminate
the possibility of limit cycles. We restrict our attention to networks that obey ‘Dale’s
principle’ which for our purposes means that a cell that exerts an inhibitory (excitatory)
influence on some other cell will inhibit (excite) any other cell that it is connected to. Since
we have shown that limit cycle dynamics occur only in systems with negative feedback and
some self-excitation, we briefly look at two neuron models wherew11, w21 are non-negative
andw22, w12 are non-positive. These can have all of the behaviours in Beer’s list except
for seven fixed points and nine fixed points. There are several interesting cases that Beer
missed. These are shown in figure 5 and include (1lc2) stable FP, stable LC, unstable LC
and (1lc3) unstable FP, 2 stable LC, 1 unstable LC. Case (1lc2) has bistability between a
fixed point and a limit cycle but an unstable limit cycle separates the basins of attraction
in contrast to Beer’s (3lc1) where the saddle point separates the basin. Case (1lc3) has
bistability between two limit cycles.

The point of this analysis is that the complete behaviour of two cell neural networks
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Figure 5. Multistability with limit cycles in two-neuron networks. (a) Stable fixed point and
stable limit cycle coexisting (w11 = 8, w12 = −6, w21 = 7, w22 = −2, θ1 = 0, θ2 = 0.355,
τ1 = 1, τ2 = 6, f (u) = 1/(1+ e−u)). (b) Two stable coexistent limit cycles (parameters as in
(a), exceptθ1 = 0.34, θ2 = 2.5, w21 = 16).

can be classified and determined by looking at the nullclines and with the use of a decent
bifurcation package.

Borisyuk and Kirillov (1992) studied (3.3) in which only two parameters are allowed
to vary; the input to the excitatory neurons and the connection from the excitatory cell to
the inhibitory cell. They numerically compute a complete two-parameter bifurcation for
this system. They find a variety of special points such as the coalescence of limit cycles,
Takens–Bogdanov points, and several other codimension 2 bifurcations. We refer the reader
to Borisyuk and Kirillov or Beer to see examples beyond those that we have described here.

4.4. Chaos in forced two- or three-dimensional networks

Chaotic behaviour in neural networks and in brain theory has been an active, if controversial,
area of research (Baird 1986, Basar 1990, Freeman 1987). We make no claim here as to its
relevance to biology but mention it in the interest of completeness.

Topological considerations eliminate the possibility of chaos in two-cell neural networks.
Periodically driving these systems can result in chaos. Beer (1995) found such behaviour
by driving the system (3lc1) which is near a homoclinic bifurcation. Driving systems near
homoclinic bifurcations is known to produce chaotic behaviour (Guckenheimer and Holmes
1983).

It is easy to create an autonomous neural network that exhibits chaotic behaviour. Beer
did this for a three-neuron network. We can start with case (3lc1) in which the two-
dimensional network has a stable fixed point and stable limit cycle separated by a saddle
point. We then simply add a third variable that slowly passes through the homoclinic point.
Figure 6 shows an example of the attractor for this. A numerically computed Poincaré map
reveals an essentially one-dimensional structure that is in the form of a cap map.

Another approach to creating chaotic neural networks is to find networks with fixed
points that have high co-dimension singularities. Ermentrout (1984a) constructed three-
variable neural networks with chaotic behaviour by choosing parameters so that there is a
triple zero eigenvalue. Below, we discuss another class of chaotic neural networks found
by coupling two neural oscillators. van Vreeswijk and Sompolinsky (1996) have recently
shown that large networks of coupled neurons where the excitation and inhibition balance (in
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Figure 6. Chaotic solution to a three-neuron network,τiu′i = −ui + f (
∑
j wij uj − θi ) for

i = 1, 2, 3. f (u) = 1/(1+ e−u), θ1 = −2, θ2 = 4.5, τ1 = 1, τ2 = 1.35, w11 = 8, w12 = −6,
w21 = 16,w22 = −2, θ3 = 8, w13 = −10,w31 = 8, τ3 = 60,w23 = w32 = w33 = 0.

a mean-field sense) exhibit chaotic behaviour that suggests a reason for the high variability
of cortical spikes.

4.5. Coupled oscillatory nets

We review the behaviour of a pair of excitatory–inhibitory neural networks that have au-
tonomous oscillations in the absence of coupling. There has been a great deal of recent
interest in the mechanisms of synchronization between neurons in cortex. This theoretical
and experimental interest has been due to the experiments of Gray and Singer (1989) in
which synchronized 40 Hz oscillations are found in the cat visual cortex during the presen-
tation of certain stimuli. This experimental result has spawned a virtual industry of models
about synchrony in networks of neurons. The basic questions are what mechanisms of
coupling between neurons guarantee synchronization over large distances in the presence of
noise. Grannanet al (1993) suggested that the tight coherence between cells that are some
distance apart cannot be achieved with localized coupling and requires long-distance cou-
pling between the distant units. The reason for this assertion is that the noise will overwhelm
any coherence that could be induced through strictly local connections. Given that two cells
or local cortical circuits are connected and that they both oscillate with roughly the same
frequency, the question becomes: what are the stable allowable phase relationships between
the cells? This question has led to a large amount of theoretical work with far fewer experi-
mental results (Grannanet al 1993, Hansel and Sompolinsky 1996, Hanselet al 1995, Usher
et al 1993, van Vreeswijket al 1994, Wang and Rinzel 1992, Borisyuket al 1995, Coombes
and Lord 1997, Ermentrout and Kopell 1991). There are some general principles that seem
to have emerged mainly in the ‘weak coupling regime’. For integrate-and-fire models, the
behaviour of pairs of mutually coupled cells and globally coupled arrays has been thoroughly
analysed, (Usheret al 1993, Abbott and van Vreeswijk 1993, van Vreeswijket al 1994).
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4.5.1. Weak coupling. Suppose that two nearly identical networks are uncoupled from
each other and have a unique stable autonomous limit cycle with period,T . Since this
periodic orbit is hyperbolic (that is, the linearized system has only one unit multiplier and
all the others are bounded away from the unit circle) this means that the two limit cycles
will persist when the systems are coupled if the coupling is sufficiently weak. There are
generically at least two things that can happen when two identical oscillators are coupled
weakly: (i) they can synchronize and oscillate with no phase shift; or, (ii) they can oscillate
a half cycle out of phase. Other behaviours can occur, but the synchronous and out-of-phase
oscillations are always solutions to the weakly coupled system.

By using the method of averaging, it is possible to compute the interaction between
the oscillators in the limit when the interactions are vanishingly small. Uncoupled, each
oscillator can be described by a single variable, the phase,θj wherej = 1, 2 corresponds to
the index of the oscillator. Kuramoto (1984) was among the first to describe how to compute
the interaction between oscillators in the limit of infinitesimally weak coupling. Suppose,
X1, X2 are two vectors corresponding to identical weakly coupled limit cycle oscillators
with periodT satisfying:

dXj
dt
= F(Xj )+ εGj (Xj ,Xk) j, k = 1, 2 k 6= j.

Let X0(t) satisfy

dX0

dt
= F(X0)

and let,X∗(t) satisfy:

dX∗(t)
dt

= −DXF(X0(t))
T X∗(t)

with normalization

1

T

∫ T

0
X∗(t) ·X′0(t) dt = 1.

Then, forε sufficiently small, the solutions to the weakly coupled system have the form,
Xj(t) = X0(t + θj )+O(ε) and the phases,θj satisfy:

dθ1

dt
= 1+ εH1(θ2− θ1) (4.3)

dθ2

dt
= 1+ εH2(θ1− θ2) (4.4)

whereHj is a T -periodic function of its argument. The functions,Hj are given by the
averages:

Hj(φ) = 1

T

∫ T

0
X∗(t) ·Gj(X0(t), X0(t + φ)) dt.

Letting φ = θ2− θ1 denote the phase difference between the two cells, we see that

dφ

dt
= ε(H2(−φ)−H1(φ)) ≡ −εg(φ).

Thus, phase-locked solutions (solutions which maintain a constant phase difference) are
just fixed points of the functiong and if g′ > 0 then they are stable fixed points. If the
oscillators are symmetrically coupled and identical, thenG1(X, Y ) = G2(X, Y ) and g is
just twice the odd part ofH . BecauseH is periodic,g will have two roots, 0 andT/2,
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the synchronous and antiphase solutions. (Unless,H is purely even, which occurs in some
physical systems such as Josephson junctions, but never in any biological examples.)

Obviouslyg can have other roots besides 0 andT/2 but the main solutions that are of
interest are the synchronous and antiphase solutions. Thus, a great deal of recent research
has been aimed at finding what aspects of the coupling and oscillator properties determine
the stability of the synchronous state (see, e.g. van Vreeswijket al 1994, Wang and Rinzel
1992, Hanselet al 1995, Coombes and Lord 1997).

Haken (1996) and Kelso (1995) as well as Hanselet al (1995) studied a model where
g(φ) = a sinφ − b sin 2φ. If a > 0 andb is small enough, then the only roots are 0 and
π/2. As b increases in magnitude two new roots appear, and depending on parameters can
be stable or unstable. This type of behaviour is found in ‘realistic’ models of neurons (see
for example, van Vreeswijket al 1994, Hanselet al 1995). The key point in the weakly
coupled analysis is to find the functionsH andg which in turn requires finding the function,
X∗(t). The latter is a simple numerical exercise (see Williams and Bowtell, 1997) for a
given model and a given type of connection. This local analysis informs us of all possible
phase-locked solutions in the case of weak coupling.

Hoppensteadt and Izhikevich (1997) proved a useful result for coupled networks of the
form:

u′j = −uj + f (aeeuj − aievj + beeuk − bievk + pe) (4.5)

τv′j = −vj + f (aeiuj − aiivj + beiuk − biivk + pi) (4.6)

wherek 6= j . Herebjk are small parameters. When they are zero, each of the uncoupled
systems,(uj , vj ) have a limit cycle. There are four ways to couple the two networks together
by letting each of the fourbjk ’s be non-zero. Letgjk(φ) be the odd part of the interaction
function for each of the four possibilities. Hoppensteadt and Izhikevich proved that

g′ie(0) = g′ei(0).
That is, the stability of synchrony is independent of whether the coupling is from the
excitatory cell of one cell to the inhibitory cell of the other or vice versa.

Example.Suppose thataee = 12, aie = 8, aei = 16, aii = 2, pe = −2, pi = −6, τ = 1 and
f (u) = 1/(1+ e−u). Then a computation of the interaction functionsH(φ) for each of the
four possibilities in equations (4.5) yields the following approximations:

Hee(φ) = −1.225 cosφ − 0.29 sinφ

Hie(φ) = 0.4124 cosφ + 0.71 sinφ

Hei(φ) = 0.245+ 0.145 cosφ + 0.71 sinφ

Hii(φ) = −0.257+ 0.546 cosφ − 0.77 sinφ.

Thus, for cross connections, synchrony is stable but for connections between the same cell
types, synchrony is unstable since in the former, the odd part ofH is positive and in the
latter it is negative.

4.5.2. Beyond weak coupling.Weak coupling is a rather stringent requirement for the
analysis. In many numerical cases, it has ‘predicted’ far better than would be expected
for an asymptotic theory. Hoppensteadt and Izhikevich suggested that the normal coupling
between pyramidal cells is weak although it is not clear in what sense any interactions are
‘weak’. Ermentrout and Kopell (1991) showed that ‘weak’ coupling is not necessary in order
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to apply averaging and if the ‘unit’ producing oscillations is able to produce outputs with a
wide distribution of phases, then one can still use averaging even with strong coupling.

It is difficult to imagine any general theory of moderate and strong coupling of neural
oscillators; the systems are just too complicated. (However, Terman and Wang (1995) have
developed a general theory for moderately coupled relaxation oscillators.) Most results to
date are numerical and thus very specific to the particulars of the model. As we noted
above, the behaviour of integrate-and-fire neurons for arbitrary coupling strengths is fairly
well characterized because closed form solutions can be found.

The most systematic investigation of the interactions between neural network oscillators
was done by Borisyuket al (1995). They consider the Wilson–Cowan firing rate model (3.3)
in which each oscillator consists of a pair of excitatory and inhibitory cells. In the same
manner as (4.5) they look at all four different types of coupling between the excitatory–
inhibitory network. They use the weak coupling analysis as a starting point of their work in
which they follow the behaviour as the coupling strength increases and the weakly coupled
assumption no longer holds. They use a continuation package to follow the branches of the
phase-locked solutions as the the coupling parameter varies. In addition to the various types
of phase-locked solutions expected from the weak coupling hypothesis, they find bifurcation
to tori, chaos, period-doubling, and oscillator death as the strength of the coupling increases.

5. General considerations about large networks with no inherent spatial structure

In this section, we review some of the literature on recurrent neural networks with no
imposed spatial structure. These types of networks have been attractive to physicists due
to their isomorphism to spin glass systems in some cases. From a biological point of view,
they can be regarded as models of local regions of cortical tissue where there is not a global
spatial or other topological structure. The literature on these types of networks is large and
there have been many reviews and books on the subject. The basic models of interest have
the form:

τj
duj
dt
+ uj = Fj

(∑
k

wjkuk

)
(5.1)

with eitherwjk = wkj or in some cases, no structure at all on the weights. (However, often
time is discrete and additionally, in some ‘models’, the units are updated asynchronously.)
The ‘voltage’ formulation in which the nonlinearity is inside the summation will be
considered as well. A very nice history of the development of these networks as well
as applications can be found in Cowan and Sharp (1988).

5.1. McCulloch–Pitts neural networks

Among the earliest attempts at modelling the dynamics of neural assemblies is the classic
paper of McCulloch and Pitts (1943). In this work, the authors considered a network of
binary neurons of the form:

Ni(t + 1) = H
(∑

j

wijNj (t)+ ξi
)

whereH is the unit step function andwij , ξi are real numbers. At each timestep, all
‘neurons’ are updated according to the dynamic rule above. McCulloch and Pitts showed
that these networks can carry out any logical calculation and thus could simulate any digital
calculation. The main problem faced by the user of such a network is how to choose the
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weights,wij for the desired calculation. An alternative to the McCulloch–Pitts model is to
update the network asynchronously, that is randomly pick an index and update that particular
cell. All of these models avoid the issue as to whether and under what circumstances, the
network will settle into some type of regular behaviour such as a fixed point or limit cycle.
Hopfield, in his pivotal work, answered this question for a class of neural networks with
symmetric weights,wij = wji .

5.2. Feedforward networks

Models such as (5.1), in which the outputs of some units become feedback to the input
units, are called recurrent networks. The simplest neural networks are feedforward models
in which connections only go in one direction. Typically there are several ‘layers’ of cells
with the first layer called the ‘input’ layer and the last layer called the ‘output’ layer. Each
layer receives weighted inputs from the layer below it and sends output to the layer above
it.

The earliest feedforward networks were perceptrons (Rosenblatt 1958) in which there
are only two layers, an input and an output layer and one set of weights from the input
to the output layer. Each neuron is a McCulloch–Pitts unit (that is 0 or 1 output) but
the weights between units are allowed to vary. The idea is to choose the weights so that
the desired output pattern is produced for a given input pattern. Rosenblatt introduced a
rule to adjust the weights: if the unit’s response was correct, make no adjustment. If it is
incorrect then increase or decrease all weights which arise from active input units depending
on whether the unit is supposed to be active. A related model is the adaline invented by
Widrow and Hoff (1960) which uses a gradient descent algorithm to vary the weights by
minimizing the mean square error. We discuss this rule more generally in section 5.2.1.
Two-layer feedforward networks are very restrictive and cannot solve some very simple
classification problems. The classic example is the ‘exclusive or’ problem. For binary
inputs,s1, s2 produce an output that is zero ifs1 = s2 and 1 otherwise. Minsky and Papert,
who advocated an artificial intelligence view of the brain, proved that perceptrons could not
distinguish between the letter T and the letter C (see Cowan and Sharp 1988).

This obvious weakness of perceptrons can be solved by adding extra layers. Layers that
are not the input or output layer are called ‘hidden layers’. The dynamics of feedforward
networks is simple and ultimately represents a static nonlinear transformation of the input.
Nevertheless, these networks are extremely useful in a variety of applications such as
character and speech recognition as well as many other engineering examples. See Hertz
et al (1991) or Mulleret al (1995) for many applications.

5.2.1. Back propagation. The main problem in all of these feedforward models is how to
choose the weights. This requires ‘training’ the network—that is, giving input/output pairs
and adjusting weights so that the error is minimized. The most common method for doing
this is called ‘back propagation’. The error in the output layer (layerM) is used to adjust
the weights from layerM−1 toM and this error is propagated back to adjust weights from
layerM − 2 to layerM − 1, etc. This technique is so important that we summarize here
the general algorithm as described by Hertzet al. Let V mk be the output of layerm:

V mk = S(hmk ) ≡ S
(∑

j

wmkjV
m−1
j

)
whereS is the sigmoid function. (Note that this is the steady state of the network after all
temporal transients have died away.) LetV 0

k ≡ ξk be input andYk be the desired output.
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Define

δMk = S ′(hMk )(Yk − VMk )
where

hmk =
∑
j

wmjkV
m−1
j .

Then define

δm−1
k = S ′(hm−1

k )
∑
j

wmkj δ
m
j .

Now adjust the weights by an amount

1wmkj = ηδmk V m−1
j

whereη is an adjustable parameter for the learning rate. Repeat this many times for all
patterns until some convergence is obtained. The error in the top layer is propagated back to
lower layers, hence the name of the rule. Hertzet al (1991) showed that this is equivalent
to using gradient descent on the mean-squared error. In a recent paper, Fitzsimondset
al (1997) showed that in cultures of hippocampal neurons, long-term depression (a type
of synaptic weight modification) was ‘back propagated’ the synapses of the presynaptic
neurons thus providing a possible biological analogue of back propagation.

5.3. Hopfield networks as spin glasses

The theory of neural networks was reborn (at least in the eyes of physicists) with the
publication of two papers by Hopfield (1982, 1984) in which he pointed out that neural
networks with certain symmetries are analogous to spin glasses. We describe these results
here, following the development by Hertzet al. We first consider a network of binary
neurons which are updated asynchronously. (That is, an index is randomly chosen and the
corresponding unit is updated.) Then we look at the global stability of continuous systems
of the form (5.1).

Consider the system:

xi(t + 1) = H
(∑

j

wij xj − µi
)

whereH is the Heaviside step function. In order to make the association with spin systems
clearer, we introduce the spin variablesSi whereSi = 2xi −1 take on values of+1 (firing)
or −1 (not firing). We then obtain:

Si(t + 1) = sgn

(∑
j

wijSj − θi
)

where

θi = 2µi −
∑
j

wij

and sgn(x) is the signum function;+1 for non-negative arguments and−1 for negative
ones. If we are using asynchronous updating for the network, then it is clear that there
will be trouble ifwii is not zero. For simplicity, we setθi = 0. Hopfield’s most important
contribution was to notice that this system has an energy function:

H = − 1
2

∑
ij

wijSiSj .
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To see that this is indeed an energy function, letS ′i be the new state of one of the cells,i.
If S ′i = Si then there is no change in the energy. Otherwise,S ′i = −Si so that the change
in energy is

1H = − 1
2(S
′
i − Si)

∑
j

wijSj .

Since

S ′i = sgn

(∑
j

wijSj

)
both S ′i and the sum have the same sign. Thus,1H is negative and the energy decreases.
This shows that eventually the system will settle into one of several possible minima. These
states are the so-called memories of the system. This is the simplest model for an associative
memory; all initial conditions settle into some particular attractor. That is, an initial input
is ‘associated’ with a particular final state. This network and related ones such as (5.1) are
called ‘attractor’ neural networks since all initial data eventually settle into one of the stable
fixed points of the system.

We now want to determine how to ‘set’ the memories to a desired pattern. Suppose that
we want the system to always settle into a single pattern (as opposed to one of several), say
ξj . We want to choosewij so that

sgn
∑
j

wij ξj = ξi .

Consider

wij = 1

N
ξiξj

whereN is the number of units. Then it is clear that such a choice of weights will always
have ξ as a fixed point. In fact, if fewer than half the bits of the starting pattern are
wrong, then the output will still be the desired pattern. The network is an attractor network
and nearby initial data will converge to the desired pattern. Note that another attractor of
this network is−ξj the state with every bit reversed. If more than half the initial bits of
the starting stateSj are the opposite ofξj then the network will converge to the attractor,
−ξj . Globally, the binary phase space is partitioned into two subspaces separated by the
‘hyperplane’ in which there are exactly half the bits reversed. All initial data in one half
are attracted toξj and those in the other half to−ξj .

If we want to storeM attractors,{ξ1
j , . . . , ξ

M
j } then we choose

wij =
M∑
m=1

ξmi ξ
m
j .

If these are all mutually orthogonal, then each pattern is a fixed point of the map. In general,
however, we cannot expect this to be true. We want to know how ‘close’ the output:

hni ≡
∑
j

wij ξ
n
j

is to the desired pattern, sgnhni = ξni . By breaking the sum up we see that

hni = ξni +
1

N

∑
j

∑
m6=n

ξmi ξ
m
j ξ

n
j ≡ ξni + Eni .

As we noted above, if the patterns are mutually orthogonal, then the errorEni is identically
zero. If the absolute error is less than one for eachi then the output will have the desired
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sign and will be a local attractor. An elegant calculation by Hertzet al shows that if the
choice of patterns is random in that there are no correlations between the patterns, then the
capacity (number of stable patterns) of the network can be computed for any given error
tolerance. They introduce the cross-talk term

Cni = −ξni Eni .
If Cni is negative, then the error is in the right direction and will not affect the sign; if it is
greater than 1, then the output sign will be in error. They show that

Prob(Cni > 1) = 1
2

(
1− erf

√
N/2m

)
.

For example, if the tolerance for error is 0.001, then the maximum capacity is about 10%
of the network size.

In addition to the attractors that are desired in these networks, there are spurious states
that fall into three classes. We have already seen that the reversed states are also attractors.
Mixed states correspond to linear combinations of an odd number of the desired patterns.
For example, the patternξ1

j + ξ2
j + ξ3

j when plugged into the network yields:
1
2(ξ

1
j + ξ2

j + ξ3
j )+ cross terms.

Using the symmetry, it is easy to show that this is a stable pattern. A mixture consisting
of an even number of states will have some zero states which means that it is not a valid
pattern. Finally, there are states which are not a combination of any finite set of the original
patters; the so-called spin-glass states.

5.4. Statistical mechanics and the capacity of attractor networks

Amit et al (1987) and Sompolinsky (1987) studied the behaviour of networks in which
α ≡ p/N , the ratio of the number of stored patterns to the number of neurons approached a
limiting value asN →∞. They showed that in the limit of ‘zero temperature’ (that is the
units are binary) that the capacity of the network is roughly,α = 0.144. That is, if one tries
to store more than this critical number of patterns, then the network will be overwhelmed
by the spurious states. The books by Mulleret al, Amit (1989) and Hertzet al give many
more details on these calculations.

5.4.1. Energy and Liapunov functions for general continuous recurrent networks.Hopfield
(1984) showed that just as in the asynchronous binary units, there is an energy equation for
(5.1) if the weights are symmetric. The function is

E = − 1
2

∑
ij

uiuj +
∑
i

∫ ui

0
g−1(z) dz

whereui = g(Vi). We show that dE/dt < 0. Differentiation yields
dE

dt
= −1

2

∑
ij

wij
dui
dt
uj − 1

2

∑
ij

wijui
duj
dt
+
∑
i

g−1(ui)
dui
dt

= −
∑
i

dui
dt

(∑
j

wijuj − Vi
)

= −
∑
i

dui
dt
τi

dVi
dt

= −
∑
i

τig
′(Vi)

(
dVi
dt

)2

6 0.



382 B Ermentrout

The key part of this argument is arriving at the second line from the first one; this is valid
becausewij = wji . That is, the network is symmetric. Furthermore,g is a sigmoid function
and thus monotonic. Ifg is strictly monotonic, then dE/dt vanishes only when dVi/dt = 0
for all i, that is at a fixed point. These symmetric networks have no non-trivial steady states
(that is, steady states which are not fixed points) such as limit cycles and chaotic behaviour.
Note that this does not imply that every fixed point is stable.Hopfield’s result implies that
all initial data relax to some fixed point, not that all fixed points are attractors.

5.4.2. Cohen–Grossberg theorem.We close this section with another important result in
symmetric attractor neural networks, the Cohen–Grossberg (1983) theorem. We will first
state the theorem and then show how it applies to a number of standard neural models. The
general model takes the form:

dxi
dt
= ai(xi)

[
bi(xi)−

N∑
j=1

cij dj (xj )

]
. (5.2)

This model is a generalization of the famous Lotka–Volterra model for species competing
for a common resource. The assumptions are quite simple,

cij = cji symmetry (5.3)

ai(xi) > 0 positivity (5.4)

d ′i (xi) > 0 monotonicity. (5.5)

We have seen assumption (5.3) in all of the examples so far. Without this symmetry
assumption, the convergence of these networks to fixed points would only occur in
very special circumstances. The other two assumptions are rather mild. The latter two
assumptions imply that there is a global Liapunov function:

V = −
N∑
i=1

∫ xi

bi(y)d
′
i (y) dy + 1

2

N∑
j,k=1

cjkdj (xj )dk(xk).

DifferentiatingV with respect tot we find

dV

dt
= −

N∑
i=1

ai(xi)d
′
i (xi)

(
bi(xi)−

N∑
j=1

cij dj (xj )

)2

which is negative if assumptions (5.4), (5.5) hold. (Note that we really only needaid
′
i > 0.)

The existence of a function which decreases along trajectories implies that all solutions tend
to fixed points. If inequalities (5.4), (5.5) are strict, then the only fixed points satisfy:

bi(xi) =
N∑
j=1

cij dj (xj ).

This result includes the Hopfield result as a special case. To see this consider a slight
generalization:

τi
dVi
dt
+ Vi =

∑
j

wijg(Vj )+ Ii

where we have included inputsIi . Make the following identifications:

ai(Vi) = 1

τi
bi(Vi) = Ii − Vi
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di(Vi) = g(Vi)
cij = −wij .

It is clear that the assumptions of the Cohen–Grossberg theorem are met.
A subcase of the Cohen–Grossberg class of models (used by Destexhe 1994) is the

shunting network:

dxi
dt
= −Aixi + (Bi − xi)[Ii + fi(xi)] − (xi + Ci)

[
Ji +

N∑
j=1

Dijgj (xj )

]
(5.6)

whereDij = Dji > 0 andg′j (xj ) > 0. The constantsAi, Bi, Ci are all non-negative. This
model is somewhat like a membrane model where there is self-excitation iffi > 0 and
lateral inhibition. We will analyse models like this in a later part of this paper in the limit
asN → ∞ and there is spatial structure in the coefficientsDij . Clearly if Ai, Bi, Ci are
all non-negative and the inputs(Ij , Jj , gj , fj ) are positive, then ifxi(0) ∈ (−Ci, Bi) then it
will remain in this interval for all time. To make the association with the Cohen–Grossberg
equation (5.2) we letyi = xi + Ci . Then make the identifications:

ai(yi) = yi
bi(yi) = 1

yi
{AiCi − (Ai + Ji)yi + (Bi + Ci − yi)[Ii + fi(yi − Ci)]}

cij = Dij

di(yi) = gi(yi − Ci).
All of the assumptions obviously hold so that this shunting network is again a special case
of the Cohen–Grossberg theory.

Ye et al (1995) and Herz (1995) studied the dynamics of Cohen–Grossberg networks
in the presence of multiple delays. Instead of terms of the form

cij dj (xj (t))

in (5.2), they incorporate multiple delays:

ckij dj (xj (t − τk)).
They find conditions on the delays,τk such that there is still global stability. They basically
show that if the delays are small enough, then all the results of the Cohen–Grossberg theorem
still hold. This result generalizes that of Marcus and Westervelt (1989) who analysed the
Hopfield model with delays and showed that with small delays global stability still holds
but with larger delays oscillations occur. These effects are analogous to the delay-induced
instability discussed in section 4.2.2.

Koch and Leisman (1996) studied the effect of delays in a spatially continuous neural
network and how these delays increase the number of unstable modes of behaviour. Their
analysis is for a strictly linear network, so it is likely that many of the modes that they find
will be unstable in a full nonlinear analysis. (See section 8 for examples of this type of
pattern selection.)

5.5. Line attractors

Line attractors are a type of attractor that has recently been considered as a model for
occulomotor integrator which transforms velocity-coded visual and vestibular signals into
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eye position. Experimentally, what is found is that the firing rates of individual neurons is
a linear function of the eye position,E. That is

ui = hi + ξiE (5.7)

wherehi and ξi are constants that depend on the individual neuron. The eye position is a
dynamic variable that the integrator determines by the summed activity of the neurons in
the network. The eye position can be held over many seconds, long after the stimulus has
disappeared, thus, it has been suggested that the firing rates are ‘attractor’ states of some
sort of neural network. Because the firing rates of each of the neurons are parametrized
by the constantE, the network has been called a line attractor. Seung (1996) proposed the
simple model:

u′i = −ui + hi +
∑
j

wijf (uj ).

The idea is to choose the weights and inputs so that the firing rates are as close to (5.7) as
possible. Seung, motivated by Hopfield’s results, chose

Wij = ξiηj .
The steady states are then:

ui = hi + Cξi
whereC must satisfy

C =
∑
j

ηjf (Cξj + hj ). (5.8)

The idea is to chooseξi, ηi , so that there are as many values ofC as possible that satisfy
(5.8). If f is linear, then chooseηj = ξj to be normalized and orthogonal tohj . For the
nonlinear problem, this choice works fairly well and can lead to many roots of this equation.

5.6. Winner-take-all networks

An important class of networks that has been studied by a large number of authors are the
so-called winner-take-all (WTA) networks. In these networks, input may be given or not,
but the end result is that only one unit is turned on and the other units are suppressed.
These units are important in the formation of self-organized maps (Kohonen 1989) since
the assumption in the map models is that one unit or small group of local units is excited.
Chialvo and Bak (1997) showed that the WTA behaviour is very good for building systems
that are able to rapidly adapt to changing environments. The architecture of WTA networks
is usually of the form:

dui
dt
= F

(
ui, Ii,

∑
j

uj

)
(5.9)

whereF is an increasing function of its second argument and a decreasing function of
the third argument. If the global inhibition of the network is strong enough, then all but
the system receiving the strongest input will be suppressed. Yuille and Gryczwyz (1989)
showed that forF(u, I,6) = −u+ If (u− 6) with f a sigmoid nonlinearity, then WTA
behaviour can occur. In the case of equal inputs, it is also possible for WTA to occur, but in
this case, the ‘winner’ is the unit that initially starts highest. Models such as the Yuille and
Gryczwyz are easy to understand by looking atN = 2 neurons andf (u) = 1/(1+ e−u).
There will be a unique winner no matter what the initial conditions are if both inputsIi are
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small enough so that there is a unique fixed point. As both inputs increase in strength, a
bifurcation to a pair of new fixed points occurs. This leads to bistability of the network and
so even though the network has asymmetric inputs, some initial conditions will go to the
weaker one. In most cases that arise in neural models, the Cohen–Grossberg theorem can
be applied to prove that all solutions tend to fixed points.

Fukai and Tanaka (1997) recently derived a simple Lotka–Volterra model from a general
neural network. The equations have the form:

dui
dt
= ui

(
1+ Ii + (β − 1)ui − β

∑
j

uj

)
+ ε

where ε is a small positive parameter. Forε = 0 they prove that whenβ = 1, the
network has WTA behaviour in that the largest input suppresses all the other inputs. When
β− < β < 1 the network can have more winners, sayn, as long as

1+ Imin >
βn

1− β (Ī − Imin)

whereImin is the minimum input among the winners andĪ is the mean input among winners.
Finally, they show that ifβ > 1 the system is a variable WTA in which one unit wins and
the others are 0, but the winner is not necessarily the unit with the largest input. Unitj can
be a winner as long as

β(1+ Ij ) > (1+ Ii) for all i 6= j.
Ermentrout (1992a) showed that if the global inhibition is not instantaneous, then the

WTA behaviour can be disrupted. For example, consider the WTA model:

u′j = −uj + f (14uj − 15v − 1)

τv′ = −v + f (15(u− 1+ u2+ u3)− 8)

wheref (u) = 1/(1+ e−u). Then forτ smaller thanτH ≈ 0.4, the network is a WTA. At
τ = τH the system remains a WTA network, but the activity of all the units oscillates with
the ‘winner’ having a much bigger amplitude than the other two units. Asτ continues to
increase, the difference in magnitude of the three units decreases until atτ = τL ≈ 4.24, the
stable asymmetric state disappears and the only stable solution is a synchronous oscillation.
Thus, the WTA phenomena depends on the ability of the inhibitory influence to act fast.

5.7. Oscillatory networks revisited

Gerstneret al (1996) recently considered generalizations of the results of Abbott and van
Vreeswijk (1993) van Vreeswijket al (1994) by considering their version of the integrate-
and-fire model. They considered a network of neurons of the form:

Vi(t) =
∑
f

η(t − tfi )+
∑
j

wij
∑
f

α(t − tfj −1).

Here,wij are the weights,α is the post-synaptic potential,1 is the synaptic delay, andη(t)
is the refractory function (see section 2.1.1).Vi(t) is the potential of the cell,i andtfi is the
set of firing times of cell,i. They analyse stability of the homogeneous oscillatory solution
for networks in which the row sums ofwij are identical, say,w, andwij > 0. They give
conditions on the postsynaptic function and the refractory function which guarantee stability
of the synchronous state. The conditions for stability are easily illustrated (see figure 7).
If the refractory curve,θ − η(t) (whereθ is the threshold to fire) intersects the synaptic
potential curvewα(t) where the latter has a positive slope, then the synchronous state is
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Figure 7. Criterion for stability of the synchronous solution in the ‘spike-response’ model.
The curve of refractoriness,θ − η(t) must intersect the synaptic response,wα(t), where it is
increasing.

stable; otherwise it is unstable. Clearly, if the delay is too short, then excitation is unstable
as was shown for the integrate-and-fire model by van Vreeswijket al (1994).

A similar result for weakly coupled oscillator networks can also be proven (Ermentrout
1992b). Consider the analogue of (4.3) in a network ofN coupled oscillators:

dθi
dt
= ωi +Hi(θ1− θi, . . . , θN − θi). (5.10)

Each argument of the functionsHi is periodic with the same period. Suppose that there is
a phase-locked solution:

θi(t) = �t + θ̄i + C
where� is the ensemble frequency,C is an arbitrary constant, and̄θi is independent of
time and represents the relative phases of each of the oscillators. Let

wij = ∂Hi/∂φj
be the partial derivative ofHi with respect to each of itsN arguments evaluated at this
phase-locked solution. Ifwij > 0 and the matrixwij is irreducible, then the phase-locked
solution is asymptotically stable.

6. Models with spatial structure

The models that we have explored so far essentially model a single layer of neurons. That
is the implicit assumption made when there are symmetric connections. Furthermore, the
structure of the connections is distributed and associative; there is no clear topographic
organization of the connections. There clearly exist spatially distributed connections in
cortical networks and much of the early theoretical work on neural networks took this
viewpoint. Recent experimental advances have enabled neuroscientists to look at spatially
distributed activity in cortex and other brain regions. Section 4, on small networks, assumes
a layered organization with a clear distinction between excitatory and inhibitory cells. This
contrasts with the general work that we described in section 5 on attractor neural networks
where there were no restrictions on the values of the weights.

We now turn to the dynamics of neural networks which have spatially structured
connections in the sense that there are either layers or topological organization of connections
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between units. We will first introduce continuum networks. Then we will describe general
results on single-layer models for convolution-type coupling. We will also look at the
dynamics of propagation. We then turn to multilayer models in which there is both excitation
and inhibition. We apply a variety of mathematical techniques that can be used to attack
these problems such as bifurcation and perturbation methods. Finally, we look at more
complicated networks in which additional structure is introduced. In all cases, we will try
to make analogies with the behaviour of the networks and real biological systems.

6.1. Continuum models

The number of neurons and synapses in even a small piece of cortex is immense so that a
natural approach is to take a continuum limit and study neural networks in which space is
continuous. We will look at general considerations before turning to simple convolution-
type interactions. ConsiderM populations of neurons with activities,u`(x, t) wherex is
a spatial variable. It could be in one, two, or perhaps three dimensions. Then the general
neural network has the form:

L`(t)u`(x, t) = F`
(∑

`′

∫
�

w``′(x, y)u`′(y, t)dy

)
whereL` is a temporal integrator; in most of the examples we consider, it will be the
operator,Lu = τ du/dt + u. Here� is the spatial extent of the network. The connectivity
functions,w(x, y) determine the total strength of connections between cells aty to cells at
x. The most typical form forw(x, y) is a form that is dependent only on the difference
betweenx andy,

w(x, y) = W(x − y) homogeneous. (6.1)

Such interaction functions are called homogeneous since they are translation invariant.
An additional simplification is that the interactions are isotropic so that,W(z) is only a
function of |z| the absolute value of the vectorz. Most people who use continuum models
use this approximation. Another issue is the problem of what to do at the boundaries.
For example in a one-dimensional domain, what happens at the edges. There are several
different approaches that can be taken. To illustrate these, we fix the model to lie on the
interval [0, 1], so that the interaction is just:∫ 1

0
w(x, y)u(y, t)dy.

The simplest approach is to just leave the interaction function asw(x, y) = W(|x−y|).
This implies that cells near the edges receive fewer connections than cells in the middle. This
means that spatially uniform activities are not transformed to spatially uniform outputs. On
a large domain or with sufficiently localized connections, this is not a problem for transient
phenomena. However, for recurrent activity, the local boundary effects can have global
consequences. Thus, this is not particularly suitable when one wants to study long-term
spontaneous activity.

The second approach is to let the domain be periodic. This is reasonable for some types
of networks wherex is not space but orientation (see sections 8.1.2 or 7.3.4 for examples).
However, in general this does not make much biological sense. Related to this simplification
is to let the domain be infinite. This itself presents some mathematical difficulties. The
advantage of periodic and infinite domains will become evident when we apply bifurcation
methods to the equations.
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The third way to deal with the issue of the edges is to ‘homogenize’ the medium. That
is, let

r(x) =
∫ 1

0
W(|x − y|) dy

and define:

w(x, y) = W(|x − y|)/r(x).
This weight function will now transform spatially homogeneous input to spatially
homogeneous output. If the domain is periodic, all that this does is normalize the integral
of w. We will call interaction functions of this type ‘homogenized’.

6.1.1. What is the form of the interaction function?If the density of cells in a given layer
is uniform, and the interactions between cells depend only on distance, then the interaction
function from layer̀ to layer`′ is:

w(x − y) =
∫
�

D`′(x − y)A`(y) dy

whereD`′(z) is the arborization function for the dendrites of the postsynaptic cell population
andA`(z) is the axonal arborization of the presynaptic population. Thus, the contribution
from cells at pointx to cells at pointy is the convolution of the arborization function. In
section 8.3.3, we take a more ambitious approach due to Bressloff (1995) and include the
fact that synapses may occur at different distances from the cell body along the postsynaptic
dendrite.

Given a distance-dependent interaction function, what should the shape be? The classic
model hasW peaked at the origin and decaying with distance. For example,W may
be a Gaussian, exp(−(|x|/σ)2), exponential, exp(−|x|/σ), or with finite support. One
issue is whether a cell can connect to itself. This issue is not yet resolved anatomically
although there is strong evidence that at least for inhibitory cortical cells, self-connections
are quite prevalent (Tamaset al 1997). There is some scant evidence for self-synapses
(called autapses) in excitatory pyramidal cells (Lubkeet al 1996). If self-connections are
prohibited by introducing a ‘gap’ in connectivity, it is possible that new phenomena could
occur; this is a subject of current research. For example, Rinzelet al (1998) showed that
in a network of inhibitorily coupled neurons that have post-inhibitory rebound, smooth
propagation occurs only if there is a gap. There are recent examples in the prefrontal
cortex of anatomical connections which branch and tuft, branch and tuft, etc in a periodic
fashion. That is, the connectivity of cells decreases with distance but is highly modulated
by a periodic function. Again, the functional implications of this type of interaction are still
an open question.

If the density of cells is non-uniform, then there will be an obvious inhomogeneity in
the connections:

w``′(x, y) = W(|x − y|)ρ`(y)ρ ′`(x).
The implications of this remain a subject of current research.

In general, spatial interactions are symmetric and similar to one of the four types
illustrated in figure 8 which are called respectively: (a) excitatory; (b) inhibitory; (c)
lateral-inhibitory; and (d) lateral-excitatory. All of the examples that we analyse in the
remainder of this paper will be of one of these four types. All four can be written in the
following form:

w(x) = a1e−(x/σ1)
2 − a2e−(x/σ2)

2
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Figure 8. The most typical spatial interaction functions for spatially continuous neural networks.
(a) Purely excitatory interactions; (b) purely inhibitory interactions; (c) ‘lateral-inhibition’ or
‘Mexican hat’ interactions in which there is local excitation and distant inhibition; (d) ‘lateral
excitation’, in which there is local inhibition and distant excitation.

where all parameters are non-negative. Purely excitatory connections havea2 = 0,
inhibitory havea1 = 0, lateral inhibitory haveσ2 > σ1, a1 > a2 and lateral excitatory
haveσ1 > σ2, a2 > a1.

6.1.2. ‘Hebbian’ or product connectivity.A simple model for connectivity is the analogue
of Hopfield’s ‘Hebbian’ interactions:

w(x, y) =
m∑
k=1

ξk(x)ηk(y)

whereξk(x) are continuous functions. We will look at an example of this type of interaction
in a model for orientation response proposed by Ben Yishaiet al (1995, 1997). To see how
such a model could be justified, suppose that the domain is periodic. Then

w(x, y) = W(|x − y|)
is periodic and we can expandW in a cosine series (since it is symmetric):

W(z) = J0+ J1 cosax + J2 cos 2ax + · · · .
If we truncate this after finitely many terms, then the interaction will be a sum of terms of
the form: ∫

cos[na(x − y)]u(y) dy =
∫
(cosnay cosnax + sinnay sinnax)u(y) dy

which is just a sum of ‘Hebbian’ interactions.

7. Pattern formation in active media

Pattern formation in nonlinear spatially distributed systems has a long history in physics
and biology. The mechanisms responsible for pattern formation are well known (see Fife
1979, Murray 1989, or Cross and Hohenberg 1994). In neuronal networks, we have all
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the necessary interactions to lead to a variety of spatial and temporal behaviour. The
response of a neural network to inputs is obviously very important, but the analysis of
such systems remains a difficult question both analytically and numerically. Thus, we
must turn to approximations and perturbative methods. These methods have proven to be
very useful in elucidating the behaviour of neural networks. We are particularly interested
in the spontaneous excitation of neural networks as well as how the presence of weak
inputs can alter this behaviour. Strong inputs will presumably dominate the behaviour of
the networks (see Amari 1977, for a justification of this). In a recent series of papers,
Hansel and Sompolinsky (1996, 1997) have also assumed that the inputs are weak. Roque
Da Silva Filho (1992) studied the equilibrium properties of a two-layer continuous neural
network with localized inputs. He shows that the sizes of response of the inhibitory layer
is inversely related to the size of the input fields to the excitatory and inhibitory layers. A
similar ‘paradoxical’ behaviour was found in a simple variable excitatory–inhibitory model
(Tsodykset al 1997).

In one space dimension, there are several types of behaviour that were found numerically
by Wilson and Cowan (1973) and Ellias and Grossberg (1975) and it is these behaviours
that we will consider here from an analytic point of view. We will review the following
points.

(1) Waves of various types:
(a) wavefronts joining an excited state to a resting state;
(b) solitary waves or travelling pulses in which the medium is briefly excited and then

returns to rest;
(c) periodic wave trains.
(2) Stationary pulses or local excitations.
(3) Oscillatory behaviour.
(4) Spatially periodic stationary patterns.
In two dimensions, the same behaviours can be found, however, there are many other

interesting patterns that can occur such as spiral waves, target waves, and doubly periodic
patterns. We will describe the existence of these patterns in multilayer spatially distributed
neural networks. The main techniques are singular perturbation, bifurcation, and linear
approximation methods.

Before beginning with the analysis, we briefly discuss the relevance of these patterns to
biology. A more detailed discussion can be found in the specific analysis sections. Waves
such as wavefronts and pulses have now been observed in slice preparations (Chagnac-
Amitai and Connors 1989, Traubet al 1993, Golomb and Amitai 1997) using voltage-
sensitive dyes and multiple electrodes. Periodic wave trains are common in many systems
such as the Limax olfactory bulb (Kleinfeldet al 1994) and the locomotor generators of
some fish (Grillner, 1974). Standing solitary spatial pulses are believed to be the analogue
of short-term memory. There are many examples of delayed-response tasks in which an
initiating stimulus is removed, but localized neural activity remains (Fuster and Alexander
1971, Funahashiet al 1989). Standing pulses are believed to be the analogue of this
phenomenon. Oscillations in neural networks have been of great interest ever since Gray
and Singer (1986) observed coherent oscillations in response to a stimulus in the cat visual
cortex. Finally, a number of authors have suggested that spatially periodic activity profiles
may be the analogue of simple visual hallucinations (Ermentrout and Cowan 1979b, Tass
1995).

In this section, we focus onactive media. That is, we will describe behaviour of systems
that are highly nonlinear and far away from any spatially and temporally uniform states. In
the next section, we will look at bifurcation of spatio-temporal patterns from rest. Active
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media can be characterized by their local dynamics. We point out three different types
of locally active media: (i) bistable, (ii) excitable, and (iii) oscillatory. Locally bistable
behaviour occurs when there are two stable states for the network, resting and active. A
locally excitable medium has a unique stable fixed point and a threshold-like behaviour.
Small perturbations return to rest, but larger ones are amplified before returning to rest.
The behaviour of these systems when coupled in a spatially extended network can be
quite complex. Vasilievet al (1987) provided a comprehensive review of the behaviour
of diffusively coupled active systems using singular perturbation methods. In this section,
we will use similar techniques to examine the highly nonlinear behaviour ofsynaptically
coupled neural networks which are locally active.

The local dynamics combined with different spatial connectivities leads to a variety
of large amplitude patterns. Bistable networks with local excitation lead to travelling
wavefronts. If there is lateral inhibition, then the same bistable network will lead to localized
regions of excitation. In the excitable system, local excitation leads to travelling wave pulses
and if there is lateral inhibition, stationary pulses occur. Locally oscillatory networks lead
to travelling waves.

7.1. Wavefronts

We will start with some results about one-dimensional models on the real line as these
models provide the starting point for singular perturbation methods.

Consider the following network:

V (x, t) =
∫ ∞

0
h(s) ds

∫ ∞
−∞

w(x − y)S(V (y, t − s)) dy (7.1)

which represents a one-dimensional network of neurons distributed on the real line. We
normalize the temporal operator,h and the spatial weight function so that they both integrate
to 1 over their respective domains. We assume thatw is non-negative and symmetric (like
figure 8(a)), h is positive and monotone decreasing, andS is monotone. Finally, we assume
that the equation:

f (V ) ≡ −V + S(V ) = 0

has precisely three roots,V1 < V2 < V3 such thatf ′(Vj ) is negative forj = 1, 3 and
positive forj = 2. This last assumption implies that the spatially homogeneous equation is
bistable in that there are two stable fixed points, a low potential,V1 and a high potential,
V3. The middle potential,V2 separates the two fixed points.

In the reaction–diffusion literature, the following bistable model is often studied:

ut = uxx + f (u)
wheref (u) has three rootsu1 < u2 < u3 with f ′(uj ) negative forj = 1, 3 and positive for
j = 2. Fife and McLeod (1977) showed that this model equation has as a solution a unique
travelling wavefront,u(x, t) = U(ξ) whereξ = x − ct . The front satisfiesU(−∞) = u3

andU(+∞) = u1 and the velocity,c, is unique.
Based on this reaction–diffusion equation, Ermentrout and McLeod (1993) were able

to prove that there is a travelling front solution to (7.1),V (x, t) = v(ξ). The wavefront
joins the two stable solutions,V1 andV3. They are able to show that it is unique as well as
stable. One property that will be useful later is that the sign of the velocityc is the same
as the sign of the integral:

I =
∫ V3

V1

f (V ) dV.
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The functionf (V ) is ‘cubic-like’, If I is positive, then the positive area exceeds the negative
area. This occurs if the threshold of the sigmoid,S is low. The wavespeed is positive so
that if the system is perturbed enough from the lower state, it will ‘ignite’ and switch the
medium from low potential (firing rate) to high potential (firing rate). On the other hand,
if the threshold is high, thenI will be negative and the medium will switch from the high
state to the low state. In particular, there is a unique value of the threshold for which the
wave is ‘frozen’ and does not propagate. At this value,I = 0.

Idiart and Abbott (1993) considered (7.1) under the conditions thath(t) = e−t and
constructed an approximate solution by linearizingS around the middle fixed point.
Ermentrout and McLeod (1993) solved the piecewise constant case,S(u) = H(u − θ)
whereH is the step function. Pinto (1997) also constructed a solution for generalh and
axonal delay. We will review these constructions in the next section. Chenet al (1997a)
generalized the Ermentrout and McLeod results to include models of the form:

du

dt
= F

(∫ ∞
−∞

w(x − y)g[u(y, t)]

)
P(u)− C(u).

ChoosingP(u) = 1−u, g(u) = C(u) = u, we obtain the continuum analogue of the spike-
averaged system (3.7). This result was used to prove the existence of travelling spindle
waves in a biophysically based model for the reticular nucleus of the thalamus (Chenet al
1997b).

7.1.1. Piecewise linear models.We now explicitly construct wavefronts for a piecewise
constant model:

u(x, t) =
∫ t

−∞
h(t − s) ds

∫ ∞
−∞

w(x − y)H(u(y, s)− θ) dy (7.2)

whereH is the step function andθ is the threshold. We look for a solutionu(x, t) = U(z)
wherez = x − ct is the travelling coordinate. Since the wave is translation invariant, we
fix the origin by requiring thatU(0) = θ . We want wavefronts which are monotone and
satisfyU(−∞) = 1, U(∞) = 0. Using the fact that the step function is 0 forz > 0 by our
choice of the origin, the travelling solution satisfies:

U(z) =
∫ ∞
z

h
(
s − z

c

) ∫ ∞
sc

w(y) dy ds.

The condition thatU(0) = θ determines the velocity,c:

θ =
∫ ∞

0
h(s)

∫ ∞
cs

w(y) dy ds. (7.3)

For a given PSP functionh and weight function,w, we need only evaluate these integrals.
Since the weight function and the PSP function have been normalized, it is clear that when
θ = 1

2, that c = 0. Furthermore, the velocity increases as the threshold decreases with an
infinite positive velocity asθ → 0 and an infinite negative velocity asθ → 1. Finally,
uniqueness of the velocity is also obvious from the monotonicity of this function ofc. Thus
for each threshold between 0 and 1, there is a unique velocity,c. Pinto (1997) extended
this theory to the case in which there are axonal delays. That is, (7.2) is replaced by:

u(x, t) =
∫ t

−∞
h(t − s) ds

∫ ∞
−∞

w(x − y)H(u(y, s − |x − y|/v)− θ) dy. (7.4)

Herev is the axonal velocity and|x−y|/v is the conduction delay. Asv→∞ we recover
the original model. Since the axonal conduction velocity is two orders of magnitude faster
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than typical cortical waves, one is justified in ignoring the conduction delays. However, for
waves arising in low-threshold models, this velocity does have an effect. Pinto found that
if |c| < v, then

θ =
∫ ∞

0
h(s)

∫ ∞
c
|v|−c

w(y) dy ds.

Note that asc approachesv from below, the integral vanishes, andθ = 0. Similarly, as
c→−v+, θ → 1. Thus, the velocity is pinned between−v andv.

In another calculation, Pinto and also Chenet al (1997b) considered the equation:

∂u

∂t
(x, t) = AH

(∫ ∞
−∞

w(x − y)u(y, t)dy − θ
)
(1− u(x, t))− Bu(x, t) (7.5)

whereA,B are positive parameters. Recall that this model arises when averaging is done
in a full ionic channel model. The velocity is found by solving:

θ = A

A+ B
(

1

2
+
∫ ∞

0
w(z)e−

A+B
c
z dz

)
.

Idiart and Abbott (1993) adapted a similar approach and obtained the velocity for an
equation of the form:

τut = −u+
∫ ∞
−∞

w(x − y)S(u(y, t − |x − y|/v)) dy.

They showed that ifS ′(θ) = g and the slope of the front at threshold isK, then for infinite
conduction velocity (v→∞)

c =
(
gKw2

2θτ

)1
2

where

m2 =
∫ 0

−∞
w(y)y2 dy.

They did not provide a formula for the slope,K, which must still be determined, but their
observation is useful; the slope of the front and the velocity of the wave are intimately
related.

7.2. Travelling pulses

Travelling fronts are not particularly interesting in biological applications, since cells
or layers of cells do not stay at the excited state forever. Rather, additionalslow
processes gradually bring the neurons back to rest. There are two possible sources for
the repolarization of the network: (i) synaptic inhibition, (ii) slow ionic processes within
the cell such as adaptation. Normal synaptic inhibition is fast and strong and thus will
usually disrupt any type of wave propagation. In cortical slice preparations (Chagnac-
Amitai and Connors 1989, Golomb and Amitai 1997) the inhibition has to be blocked or
dramatically reduced pharmacologically before any propagation can occur. Adaptation is
the likely mechanism for the termination of propagating waves. We will now look at several
examples of the analysis of travelling pulses. There are two different ways to approach the
problem. Amari (1977) wrote down a piecewise constant model and then constructed a
solution. Pinto (1997) constructed solutions in general by assuming a slow local negative
feedback that can be viewed as adaptation.
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7.2.1. Amari’s analysis. Amari (1977) considered a network in which there are excitatory–
excitatory connections and inhibitory–excitatory connections, but the excitatory–inhibitory
connections are local. Lettingue andui denote the respective potentials of the excitatory
and inhibitory populations, Amari considered:

∂ue

∂t
= −ue + wee(x) ∗H(ue)− wie(x) ∗H(ui)+ Pe (7.6)

∂ui

∂t
= −ui + weiH(ue)+ Pi (7.7)

wherew(x) ∗ f is the convolution ofw with f . He set the thresholds to the step functions
to be 0 and then added inputs to the model to adjust the bias. One could easily have set
the inputs to zero and have the threshold as a parameter.

Amari sought travelling wave solutions with velocityc that represent propagating regions
of excitation where the excitatory population is positive for a length,a. He showed that the
length of the excited region and the velocity of the waves are found by solving:

0=
∫ ∞

0
es/cK(s) ds + cPe

0=
∫ ∞

0
e−s/cK(s + a) ds + cPe

where

K(s) =
∫ a

0
wee(s − s ′) ds ′ −

∫ s2

s1

wie(s − s ′) ds ′

and

s1 = −c ln
wei(e−a − 1)

Pi

s2 = a + c ln

(
1+ Pi

wei

)
.

Remarks.
(1) The interval(s1, s2) is where the inhibitory layer is excited.
(2) If the inhibitory population is positively stimulated,Pi > 0, then there are no

propagating waves sinces1 is undefined.
(3) There is no difference in the time constants between inhibition and excitation in this

model. For continuous models, it is very difficult to get travelling wave pulses unless there
are big differences in the time constants. Rinzel and Keller (1973) found travelling pulses
for the piecewise constant Fitzhugh–Nagumo model and found that they have no need for
a big difference in time constants, but in continuous versions of the same model, a big
difference in time constants is required. Thus, the piecewise constant model seems to be a
special case.

Pinto obtained a result like Amari’s in a simpler system in which the inhibition is purely
linear and the effect of the excitation on the inhibition is also linear. Pinto used a shooting
argument after converting the equations to a boundary value problem. He showed that there
are two velocities which solve the equations; one narrow and slow and one wide and fast.
This is typical of the results found for the reaction–diffusion models; in these models the
slow wave is unstable and the fast wave is stable. Based on numerical calculations, Pinto
arrived at the same conclusion.
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As a final example of the usefulness of the piecewise constant models, we can also
consider the models that arise from averaging of ionic equations:

∂s

∂t
(x, t) = AH(w ∗ s − bz− θ)(1− s)− s (7.8)

τ
∂z

∂t
(x, t) = BH(w ∗ s − bz− θ)(1− z)− z (7.9)

wherez is the adaptation ands is the synaptic activity. Note that in a sense, this is the
simplest model of all since the same nonlinearity modulates the rates of the synaptic drive
and the adaptation. It is easy to verify that if there is a travelling pulse solution to this with
velocity c and width,a, it must satisfy the two equations:

θ =
∫ 0

−a
w(y)s1(y) dy +

∫ −a
−∞

w(y)s2(y) dy

θ =
∫ 0

−a
w(y + a)s1(y) dy +

∫ −a
−∞

w(y + a)s2(y) dy − bB

B + 1
(1− e−

B+1
cτ
a).

The functionss1, s2 are defined by:

s1(y) = A

A+ 1
(1− e

A+1
c
y)

s2(y) = A

A+ 1
(1− e−

A+1
c
a)e

y+a
c .

7.2.2. Singular perturbation construction of solutions.We now return to the general model:

ut = −u+ w ∗ f1(u)− f2(v) (7.10)

vt = ε(−av + f3(u)) (7.11)

which can be regarded as an excitatory neural network with slow adaptation. Alternatively,
we could also consider

ut = AF(w ∗ u− bv)(1− u)− u (7.12)

vt = ε[BF(w ∗ u− bv)(1− v)− v]. (7.13)

The idea is to construct travelling waves from these equations exploiting the slowness of the
second variable. Castenet al (1975) applied a technique similar to this to a version of the
Hodgkin–Huxley equations. Ifε = 0 thenv is just a constant and the travelling wavefront
results that we discussed above allow us to create a front joining the unexcited and excited
states. The velocity is parametrized by the constant value of the recovery variable,v which
acts like a threshold.

In figure 9, the phase plane of (7.10), (7.11) is shown when there are no spatial
interactions. There is a unique fixed point and if the initial conditions are sufficiently
large, there is a large amplification before decay to rest. This is the hallmark of an excitable
medium and thus if excitation is allowed to spread, we expect travelling pulses to exist.
Note that the nullclines have the classic shape for excitable systems; the excitatory nullcline
is kinked and has three branches, the two outer branches and an inner branch.

We follow the method used in Pinto (1997) with the obvious generalizations. (Pinto has
f3(u) = u, a = 0, andf3(v) = bv.) Introduce the travelling coordinate,ξ = x − ct so that
(7.10) becomes

−cuξ = −u+ w ∗ f1(u)− f2(V ) (7.14)
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Figure 9. Phase-plane of an excitable system showing representative trajectories. Theu nullcline
is cubic-like with two stable branches,U±(v).

whereV is a constant. This is the ‘inner’ equation. Letη = εξ so that we obtain in the
limit of ε → 0:

−c∂vη = (−av + f3(U
±(v))) ≡ G±(v) (7.15)

whereU±(v) are the two outer branches of the solution to

0= −u+ f1(u)− f2(v)

(see figure 9).
Figure 10 shows a travelling wave solution in the moving coordinates. Initially,v is

at its resting value,v = Vrest. From the theoretical results of section 7.1, we know that
there is a unique travelling wavefront with velocity,c to (7.14) that switches the excitatory
network from rest,Urest= U−(Vrest) to the excited state,U1

exc= U+(Vrest). We turn to the
outer equation. From the phase-plane picture,G+(V ) is strictly positive so that along this
curve, asη decreases,v(η) increases. From the nullclines, we see thatu is also decreasing
in this regime. We must determine whenu makes the jump to the left branch. Suppose
that this happens at the valuev = Vjump. Then the inner equation will be used to make the
jump from the new excited state,U2

exc= U+(Vjump) to the inhibited state,Uin = U−(Vjump).
The velocity of this backward front must match the velocity of the forward front. Under
certain technical assumptions, there is a unique value ofVjump for which the velocities
match. Thus, the velocity of onset of excitation determines where the jump occurs. We
finish the construction by considering the outer equation withG−(v) and initial condition,
v = Vjump. SinceG−(v) vanishes atv = Vrest and is negative forv > Vrest, the solution to
this first-order equation withv = Vjump as the initial data will decay toVrest asη → −∞
as required. This completes the construction of the singular travelling pulse. The velocity
is determined solely from the up-jump and all of the rest of the dynamics follows.

The same approach as that used here could also be applied to model (7.12), (7.13) that
arise from averaging. We could then compare the results with the simulations of Golomb
and Amitai (1997) in which a full biophysical model is derived.
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Figure 10. The singular travelling wave solution. Full curves are excitatory activity and the
broken curve is the recovery variable. Inner and outer parts of the solution are labelled.

7.2.3. A different singular mechanism.Sakaguchi (1988) studied the discrete firing rate
analogue of (7.6), (7.7):

duj
dt
= −uj + fe

(∑
k

wjkuk − bvj
)

dvj
dt
= −vj + fi(cuj − dvj )

when the mechanism for excitability is a saddle–node loop. That is, rather than a single
fixed point and widely disparate timescales, Sakaguchi studied the network when there are
three fixed points and the local phase-plane is as shown in figure 1(b). He considered local
(nearest-neighbour) coupling and found that there are travelling pulse waves. We can use a
different singular perturbation scheme to compute the velocity of these waves. Recall from
section 3.2.2 that if we assume weak coupling with each local system near threshold, we
can reduce this network to a scalar network with just a phase variable. Using (3.8) and
assuming nearest-neighbour coupling, the model equations become:

dθi
dt
= 1− cosθi − I (1+ cosθi)+ g(θi)[δ(θi−1− π)+ δ(θi+1− π)]

where

g(θ) = 2 arctan

(
tan

θ

2
+ w

)
− θ

andw is the coupling strength. The velocity of an excitation wave can be easily computed.
Suppose that celli is at rest and its neighbour has just fired. Then the new phase is

θnew= g(θrest)+ θrest.

If this is past threshold, arccos1−I
1+I , then the phase will increase pastπ at which point it

will cause the next cell in the chain to fire. Thus, the velocity is the reciprocal of this
integration time:

c−1 =
∫ π

θ̂

dθ

1− I − (1+ I ) cosθ
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θ̂ = 2 arctan

(
tan

θrest

2
+ w

)
θrest= −arccos

1− I
1+ I .

As the coupling strength gets larger, the velocity tends to infinity and if the coupling strength
is too weak, the cell will never fire. These ideas can be used to look at a continuum network
of neurons, however, the explicit calculation of velocity cannot usually be done.

7.3. Solitary standing pulses

There has been a great deal of recent interest in the modelling of results from delayed-
response tasks. Animals are required to maintain a memory of the position of a stimulus for
a short time after the stimulus has disappeared. What makes these experiments interesting
from a modelling point of view is that physiological recordings in a region of the brain
called the prefrontal cortex showed that spatially localized groups of neurons fired during
the recall task and then stopped firing once the task was finished (Fuster and Alexander 1971,
Funahashiet al 1989). This has led to a theory that recurrent excitation coupled with lateral
inhibition keeps localized groups of neurons active. There have been a number of neural
network models for this phenomena (Wilson and Cowan 1973, Amari 1977, Camperi and
Wang 1997). We will describe these models and their solution by again either constructing
explicit solutions or using perturbation methods.

Wilson and Cowan used a two-layer network model with excitatory and inhibitory
neurons interacting in a spatially distributer manner. When the local dynamics is like
figure 9 (that is excitable) but the inhibition has a larger spread than the excitation, a local
area of excitation develops but does not spread. The strong self-excitation keeps the centre
excited but the lateral inhibition prevents spread. Ellias and Grossberg (1975) also used
numerical solutions to show the same type of behaviour. This was interpreted to be the
analogue of short-term memory. More recently, Salinas and Abbott (1996) interpreted this
local activity as a representation of the retinal position in higher visual cortex.

A one-layer model in which the spatial interactions are not of one sign (such as the
‘Mexican-hat’ in figure 8(c)) can be regarded as an approximation of the multilayer system.
We will consider:

∂u

∂t
(x, t) = −u(x, t)+

∫
�

w(x − y)S(u(y, t))dy + I (x, t) (7.16)

where,w(x) has the form shown in figure 8(c) or 11.
Before we turn to the analysis of this model, we briefly comment on the implicit

assumptions of such an interaction function. Consider the system (7.10), (7.11) with spatial
interactions between all layers:

ut = −u+ w1 ∗ f1(u)− w2 ∗ f2(v) (7.17)

vt = ε(−v + w3 ∗ f3(u)). (7.18)

Suppose thatf3(u) = f1(u), f2(v) = v, and inhibition is fast, that is,ε � 1. Then from
(7.18),

v = w3 ∗ f3(u).

Substitution of this into (7.17) yields

ut = −u+ w ∗ f1(u)
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Figure 11. Construction of the solitary pulse in the piecewise linear model. (a) The lateral-
inhibitory kernel,w(x). (b) Integral ofw(x). Horizontal line shows the threshold or stimulus.
Intersections correspond to pulse widths. (c) Unstable pulse (broken) acts as a separatrix between
the stable pulse and the rest state. (d) Unstable pulse acts as a separatrix between a wavefront
and the rest state.

where

w(x) = w1(x)− w2(x) ∗ w3(x).

So the one-layer model can be regarded as a two-layer model in which the inhibition is
linear and very fast.

7.3.1. Amari’s model. If we choosef1 to be the step function in equations (7.17) and (7.18)
then we obtain the model that Amari analysed. We now turn to that analysis. Consider:

∂u

∂t
(x, t) = −u(x, t)+

∫
�

w(x − y)H(u(y, t))dy + h+ s(x, t) (7.19)

wherew(x) is a symmetric integrable function,H(u) is the step function, andh is a
homogeneous ands(x, t) is a spatially patterned input pattern. The domain� is either the
whole real line or a circular domain of lengthL. Since the circular domain is equivalent
to a periodic pattern on the whole line, we will consider only the infinite domain. Amari
restricted the functionw(x) to be positive forx near 0 and negative forx sufficiently large
and have exactly one positive 0 (see figure 11(a)).

We suppose that there is no spatial input,s(x, t) = 0 and look for solutions to this model.
As we saw earlier, there can be travelling wave solutions that represent fronts of excitation.
(Indeed, simply letv = u − h be a new variable and we regain the model (7.2) where
θ = −h.) Amari found four different types of solutions: (i) 0-solutions in whichu < 0
for all x, (ii) ∞-solutions in which the entire medium is excited,u > 0, (iii) a-solutions
in which the medium is excited over an interval,(−a, a); (iv) (a, b)-solutions which are
b-periodic with an excited region of lengtha. Solitary peak solutions (a-solutions) can be
arbitrarily translated to be centred at the origin. Let

W(x) =
∫ x

0
w(y) dy

let Wm be the maximum ofW(x), and letW∞ = W(∞). The the behaviour of the system
depends only on the relative sizes ofWm,W∞, andh. For the periodic solutions with period,
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b, let

wb(x) =
∞∑

n=−∞
w(x + nb)

and let

Wb(x) =
∫ x

0
wb(y) dy.

Theorem 1 (Amari 1977).There are three cases with the indicated solutions occurring in
the specified intervals ofh. For the a-solutions,a > 0 satisfiesW(2a) + h = 0 (see
figure 11(b)). There may be 0, 1, or 2 solutions for a given value ofh. An a-solution
is stable if and only ifw(2a) < 0. The infinite family of periodic solutions,(a, b) must
satisfyWb(2a)+ h = 0 and are stable if and only ifwb(2a) < 0.

(1) 2W∞ > Wm

h < −2W∞ → {0}
−2W∞ < h < −Wm→ {0,∞}
−Wm < h < −W∞ → {0, a1, a2,∞}
−W∞ < h < 0→ {0, a,∞}
0< h→ {∞}.

(2) Wm > 2W∞ > 0

h < −Wm→ {0}
−Wm < h < −2W∞ → {0, a1, a2}
−2W∞ < h < −W∞ → {0, a1, a2,∞}
−Wm < h < 0→ {0, a,∞}
0< h→ {∞}.

(3) W∞ < 0

h < −Wm→ {0}
−Wm < h < 0→ {0, a1, a2}
0< h < −2W∞ → {(a, b)}
−2W∞ < h→ {∞}.

Remarks.
(1) The constant solutions are stable when they exist.
(2) The a-solutions occur either individually or in pairs. When individually, they are

unstable. When there are two of them, the wider one is stable and the thinner unstable.
(3) In the cases in which there is an unstablea-solution along with a 0 and∞ solution,

the standing pulse acts as a separatrix between the 0 solution and the∞ solution. Any
initial data which lies above this will develop into a travelling wave that eventually excites
the whole medium (see figure 11(d)). Similarly, in the case where there are two roots to
W(x)+h = 0, the smaller root acts as a separatrix; any initial data that lies above this will
develop into the stable solitary pulse (see figure 11(c)).

(4) If W(x) has finite support, that is, it vanishes for large enoughx, say, for|x| > C

then there can be many independent solitary peaks which do not interact as long as their
distance is at leastC. Similarly, if W has ‘wiggles’ in it, there may be more than two
solitary peaks.
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(5) If W∞ > 0, then for small enoughb, there are only unstable periodic solutions since
wb(x) is always positive.

Since the ideas of the proof of the theorem are quite easy to sketch and since the same
methods can be used to generalize the types of weight functions, we briefly describe the
solutions. Suppose thatu(x) > 0 in the interval(−a, a). Then

u(x) = h+
∫ a

−a
w(x − y) dy.

Sinceu(a) = 0 by definition, we obtain

0= h+
∫ a

−a
w(a − y) dy = h+

∫ 2a

0
w(y) dy.

The rest of the theorem follows from the analysis of the roots of this equation.
Amari proved stability by looking at the movement of the boundaries of the pulses.

A standard stability analysis using linearization and exploiting the fact that the formal
derivative of the step function is the Dirac delta function leads to the same result.

Amari then assumed that there is weakly inhomogeneous input of the form,s(x, t) =
εS(x). He showed that the excited region moves to the peak of the inhomogeneity. We
will revisit this point below using perturbation methods.

7.3.2. Generalization of the Amari model.Kishimoto and Amari (1979) proved the
existence of solitary pulse solutions for (7.16) using a fixed point theorem. The idea of the
proof is the find two values,θ1 < θ2 whereH(u − θ1) 6 S(u) 6 H(u − θ2) such that the
stable pulse solution exists for the piecewise constant functions. Using these ‘upper’ and
‘lower’ solutions they prove existence. Kopecz and Schoener (1995) used a variant Amari’s
equations to model saccadic motor planning by integrating visual inputs with the localized
spatial attractors in the Amari system.

Pinto (1997) reconsidered the single-layer Amari model as a two-layer model and looked
at the stability of the stationary peaks of this model. In particular, he considered:

∂u1

∂t
= −u1+ w1(x) ∗H(u1)− w2(x) ∗ u2+ h1 (7.20)

τ
∂u2

∂t
= −u2+ w3(x) ∗H(u1)+ h2. (7.21)

Note that this is equivalent to (7.17), (7.18) with linear inhibition and withε ≡ τ−1. Time-
independent solutions satisfy:

u(x) = w(x) ∗H(u(x))+ h
where

w(x) = w1(x)− w2(x) ∗ w3(x)

and

h = h1− w̄2h2.

Here w̄2 is the total integral ofw2(x). Thus, the analysis of the stationary states for this
model is the same as Amari’s analysis. The time constant of inhibition does not come
into play for the existence. Pinto showed that thea-solutions are stable solutions to this
extended model ifw(2a) < 0 (Amari’s original condition) and

w1(0)+ w1(2a)

|w(0)− w(2a)| < 1+ 1/τ.
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If this latter condition is violated, then stability is lost via imaginary eigenvalues and we
expect to see a transition to either travelling pulses or perhaps breathing solutions. Instability
of localized pulses as the time course of inhibition is slowed was studied extensively for
reaction–diffusion equations by Nishiura and Mimura (1989). They found breathers, local
pulses whose widths oscillate.

We can formally analyse the breathing solutions by following the width of the pulse as
a function of time. We integrate the inhibitory equation and arrive at the scalar integro-
differential equation:

ut (x, t) = −u(x, t)+ w1(x) ∗H(u(x, t)− θ)− L{w4(x) ∗H(u(x, t)− θ)}
wherew4(x) = w2(x) ∗ w3(x) andL is the integral operator:

Lf (t) = 1

τ

∫ t

−∞
e−(t−s)/τ f (s) ds.

We suppose that the pulse remains symmetric about the origin and has width,a(t). By
definition,u(a(t), t) = θ the threshold. Differentiating this, we see that

ux(a, t)
da

dt
+ ut (a, t) = 0.

We approximateux by its steady state value and evaluate everything atx = a. This leads
to the following evolution equation fora(t):

κ(a)
da

dt
= −θ +W1(2a)− L{W4(2a)}

where

W1(x) =
∫ x

0
w1(y) dy

W4(x) =
∫ x

0
w4(y) dy

κ(a) = w1(0)− w1(2a)− (w4(0)− w4(2a)).

The function, κ(a) is just −ux(a(t), t) evaluated at the steady state. SinceL is just
an exponential operator, we can convert this problem into a two-dimensional differential
equation:

κ(a)
da

dt
= −θ +W1(2a)− z (7.22)

τ
dz

dt
= −z+W4(2a). (7.23)

For any choice of parameters, this system can be analysed by standard phase-plane methods.
In particular, if the threshold is chosen appropriately, then there are two fixed points. One of
these is an unstable saddle point and the other is stable ifτ is small enough. Asτ increases,
a Hopf bifurcation occurs. Unfortunately for all the examples that we have considered, the
bifurcation is subcritical and only unstable periodic orbits bifurcate. Once past the critical
time constant, we numerically find the appearance of travelling pulses.

Pelinovsky and Yakhno (1996a, b) performed a similar stability analysis on an analogous
model:

∂u1

∂t
= −u1+ F(w1 ∗ u1− αu2) (7.24)

τ
∂u2

∂t
= −u2+ w2 ∗ u1. (7.25)
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They are interested in the stability of the stationary peaked solution as a function of the
parameterτ . They obtained results similar to Pinto. They also showed some numerical
simulations which exhibit the aforementioned breathing. They performed an analysis of
the pulse-width equations similar to the one given above. They also considered systems in
which the interaction functions have more than one ‘bump’. They foundm-pulse solutions
wherem > 1 which can stably occur when the weight functions have several sign changes.
They studied the stability of them-pulse solutions and found stable oscillatory structures for
these as well. Their technique was somewhat different; they differentiated the first equation
with respect tot and then used the second equation to reduce the system to a second-order
differential equation for8(x) = w1(x) ∗ u1(x)− αu2. They obtained:

τ
∂28

∂t2
+ (τ + 1)

∂8

∂t
+8 = w3 ∗ F(8)+ τw1 ∗

[
F ′(8)

∂8

∂t

]
(7.26)

wherew3(x) = w1(x)− αw2(x). They showed that the number of standing pulse solutions
is related to the number of sign changes of the effective interaction function,w3(x).

7.3.3. Singular perturbation construction of solitary pulse solutions.The key to obtaining
solitary pulses is the existence of long-range inhibition coupled with the ‘excitable’ local
dynamics. This suggests that perhaps one could perform a singular perturbation calculation
using the ratio if the excitatory spread to inhibitory spread as a parameter. This idea was
successfully applied to reaction diffusion equations (Nishiura and Mimura 1989, Ermentrout
et al 1984). Pinto (1997) recently used a singular perturbation technique applied to the time-
independent equations:

u1(x) =
∫ ∞
−∞

w1(x − y)f1(u1(y)) dy − ε
∫ ∞
−∞

w2(ε(x − y))f2(u2(y)) dy (7.27)

u2(x) =
∫ ∞
−∞

w3(x − y)f1(u1(y)) dy. (7.28)

Let

w̄j =
∫ ∞
−∞

wj(y) dy

and defineU±(z) to be the left and right branches of the solutions to

−u+ w̄1f1(u)− z = 0.

The ideas are similar to those used in the construction of the travelling wave. We follow
Pinto’s analysis here. Since the medium is symmetric, we need only solve the equations on
the positivex-axis. We want the pulse to look like figure 12. There is one discontinuous
outer solution and one inner solution. The inner equation is found by settingε = 0. Thus
u1 satisfies:

u1(x) =
∫ ∞
−∞

w1(x − y)f1(u1(y)) dy − C (7.29)

where C is an unknown constant. From the results of Ermentrout and McLeod (see
section 7.1), it follows that there is a unique value ofC for which there is a transition
front with 0 velocitywith u1 jumping fromU+(C) to U−(C). This value ofC satisfies:∫ U+(C)

U−(C)
w̄1f1(u)− u− C du = 0
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Figure 12. Construction of the singular standing pulse.

that is, the area of the positive and negative parts of the ‘cubic’,−u+ w̄1f1(u)−C, exactly
cancel.

The outer equation is obtained by rescaling space by 1/ε

u1(X) = w̄1f1(u1(X))− w2(X) ∗ f2(u2(X)) (7.30)

u2(X) = w̄3f1(u1(X)). (7.31)

The pulse width is determined by matching the inner and outer regions. Pinto showed that
the value ofX at which the jump occurs,xjump must satisfy:

C = w2(X) ∗ f2(u2(X))(xjump)

where

u2(X) = w̄3f1(U
±(X)).

The choice ofU± is determined by whether or not|X| < xjump. Pinto showed that under
fairly general circumstances such a solution can be found. He finally showed that the outer
solution goes to the rest state asX→±∞. Thus, a pulse can be constructed in the singular
limit of either local excitation or ‘global’ inhibition. Note that in the singular construction
of the travelling wave (in section 7.2.2), the outer equation was an ordinary differential
equation and not an integral equation as it is here. Thus, we were able to break the outer
equation into separate pieces. With the integral equation, the outer equation must be solved
globally.

7.3.4. A model for head-direction.Zhang (1996) is interested in modelling the head-
direction cells. These cells have a remarkable property: they signal the position of the head
independent of the location of the animal; the system is perfectly world centred and thus
acts like a gyroscope, even in total darkness. His model lies on a ring and he wants to
design a network which can follow a stimulus, that is, it can dynamically shift a localized
peak of excitation. His starting point is a model like the one-layer lateral inhibition network
(7.16). He wishes to find weight distributions which can dynamically shift the peak of the
firing rate without disrupting its shape. One way to do this is to add a slow inhibitory
process which will result in a travelling wave around the circle. However, this approach
makes it difficult to control both the direction and velocity of the shift. Zhang’s approach
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is to dynamically modify the weight function in order to achieve the translation invariance.
Let w(x) be a fixed symmetric weight distribution and suppose that:

U(x) =
∫ 2π

0
w(x − y)S(U(y)) dy

is a stable stationary peaked distribution of the firing rates. (For example, it could arise
in the manner of Amari’s model or as a symmetry-breaking bifurcation of a uniform state
as in section 8.1.2; in Zhang, the latter mechanism holds.) Consider the dynamic weight
function:

W(x; t) = w(x)+ γ (t)w′(x)
wherew′(x) is the derivative of the weight functionw andγ (t) is the input to the system
which causes the head-direction shift. The scalar network with this dynamic weight function
is:

τ
∂u

∂t
(x, t) = −u(x, t)+

∫ 2π

0
W(x − y; t)f (u(y, t))dy.

With this choice of weights, it is immediately clear that:

u(x, t) = U
(
x + 1

τ

∫ t

0
γ (s) ds

)
solves this equation, once one observes that

U ′(x) =
∫ 2π

0
w′(x − y)f (U(y)) dy.

Thus, the profile remains invariant with an instantaneous angular velocityω = −γ (t)/τ . If
γ (t) is on briefly, then the peak distribution shifts to the new position and stops. Redishet
al (1996) proposed a similar two-layer model for the head-direction system.

7.3.5. Response of a pulse system to weak, slowly varying input.We return to (7.16) to
examine the response of the model to slowly changing small inputs. Recall that the solitary
peak is translation invariant. Thus, small perturbations can be expected to move it by
a small amount. Amari (1977) considered the dynamics of this in the case of the step
function nonlinearity. He found that with small stationary inputs, the peak moves towards
the maximum. He also showed that local maxima of inputs will not block the movement
as long as they are not too large. This is intuitively appealing from a biological point of
view since if this is a model for short-term memory, then the spatial excitation should occur
where the largest stimulus appears. The role of external inputs in the form of noise has also
been of interest to Camperi and Wang (1997) who are concerned with the drift in the peak
induced because of random perturbations. They point out that if the drift is too great, then
mechanism will not provide a very robust short-term memory.

With this motivation consider:

∂u

∂t
(x, t) = −u(x, t)+

∫
�

w(x − y)S(u(y, t))dy + εI (x, εt).

The input is weak and slow. Whenε = 0, we assume the system has a peaked solution,
U(x) such that

U(x) =
∫
�

w(x − y)S(U(y)) dy.
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Figure 13. Effect of slowly varying input on the peak of the pulse. The pulse moves so that
the integral of the product of its derivative (smooth curve) and the input,I (x, ζ ), is zero.

Thus, we look for solutions of the form:

u(x, t) = U(x + φ(ζ ))+ εr(x, ζ )+ · · ·
whereζ = εt is a slow timescale,r is orthogonal toU ′(x) andφ is a slowly varying spatial
shift. Plugging this into the full equation, we obtain at the next order:

r(x, ζ )−
∫
�

w(x − y)S ′(U(x + φ))r(y, ζ )dy = −U ′(x + φ(ζ ))dφ

dζ
+ I (x, ζ ).

The linear operator on the left has a one-dimensional nullspace spanned byU ′(x + φ) and
sinceU andw are symmetric, the operator is self-adjoint. Thus, there is a bounded solution
for r is and only if the right-hand side is orthogonal toU ′(x + φ) yielding an evolution
equation forφ:

dφ

dζ
=
∫
�
U ′(y + φ)I (y, ζ )dy∫

�
U ′(y)2 dy

≡ G(φ, ζ ).

Thus,φ will move so as to makeG vanish (see figure 13). In particular, suppose the input
is stationary and symmetric. Then because of the antisymmetry ofU ′(x), the pulse will
move so that it is centred on stimulus. If the stimulus slowly varies, the pulse will move
with it. Note that if the weight functions have compact support, then so will the pulse, and
thus, a stimulus that is too far away will never interact with the pulse and it will not move.
In section 8.1.2 we look at the response of a pulse to a rotating stimulus.

7.3.6. Two-dimensional pulses.The construction of pulses in two dimensions is somewhat
more complicated, but can be done fairly simply by looking for radially symmetric solutions.
These will be solutions if the weight functions have the same symmetry, a reasonable
assumption for an isotropic network. For example, the construction of a pulse in the Amari
model just means solving:

θ =
∫ a

0
rw(r) dr

for the pulse radius,a.

7.4. Continuous oscillatory networks

Consider the following continuous two-layer network which is the analogue of (4.5):

∂u

∂t
(x, t) = −u(x, t)+ fe

(
aee

σee

∫ ∞
−∞

w((x − y)/σee)u(y, t)dy

−aie
σie

∫ ∞
−∞

w((x − y)/σie)v(y, t)dy

)
(7.32)



Neural networks as spatio-temporal pattern-forming systems 407

τ
∂v(x, t)

∂t
= −v(x, t)+ fi

(
aei

σei

∫ ∞
−∞

w((x − y)/σei)u(y, t)dy

−aii
σii

∫ ∞
−∞

w((x − y)/σii)v(y, t)dy

)
(7.33)

where σjk are the space constants of the interactions between layers. Suppose that the
spatially homogeneous network has a stable limit cycle solution. By assuming that the space
constants are small, it is possible to develop a perturbation for the spacetime behaviour of
the phases of the oscillators in much the same way as Kuramoto did for reaction–diffusion
equations. Ermentrout (1982) performed this calculation and found that the solution to
(7.32) has the form,(u(x, t), v(x, t)) = (U0(t + θ(x, t)), V0(t + θ(x, t))) where the phase
evolves according to the equations:

θt = 1+ Aθ2
x + Bθxx (7.34)

whereA,B depend on the space constants in the following manner:

2A = aeeσ 2
eecee + aieσ 2

iecie + aeiσ 2
eicei + aiiσ 2

iicii (7.35)

2B = aeeσ 2
eedee + aieσ 2

iedie + aeiσ 2
eidei + aiiσ 2

iidii . (7.36)

The coefficientscjk and djk are related to the derivatives of the interaction functions,H

computed for a pair of coupled oscillators in section 4.5.1:

cjk = 〈w2〉H ′′jk(0)
djk = 〈w2〉H ′jk(0)

where

〈w2〉 =
∫ ∞
−∞

x2w(x) dx.

Stability of any spatially diffusing patterns requires that the coefficientB is positive.
For the example we looked at in section 4.5.1, the cross connections had better dominate.
The spatial phase model (7.34) has been the subject of a great deal of study. In particular,
if the coefficientB is small, then one has to go to higher order in the expansion. The result
of this calculation is the Kuramoto–Shivashinsky equation:

θt = 1+ Aθ2
x + Bθxx + Cθxxxx.

This equation admits spatio-temporal chaos. Thus, there is no reason why we should not
expect to see the same sort of behaviour in neural networks.

7.5. Two-dimensional active media

In two dimensions, many of the analogues of one-dimensional structures are found when
considered in radially symmetric coordinates. We saw this with the standing pulse. A pulse
wave becomes an expanding pulse ring and the wavefront becomes a radially symmetric
front. However, there are a number of patterns that are not trivial extensions of the one-
dimensional patterns. The best known of these patterns are spiral waves. These are known
to occur in reaction–diffusion equations (Keener and Tyson 1986, Tyson and Keener 1988,
Winfree 1980, Greenberg and Hastings 1978). Keener and collaborators used singular
perturbation methods (see Tyson and Keener 1988) to construct spiral waves when there is
slow recovery. Such methods have not been applied to neural networks although there is
probably no reason why they would not work, at least in the long wave approximation where
the integral operators resemble diffusion. There have been a few numerical simulations
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of spiral waves in locally active media. Miltonet al (1993) found spiral waves in an
integrate-and-fire model with localized coupling. In a similar model, Fohlmeisteret al
(1995) found the same behaviour in a two-dimensional network of simulated neurons using
the ‘spike-response’ model. They asserted that these patterns are related to hallucinations
(see section 8.4). Destexhe (1994) studied a two-layer network of the form:

C
dXi
dt
= −gL(Xi − VL)−

∑
k

gEEki FE(Xk(t − δ))(Xi − VE)

−
∑
l

gIEli FI (Yl(t − δ))(Xi − VI )

C
dYi
dt
= −gL(Yi − VL)−

∑
k

gEIki FE(Xk(t − δ))(Yi − VE)

−
∑
l

gIIli FI (Yl(t − δ))(Yi − VI )

where the connections are locally made andX, Y represent the excitatory and inhibitory
populations respectively. He found spiral waves as well as spatio-temporal chaos in the
networks with nearest-neighbour and second-nearest-neighbour connections.

One obvious question is whether spiral wave activity has any relevance to biology.
Petscheet al (1974) observed rotating waves with a frequency of about 8 Hz in rabbit
cortex that was treated with topical penicillin (which causes seizure-like activity.) Rotating
and expanding two-dimensional waves have been observed in the developing retina (Meister
et al 1991). Spreading depression in retina (Leao) has the form of a spiral wave although
this is thought to be due mainly to diffusion-driven extracellular potassium (Tuckwell and
Miura 1978). In a recent experiment, Prectlet al (1997) observed rotating waves in the
turtle cortex that are stimulus driven and not due to any epileptogenic agent.

The standard paradigm for the generation of spiral and rotating waves is to assume a
locally excitable dynamics with short-range coupling. However, it is possible to couple
locally oscillatory networks together to generate spiral waves. For example, Sakaguchiet
al (1987) found spiral-like behaviour in a network of locally coupled phase models of the
form:

θ ′i,j = ω +
∑

{i ′,j ′}∈nnbs

H(θi ′,j ′ − θi,j )

whereH(θ) = sin(θ+ξ). Here the sum is over nearest neighbours. Paullet and Ermentrout
(1994) proved that these solutions exist and are stable forH , an odd periodic function.

8. Bifurcation methods and neural networks

Perhaps the most general techniques that can be applied to the analysis of spatially distributed
neural networks are those of bifurcation from a uniform state. These methods are useful
more in getting an idea about how to choose parameters to obtain a particular type of
behaviour than they are for global analysis of the network. The types of behaviour that
can bifurcate from a uniform state are usually of four varieties: (i) new uniform states,
(ii) spatially uniform periodic states, (iii) spatially periodic states, and (iv) spatially and
temporally periodic states. For example, it is not possible to get a solitary peak or travelling
solitary wave to bifurcate from a uniform state on the infinite line. Bifurcation methods
were first applied to neural networks by Ermentrout and Cowan (1979a, b, 1980a, b) in a
rather general fashion. There is a renewed interest in the onset of pattern formation in
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network via loss of stability of homogeneous states. Ben-Yishaiet al (1997) and Hansel
and Sompolinsky (1997) recently examined a model for orientation tuning and used methods
related to bifurcation theory to obtain waves and peaked solutions on a ring model. In a
pair of papers, Tass (1995, 1997) re-examined the model of Ermentrout and Cowan (1979b)
in much greater detail and computed the normal forms for the bifurcations. Bressloff
and collaborators recently analysed the role that dendrites can take in modulating pattern
formation. Finally, the greatest explosion of work in spontaneous pattern formation has
been in the area of models for the development of neural maps (von der Malsburg 1973,
Oja 1982, Kammen and Yuille 1988, Linsker 1988, MacKay and Miller 1990, Miller 1994,
Krekelberg and Taylor 1996).

In this section, we will review the methods and results concerning spontaneous symmetry
breaking in neural models. In particular, we will focus on some simplified models such
as that proposed by Hansel and Sompolinsky. We start with a one-layer model which
illustrates almost everything that can happen in these models. After some examples, we
look at two-spatial dimensions and their added complexity.

8.1. Single-layer models

Almost everything that can occur in multilayer models can occur in single-layer models that
have sufficiently complicated connectivity and post-synaptic potential functions. We will
assume a one-spatial dimension continuum network which is homogeneous on the interval
(a, b).

V (x, t) =
∫ ∞

0
h(s)

∫ b

a

w(x, y)f (V (y, t − s)) dy ds + I (x, t) (8.1)

where h is the synaptic post-synaptic potential function andw is the spatial weighting
function. (This is the same form as (7.1) but with possible infinite extent.) As usual,
we normalize the post-synaptic potential function,h so that it integrates to 1. We make
assumptions aboutw:

symmetryw(x, y) = w(y, x)
homogeneity

∫ b

a

w(x, y)dy = C

boundedness
∫ b

a

∫ b

a

w(x, y)2 dy dx <∞.

Homogeneity is necessary in order for the network to have a spatially constant solution.
This model was the subject of some analysis by Coleman and Renninger (1974, 1975)
when(a, b) = (−∞,∞), w is a convolution weight, andf is piecewise linear. Hansel and
Sompolinsky (1997) also analysed this network when the domain is 2π -periodic,h(t) = e−t ,
w(x, y) = J0+J2 cos 2(x− y) andf is piecewise linear. Ermentroutet al (1986) analysed
the discrete time version of this equation as a model for sea-shell coloration patterns (see
also Murray 1989, for a description of this model). an der Heiden (1979) studied (8.1) when
the weights are exponential so that he could convert the system into a reaction–diffusion
system.

The general idea of bifurcation and pattern formation is to look at the stability of the
constant solution as some parameter varies. Using normal forms and symmetry, the infinite-
dimensional system is reduced to a low-dimensional system of usually simple amplitude
equations that correspond to different spatial modes of the system. Often, many researchers
stop after linear stability analysis to get an idea of the possible patterns that can form. This is
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fine for situations in which there is only a single unstable mode, but the nonlinear analysis
is necessary in order to correctlyselect which of the modes will stably appear. Haken
(1996) formally used these techniques to derivead hocamplitude equations. Our approach
is to use the more traditional approach of Liapunov–Schmidt and normal form analysis.
However, it is useful to point out that Haken’s methods are not restricted to equations but
can be used to understand complex spatio-temporal data as well.

Let I (x, t) be constant. Since the network is homogeneous, there is a spatially constant
solution,V (x, t) = V̄ satisfying

V̄ = f (V̄ )+ I.
In order to use bifurcation methods, there must be some parameter which is varying. We
will use the parameter,ν = f ′(V̄ ) as a parameter that characterizes the general excitability
of the network. If |ν| is small, then the network is doing very little to the input. The
stability of the homogeneous state is found by looking at the linearized equation:

v(x, t) = ν
∫ ∞

0
h(s)

∫ b

a

w(x, y)v(y, t − s) dy ds. (8.2)

Consider the linear integral operator:

(Ku)(x) =
∫ b

a

w(x, y)u(y)dy. (8.3)

Sincew is symmetric,K is self-adjoint and thus all eigenvalues ofK are real and the
eigenfunctions are mutually orthogonal. Let{µj , ϕj (x)} be the eigenvalue–eigenfunctions
ordered by the size of the number of zeros of the eigenfunction. The solution to the linear
problem is thus

v(x, t) = eλtϕ(x)

where

1= νµj ĥ(λ) (8.4)

and ĥ is the Laplace transform ofh. Stability is assured if Re(λ) < 0 for all λ andµj .
We can now distinguish the four different ways in which stability can be lost. Since the
weight function,w(x, y) is homogeneous, the constant function,1 is an eigenfunction with
eigenvalueC. Suppose that for|ν| small, all values ofλ have negative real parts. (This
just means that the poles ofĥ have negative real parts since the eigenvalues are bounded
in magnitude for this compact operator, so that small enough values ofν will perturb the
poles ofĥ by only a small amount.) Asν increases in magnitude at least one of the roots
λ may cross the imaginary axis forj = jc. The four different cases can now be described.
• New constant solution:λ = 0 andϕjc (x) = 1.
• Homogeneous periodic solution:λ = ±iω andϕjc (x) = 1.
• Spatial pattern:λ = 0 andϕjc (x) 6= 1.
• Spacetime pattern:λ = ±iω andϕjc (x) 6= 1.
Depending on the details of the interaction functions and the PSP function, any of these

behaviours can occur.
We show that a necessary condition for spatial pattern formation is that the interactions

not be strictly positive. This follows from the properties of strictly positive weight functions,
w(x, y). From the analogue of the Frobenious–Perron theorem, operator (8.3) has a positive
maximal eigenvalue and the eigenfunction corresponding to it is also positive. Since all
eigenfunctions are mutually orthogonal and the operator is homogeneous, this eigenfunction
is 1. Thus, the eigenfunction corresponding to the maximal eigenvalue of the operatorK
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is the spatially constant one. Suppose that there is a zero eigenvalue. Then, because of
normalization,ĥ(0) = 1 so that (8.4) implies:

ν = 1/µj .

Since the maximal eigenvalue is the one corresponding to the homogeneous solution,
stability will be lost first at the constant mode. In most bifurcation problems, the first
bifurcating branch is the only one which has a chance to be stable and successively branching
solutions are unstable. Thus, in order to get pattern formation, we need some inhibition in
the weight function. We now turn to some examples.

8.1.1. Exponential PSPs.We consider some specific temporal operators, namely the
exponentials up to order 3 mentioned in section 4.2. As above, let{µj , ϕj (x)} be eigenvalue–
eigenfunction pairs for the operatorK in equation (8.3). Then the uniform state is stable
if and only if the roots,λ to equation (8.4) have negative real parts for allµj . Let βk be
decay rates, so that, for example, in the second-order PSP function, the response if a sum
of e−β1t and e−β2t . Then for up to order 3, (8.4) becomes:

λ+ β1 = β1νµj (8.5)

(λ+ β1)(λ+ β2) = β1β2νµj (8.6)

(λ+ β1)(λ+ β2)(λ+ β3) = β1β2β3νµj . (8.7)

As shown in section 4.2.1, the only way stability can be lost for order 1 and 2 exponential
synapses is through a zero eigenvalue which leads to stationary solutions. This will only
occur forµj positive. Since the parameter isν, then as soon asν increases past

νc = min
j

1

µj

the uniform state will be unstable. A new solution will bifurcate that has the form:

V (x) ≈ (ν − νc)pϕjc (x)
wherejc is the index corresponding to the maximum eigenvalue. The power,p is generically
1 but if there is translational symmetry as would be the case on a ring or on an infinite line,
then the powerp is 1

2. We will consider the ring case in more detail below.
We turn to the triple exponential case. There are two ways that the rest state can become

unstable. One occurs when there is a zero eigenvalue and this happens exactly as in the
single- and double-exponential cases and the same formula forV (x) obtains. However, if
the eigenvalue with maximum magnitude isnegative, then it is possible to lose stability at
a Hopf bifurcation. Using (4.2) the critical values ofν are:

νHj = −
1

µj

(
−1+ (β1+ β2+ β3)(β1β2+ β1β3+ β2β3)

β1β2β3

)
. (8.8)

Since all theβk are positive, the term in the parentheses is always positive so that instability
occurs only for values ofµj which are negative.

Let

ν0
j =

1

µj
.

Then the first destabilization of the uniform state occurs whenν exceeds

νc = min
j
(ν0
j , ν

H
j ).
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Figure 14. The approximate eigenvalues for the integral operator,K, when the interaction
functions are of the four types in figure 8. Indexj is number of zeros of the eigenfunction. (a)
purely excitatory interactions; (b) purely inhibitory interactions; (c) lateral inhibition and local
excitation; (d) lateral excitation and local inhibition.

If the critical value occurs at one of theν0
j then stationary patterns bifurcate. If the critical

value occurs at one of theνHj , then time-periodic patterns bifurcate that have the form:

V (x, t) = √ν − νcϕjc (x) cosωt (8.9)

where

ω =
√
β1β2+ β2β3+ β1β3.

If the eigenfunction is non-constant, then, spatio-temporal patterns bifurcate. If there is
translational symmetry in the problem, then the behaviour is more complicated. We discuss
this case in detail in section 8.1.2.

We close this discussion with an association of the connection kernels in figure 8 with
the bifurcations that occur. The eigenfunctions for the connection kernels are similar to
cosines and sines (and are precisely the trigonometric functions on the ring and infinite line).
Thus, the eigenvalues lie close to the curves of the Fourier transforms of the connection
kernels. These transforms are sketched in figure 14 for the four different connectivities
along with the discrete eigenvalues. We can thus obtain all four types of bifurcation with
the three-exponential PSP according to the nature of the connectivity.
• Pure excitation leads to spatially uniform constant solutions.
• Pure inhibition leads to spatially uniform time-periodic solutions.
• Lateral inhibition leads to spatially patterned solutions.
• Lateral excitation leads to spatially patterned time-periodic solutions.
All forms of pattern formation that occur in more complex models appear in this simple

scalar model with higher-order PSPs.

8.1.2. Ring model Suppose that the network lies on a periodic domain (a = 0, b = 2π ),
the synapses are first order, and the weight function is a function of the distance only:

∂V

∂t
(x, t) = −V (x, t)+

∫ 2π

0
w(x − y)f (V (y, t))dy.
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Clearly, due to the periodicity and symmetry ofw(x)

w(x, y) = w(x − y) =
∞∑
k=0

Jk cosk(x − y).

The eigenfunctions are{sin(2πkx), cos(2πkx)} with eigenvalues,Jk each of multiplicity 2
exceptk = 0. The most ‘unstable’ mode is that one for whichJk is maximal. Hansel and
Sompolinsky (1997) recently studied this network as a mechanism for orientation tuning in
cortex. In this case,x does not mean physical space but is instead the preferred orientation
of a cortical cell. They considered the situation where only the first two modes are non-
zero andJ0 < J1. In this case, we expect the first mode that bifurcates to be the one
corresponding to the eigenfunctions cos(x), sin(x). These have a single peak in the interval
(0, π) and thus, the network generates a solitary peak solution. You may recall that we stated
that peak solutions could not bifurcate from rest. This is actually a periodic solution if one
‘unravels’ the ring. Note that this mechanism for peak formation is very different from the
mechanisms discussed in section 7.3. In active media, standing pulses occur concurrently
with stable uniform states; here the uniform state is unstable. In order to determine if the
bifurcating solution is stable, we must perform the local nonlinear analysis.

We expandf about the fixed point

f (V ) = ν(V − V̄ )+ c2(V − V̄ )2+ c3(V − V̄ )3+ · · · .
We assume thatJn is the maximal coefficient of the Fourier series forw and that this occurs
for n > 0 in order to get a spatial pattern.

Remark on global inhibition.In systems which combineglobal inhibition with a decaying
Gaussian-type excitation, the most unstable mode will ben = 1 corresponding to a single
peak in the ring. This is why single peaks are seen in both simple model of Hansel and
Sompolinsky as well as the more complicated model of Somerset al. To see why this is, the
Fourier coefficients of the positive Gaussian are monotonically decreasing with the maximal
one being the constant (n = 0) mode (see figure 14). All Fourier components of global
inhibition vanish except for the zeroth one. If this is large, then the maximal component of
the sum of the local excitation and the global inhibition will ben = 1.

Without loss of generality, we assumeJn = 1 so thatJj < 1 for all other values,
j 6= n. The translational symmetry of the model is why the nullspace is two-dimensional;
the solution can be rotated around the ring arbitrarily. The instability occurs when the
‘excitability’ parameter,ν = νc = 1. For ν > νc the uniform state is unstable. It is
convenient to represent the solution in terms of a complex variable:

V (x, t)− V̄ = (zeinx + z̄e−inx)+ · · · .
A standard calculation shows thatz evolves like:

z′ = z(ν − νc + Az2z̄) (8.10)

A = 2c2
2

(
1

1− J2n
+ 2

1− J0

)
+ 3c3. (8.11)

Since all coefficients are real, there is an arbitrary phase for the complex numberz and only
the amplitude is determined:

|z| =
√
−ν − νc

A
.
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Stable solutions will bifurcate if and only ifA < 0. Since the maximal coefficient isJn = 1,
all of the fractions are positive, so that for stability, the third derivative off had better be
negative. For example, if the nonlinearity is a standard sigmoid, then fixed points that lie
near the inflection point will lead to stable spatial patterns. In particular, ifn = 1, we obtain
the analogue of Hansel and Sompolinsky. They go beyond the bifurcation calculations here
by using the piecewise linear function,f (u) = max(u, 0). However, the final results are
essentially the same.

The presence of small inhomogeneities changes the normal form slightly. Suppose that
the inputs are moving slowly around the circle,I (x −ωt). Then the normal form becomes

z′ = z(ν − νc + Azz̄)+ C(t)
where

C(t) =
∫ 2π

0
e−inxI (x − ωt) dx ≡ peiψ−inωt .

Takingn = 1 without loss in generality (we can always shorten the ring) and rewriting the
equations in terms ofz = reiθ , we obtain

rt = r(ν − νc + Ar2)+ p cos(ψ − ωt − θ)
θt = p

r
sin(ψ − ωt − θ).

In the rotating frame,φ = ψ − ωt − θ the equations are:

rt = r(ν − νc + Ar2)+ p cos(φ)

φt = ω − p
r

sin(φ).

This is exactly the same equation as that obtained by Kath (1981) in his analysis of a
periodically driven Hopf bifurcation near resonance. Ifω = 0 then the system will lock
onto the peak of the stimulus. As long as the stimulus does not move too fast, the network
will follow it as it moves around the ring; it isphase-lockedto the driving stimulus. Thus,
the inhomogeneities have the effect of uniquely determining the phase of the spatial pattern.
For example, in the Hansel and Sompolinsky model, weakly tuned inputs uniquely turn on
the network at the appropriate orientation. In the absence of inputs, Hansel and Sompolinsky
call this peak a ‘marginal’ solution due to its translation invariance. Like the active peaks
in the previous section, the presence of inhomogeneities selects a spatial position.

If the ring model is combined with a three-exponential PSP, then the form of the solution
is more complicated than in the case of a non-ring network, equation (8.9). Because of the
additional translational symmetry, the solutions are of the form:

V (x, t)− V̄ = zei(ωt−nx) + z̄e−i(ωt−nx) + wei(ωt+nx) + w̄e−i(ωt+nx) + · · · .
This is the sum of two wavetrains, one going left and one going right. In Ermentrout (1979) I
derived the normal forms for a two-layer model. In generic cases, the two complex variables,
w, z satisfy

z′ = z(c1(ν − νc)+ c3zz̄+ d3ww̄)

w′ = w(c1(ν − νc)+ c3ww̄ + d3zz̄)

whered3 is an additional complex coefficient. I showed that there are only two types of
solutions: either one of the twoz,w is zero or both are equal and non-zero. In the former
case, the solutions to (8.1) are travelling waves while in the latter case they are standing
waves. The two different possibilities cannot be mutually stable. In fact, travelling waves
require, Red3 < Rec3 < 0 and standing waves require that Rec3 < Red3 < 0. If the
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nonlinearity is strictly odd, then it is simple to show thatd3 = 2c3 so that travelling waves
are the only solutions that can be stable. This is an example of nonlinear pattern selection;
in the absence of the normal form, one has noa priori reason to suspect that there will be
travelling waves, standing waves, or any mixture of the two.

8.2. Multiple bifurcations

In the previous section, we assumed that only one spatial mode became unstable at the
critical amount of excitation. However, it is possible that by introducing another parameter,
two modes could become unstable simultaneously. In this case, a variety of phenomena can
occur such as secondary bifurcation from the principal branches (Baueret al 1975, Cohen
1977, Keener 1976). Ermentrout and Cowan (1980b) analysed a two-layer neural network
when there are multiple modes bifurcation at a complex eigenvalue. They found a variety
of travelling and standing waves.

8.3. Multilayer models

The single-layer model that we discussed in the previous sections incorporates most of the
behaviour that can be expected from bifurcating solutions in one spatial dimension. The
same ideas can be applied to multilayer models with similar results. In all of these models,
the symmetry of the interactions makes it easy to derive the form of the nonlinear mode
equations. This observation was first noted by Sattinger (1977) and greatly expanded upon
by Golubitsky and Schaefer (1985). The main point is that even if the network has many
layers, the form of the bifurcation and the symmetry of the interactions leads to the same
type of behaviour. Details matter primarily in the interpretation in terms of the biology and
the behaviour of the reduced bifurcation equations. (The latter is true since, although the
form of the bifurcation equations is the same from model to model, the coefficients can be
quite different.) The other important detail is the mechanism by which the uniform state
becomes unstable. We will now discuss a number of examples.

8.3.1. Standard two-layer models.In Ermentrout and Cowan (1980a) the following model
was considered:

τe
∂ue

∂t
= −ue + Se(wee ∗ ue − wie ∗ ui)

τi
∂ui

∂t
= −ui + Se(wei ∗ ue − wii ∗ ui).

The domain of the model was the infinite line, but a ring of tissue could be likewise analysed.
The crucial question is as some parameter varies: How does a uniform state lose stability?
Assuming for simplicity thatSe(0) = Si(0) = 0 we can linearize about(ue = ui = 0).
Since the domain is periodic (or infinite), the eigenfunctions for the integral operators are
of the form:

eikx

wherek is real in the case of the infinite domain andk = nL/2π wheren is an integer and
L is the length of the ring of tissue for the circular domain. Let

ŵjl(k) ≡
∫
�

e−ikxwjl(x) dx
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be the Fourier modes of the weight functions. Without loss of generality, letτe = 1 and
S ′e(0) = S ′i (0) = 1. (This can be done since the derivatives can be absorbed into the weight
functions.) Then we show that the uniform state is stable if and only if both

D(k) ≡ ŵie(k)ŵei(k)+ (1+ ŵii(k))(1− ŵee(k)) > 0 (8.12)

T (k) ≡ −1+ ŵii(k)
τi

− 1+ ŵee(k) < 0 (8.13)

for all k. The four simple ways to lose stability as some parameter varies are that one of
these conditions is violated at either a non-zero or zero value ofk. If (8.12) is violated
then time-independent solutions will bifurcate with spatial patterns if the critical value of
k at which instability occurs is non-zero. If (8.13) is violated, then a Hopf bifurcation to
temporally oscillatory behaviour occurs and will be spatially uniform if the criticalk is zero
and spatially periodic otherwise. In Ermentrout and Cowan (1979a) the relative interactions
between the excitatory and inhibitory cells that lead to spatially uniform stable periodic
solutions was classified. We can give a general feel for the interactions necessary if we
make a few simplifying assumptions. We suppose that

wjl(x) = αjl

σjl
W

(
x

σjl

)
whereW is a Gaussian-like non-negative weight function, symmetric and peaked at the
origin. Then,

ŵjl(k) = αjlŴ (σjlk).

The functionŴ is positive, symmetric, and decreasing. The numbers,σjl can be thought
of as space-constants, larger ones imply a greater connection spread. We can now see that
a necessary condition for instability leading to spatially periodic patterns that are constant
in time is thatαee must be large enough and the cross interaction terms must have a greater
spread than the self-interaction terms. In other words, one requires ‘lateral inhibition’.
Furthermore, we wantτi to be small enough so that (8.13) is not violated. Fast, spread-
out inhibition will lead to spatially patterned activity. The analogue to this was found as
a requirement in the two-layer model for orientation tuning by Ben-Yishaiet al (1995,
1997) as well as the more complicated spiking model proposed by Somerset al (1995).
The latter paper was a simulation study, but by using the reduction methods described
in section 3.2.1 we could presumably reduce their spatial model to a network similar to
the present calculation. Ben-Yishaiet al (1997) performed a more detailed analysis than
we give here and pieced together the behaviour by letting the nonlinearity be piecewise
linear. The calculations in this paper border on the heroic as the algebra quickly becomes
overwhelming!

The second condition (8.13) will be first violated at a non-zero wavenumber,k if there is
slow inhibition (τi large enough) sufficient recurrent excitation and self-inhibition (αee, αii
large enough), there is strong feedback coupling ((αeiαie large enough), and the inhibitory–
inhibitory interactions have greater spread than the excitatory–excitatory (σii > σee). Only
the latter condition is biologically questionable. If this last condition is violated, then,
bifurcation to spatially homogeneous oscillations will occur.

8.3.2. Orientation selection.Ben Yishai et al (1997) proposed a model for a cortical
hypercolumn that consists of two layers of spatially coupled neurons in a topological ring.
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Hansel and Sompolinsky (1997) considered a simplified model:

ut = −u+ F
[ ∫ π

0
W(θ − θ ′)u(θ ′, t)dθ ′ + I (θ, t)− z(θ, t)

]
τzt = βu− z

whereF(u) = Amax(0, u), W(θ) = J0+2J2 cos 2θ , andI represents inputs to the network.
In addition, if β 6= 0 then there is adaptation via the variablez.

This model is meant to represent the response of a local cortical column to oriented
input. (This is why the angle only traverses 0 toπ as a bar which is oriented at 0 and one
which is oriented atπ are indistinguishable.)u(θ, t) is the firing rate of the neuron that
represents the orientation,θ . We have already discussed this type of network in the absence
of adaptation in section 8.1.2. Thus, we will look at the effects of adaptation. Before doing
this, we summarize Hansel’s and Sompolinsky’s results on the adaptation-free model. They
write down closed form solutions as a function of the parameters,J0, J1. They found two
curves in the(J0, J2)-parameter plane. IfJ0 < 1 andJ2 < 1, then the homogeneous solution
is the only stable solution. ForJ2 > 1, J0 < 1 the peak solution is the only stable solution.
Finally if J2, J0 are too large all solutions tend to infinity. The reason for this is that their
model never saturates. If saturation is added, then a new homogeneous steady state where
all cells fires obtains. Essentially, the behaviour is like that of the linearized system. They
then showed that if the input is slightly tuned to favour a particular orientation, the firing
rate will reflect this inhomogeneity. Furthermore if the input moves, the firing rate will
‘follow’ it as long as the rotation velocity is not too great. In other words, their model
behaves just like the normal form analysis in section 8.1.2.

Hansel and Sompolinsky gave a thorough analysis of the adaptation model. They found
three different types of behaviour in the absence of inputs: (i) homogeneous, (ii) standing
pulse, (iii) travelling pulse. For a given value of the adaptation time constant, they created
a phase diagram showing the regimes of stability for the three types of behaviours as a
function of the two parameters,J2 and β. Because they considered the piecewise linear
model, they are able to construct all the transitions from the standing to the travelling pulse.
They found that asJ2 increases, the homogeneous solution becomes unstable to either a
stationary peak or if the adaptation is large enough, to a moving pulse. They never find
standing wave oscillations to their model although there is no reason why they cannot occur.

It is easy to apply bifurcation methods to their model by linearizing about the
homogeneous state. We omit the details noting that the uniform state, in the absence
of inputs, is stable if and only if:

−1+ 1/τ + Jl < 0

β − (Jl − 1) > 0

for l = 0, 2. SinceJ0 is small or negative to produce lateral inhibition, the conditions
mainly constrainJ2:

J2 < 1+ 1/τ

J2 < 1+ β.
If the first condition is violated, then travelling waves bifurcate and if the second is violated
then standing pulses bifurcate. They find the same critical behaviour as a function of the
combined parameter,βτ according to whether it is greater than 1 (travelling waves) or less
than 1 (standing pulse). Thus, the amplitude and the speed of adaptation determine the
behaviour of the network as the tuning parameter,J2 increases.
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8.3.3. Dendritic effects. Bressloff and colleagues (1995–1997) described a new mechanism
for the production of spatial and spatio-temporal patterns in neural networks. Their clever
idea is the add dendritic effects the standard model. Each cell at positionx has associated
with it, a dendrite parametrized by its distance from the soma,ξ . The network lies on
the infinite line and the dendrites are semi-infinite, originating at the soma. Using Green’s
functions for the passive dendrites, they derived the following equation for the somatic
potential:

∂U

∂t
(x, t) = −U(x, t)+ ν

∫ t

−∞

∫ ∞
−∞

G[α(x − x ′), t − t ′]W(x − x ′)f (U(x ′, t ′)) dx ′ dt ′

(8.14)

G(ξ, t) = 1√
πDt

exp

(
− ξ2

4Dt
− t/τ

)
(8.15)

whereα(x) = ξ0 + C|x|. The functionG is the spacetime Green’s function of a dendritic
cable with diffusion lengthD and time constantτ . The functionα(x) models the correlation
between dendritic position of a synapse and distance of the presynaptic cell. IfC = 0 there
is no correlation and all synapses land on the same point on the dendrite,ξ0. If C > 0,
then synapses from farther away land more distantly from the soma (see e.g. Shepherd
1990). The functionW(x) is the usual spatial decay of the synaptic weights, andf is the
usual nonlinear firing rate. What is novel about Bressloff’s mechanism is that hedoes not
require a lateral-inhibition type of interaction function to obtain spatial pattern formation.
This point is important as most of the long-distance interactions in cortex are excitatory and
not inhibitory. They found a number of interesting phenomena. First, they showed that if
W(x) is purely excitatory and decreasing with distance, then including dendritic effects does
not change the fact that the model still cannot generate stable spatially periodic temporally
constant structures. However, if the weightsincreasewith distance and the dendritic is
correlated with presynaptic distance, then they showed that spatial patterns can bifurcate.
Their most interesting result is that the presence of dendrites leads to an effective spatio-
temporal delay and a bifurcation to spatially periodic and temporally periodic solutions is
possible. They assume that there islocal inhibition and long-range excitation, the opposite
of the usual models that have ‘lateral inhibition’. They make the dendrites uncorrelated
with distance for simplicity and find that if the distance of the synapses from soma is large
enough, the instability occurs. The mechanism for this is that the distant synapses provide
enough of a delay for this negative feedback system to oscillate (see sections 4.2.1 and
8.1.1). In a related mechanism, Crooket al (1997) showed how distance-dependent delays
due to finite axonal conduction can lead to a spatial instability in an array of weakly coupled
oscillators.

8.3.4. A three-layer example.Ermentrout and Lewis (1997) showed that a neural network
with only excitatory connections can result in bifurcation of spatially and temporally periodic
behaviour. They considered a model of the form:

∂u1

∂t
= f (a11w ∗ u1− a21u2+ a31u3)

∂u2

∂t
= −a22u2+ g(a12u1)

∂u3

∂t
= −a33u3+ h(a13u1)
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where all parameters are positive andw(x) is similar to a Gaussian. The model can be
considered as an excitatory population with two locally acting populations; an excitatory
one and an inhibitory one. The mechanism for this resides in the linearization which leads
to a third-order characteristic polynomial. General conditions for this and related three-
component models are derived that guarantee loss of stability to a spatio-temporal pattern.
As in Bressloff’s work, there cannot be static spatially periodic patterns unless the weights
have lateral inhibitory structure. This example and the Bressloff dendritic model are related
to the single-layer model with lateral-excitation and local inhibition (section 8.1.1) and a
three-exponential PSP.

8.4. Two spatial dimensions

The cortex is actually better modelled as a two-dimensional layered sheet than as a one-
dimensional system. We have already discussed some of the behaviour that can arise in two
spatial dimensions when the medium is active. The bifurcation methods described in the
previous section are easily generalized to two dimensions, however, the additional degree
of freedom confers additional symmetry and this in turn leads a much higher multiplicity
in critical eigenvalues. This leads to a more complicated set of normal forms and a much
greater variety in the types of patterns that can bifurcate. Before we discuss the mathematics
and the recent work on this problem, we will first give some biological motivation for the
analysis. The analogue of the periodic patterns that bifurcate from rest in one dimension are
doubly periodic patterns in two dimensions. These take the form of stripes and chessboard-
like patterns. Thus, our task is to interpret spatially structured activity patterns in a two-
dimensional cortical network. Ermentrout and Cowan first (1979b) suggested that these
patterns may be related to simple geometric structures that are perceived during drug-induced
hallucinations. Other authors have made related claims (Tass 1995, 1997, Fohlmeisteret al
1995, Ermentrout 1984, Reggia and Montgomery 1996). To see the connection, suppose
that the activity pattern on the cortex is one of these simple geometric patterns. Then,
how is this perceived? That is, what sort of retinal pattern would produce an analogous
pattern of stimulus related activity on the cortex? Schwartz (1977) showed that there is a
regular topographic mapping of ‘retinal space’ to ‘cortical space’. Away from the fovea it
is essentially the complex logarithm. In other words,(r, θ) in retinal coordinates goes to
(ln r, θ) in cortical coordinates. Inverting this transformation, it is easy to see that stripes are
transformed into bulls-eyes, spirals, and exploding rays while chessboards are transformed
into cobweb and mosaic-like patterns. (See figure 15 for these transformed patterns.) In
his classic treatise on mescaline, Klüver (1967) classified the patterns seen during the early
stages of hallucination into a small number of ‘form constants’:
• funnels and tunnels;
• spirals;
• mosaics and cobwebs.
Siegel (1977) also described a number of other altered states in which simple geometric

patterns occur. Thus, Ermentrout and Cowan suggested that the patterns that arise when
the cortical network is destabilized due to the effects of the hallucinogen are the neural
correlates of simple visual hallucinations. Ermentrout (1984b) suggested that premigrainous
auras could also arise in a similar manner, but did not provide a mechanism. More recently,
Reggia and Montgomery (1996) suggested a way that the excitation could be increased.
Associated with migraines is a well known phenomena called a scotoma which consists
of a slowly moving blind region in the visual field. It has been suggested (Richards
1971) that this may be associated with cortical spreading depression (CSD) which is
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Figure 15. Visual patterns seen in the case of a mixture of one or two modes. Critical
wavenumbers are(±12,±16), (±16,±12), (0,±20) and(±20, 0). (a)–(c) Single stable mode;
(d) mixture of two modes.

caused by the diffusion of large amounts of extracellular potassium (Leao, Bureset al
1974). (However, this point is controversial (Kranda and Kulikowski 1984). Reggia
and Montgomery created a computer model for CSD and coupled it to a one-layer lateral
inhibitory network. Since small increases in extracellular potassium causes depolarization of
neurons, this provided them with the mechanism for the enhanced cortical excitability. Tass
(1995, 1997) proposed a model based on the equations analysed by Ermentrout and Cowan
(1979b) but assumed that the excitation is epileptogenic in origin. Finally, Fohlmeisteret al
(1995) proposed that intrinsic spiral waves produced in an excitable medium are responsible
for the patterns of hallucination. That is, they assert that it is not an instability which causes
the formation of the patterns but instead a property of reduced inhibition in an excitable
system.

We now turn to the analysis of two-dimensional networks when a bifurcation
at a non-zero spatial wavenumber occurs. To avoid technical difficulties, we will
follow Tass and assume a periodic domain rather than the infinite domain considered
by Ermentrout and Cowan. Without loss of generality, we assume the domain
is [0, 2π) × [0, 2π). There are two cases that are of interest; bifurcation to
stationary spatially periodic patterns and bifurcation to spatially and temporally periodic
patterns. We have already described mechanism for producing these instabilities in one-
dimensional neural networks. The same mechanisms work well in two dimensions,
however, the additional spatial dimension increases the dimension of the nullspace.
As the mechanisms are all different but produce essentially the same result, we
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consider the simplest one-layer model which is the two-dimensional analogue of
(8.1):

V (x, y, t) =
∫ ∞

0
h(s)

∫
�

w((x − x ′)2+ (y − y ′)2)S(V (x ′, y ′, t − s)) dx ′ dy ′ ds.

As in section 8.1, we will assume that there is some parameter which causes instability of
the uniform state. Let

ŵ(n2+m2) =
∫ 2π

0

∫ 2π

0
w(x ′2+ y ′2)e−inx ′e−imy ′ dx ′ dy ′.

We assume a ‘lateral inhibitory’ or ‘lateral excitatory’ weight function so thatŵ(R2) has
a maximum (minimum) value at|R0| > 0. Depending on the PSP function and the
choice of weight functions, the bifurcation will occur at a zero eigenvalue leading to
stationary patterns or at an imaginary eigenvalue leading to spatially and temporally periodic
patterns. Thus, our task is two-fold; first determine the dimension of the nullspace and then
determine the form of the bifurcation equations so that we can decide which patterns are
stable.

8.4.1. Bifurcation to stationary patterns.Suppose that instability is lost at a critical absolute
wavenumber,R0 and a zero eigenvalue. Then the nullspace is spanned by terms of the form

ϕ(x, y) = einxeimy (8.16)

where

n2+m2 = R2
0.

Tass stated that there are two cases:
(1) n = ±m or nm = 0 (four-dimensional nullspace);
(2) n 6= ±m & nm 6= 0 (eight-dimensional nullspace).
In fact, there are infinitely many cases. For example, suppose,R0 = 5. Then the pairs,

(±5, 0), (0,±5), (±4,±3), (±3,±4) yield a 16-dimensional nullspace. In any case, near
the bifurcation, the solution to the full problem will be of the form:(

u(x, y)

v(x, y)

)
=
(
U0

V0

)∑
k

zkϕk(x, y)

whereϕk(x, y) are the eigenfunctions (8.16). Since we are interested in real solutions, half
of these will be complex conjugates of the other half, so that there will be only half as
many bifurcation equations. The following theorem characterizes the bifurcation equations
in the two cases Tass considered.

Theorem 2.
(i) For the case of a four-dimensional nullspace, the generic bifurcation equations are:

z′1 = z1(ν − az1z̄1− bz2z̄2)

z′2 = z2(ν − bz1z̄1− az2z̄2)

and the corresponding complex conjugate equations.
(a) The pure solutions,(z1, z2) = (r, 0), (z1, z2) = (0, r) wherer = √ν/a are linearly

stable if and only ifa < b.
(b) The mixed solution,(z1, z2) = (r, r) wherer = √ν/(a + b) are linearly stable if

and only if a > b.
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(ii) For the case of an eight-dimensional nullspace, the generic bifurcation equations
are:

z′1 = z1(ν − az1z̄1− bz2z̄2− cz3z̄3− dz4z̄4)

z′2 = z2(ν − bz1z̄1− az2z̄2− dz3z̄3− cz4z̄4)

z′3 = z3(ν − cz1z̄1− dz2z̄2− az3z̄3− bz4z̄4)

z′4 = z4(ν − dz1z̄1− cz2z̄2− bz3z̄3− az4z̄4).

(a) The pure solutions,zj = r, zk = 0 for k 6= j and r = √ν/a are linearly stable if
and only if a < b, a < c, a < d.

(b) There are six different pairwise solutions,zj = zk = r, zl = 0 for l 6= j, k. Since
there is symmetry, consider only those wherez1 6= 0:

z1 = z2 =
√

ν

a + b
z1 = z3 =

√
ν

a + c
z1 = z4 =

√
ν

a + d .

These respective solutions are linearly stable if and only if

a > b and a < d + c − b
a > c and a < d + b − c
a > d and a < b + c − d

respectively.
(c) The triplet solutions wherezj = zk = zl = r and zi = 0 for i 6= j, k, l are all

unstable.
(d) The fully non-zero solution,zj =

√
1/(a + b + c + d) is linearly stable if and only

if

a > d + c − b
a > d + b − c
a > b + c − d.

Remarks.
(1) It is assumed that all coefficients,a, b, c, d are also positive.
(2) In both cases, all the different possible solutions are mutually exclusive. That is,

in the four-dimensional nullspace, the pure and mixed solutions cannot be simultaneously
stable. Similarly, in the eight-dimensional case, there are three different mutually stable
solutions: the pure mode solutions, the pairwise-mixed solutions, and the solutions
comprised of all modes. Clearly the one- and two-mode solutions cannot be simultaneously
stable nor can the two- and four-mode solutions. To see that the one- and four-mode
solutions cannot be simultaneously stable note that the stability of the one-mode solution
implies that 3a < b+c+d while the stability of the four mode implies that 3a > b+c+d.

(3) Pure mode solutions correspond to stripes; pairwise solutions are chessboard-like;
and the four-mode solutions are also mosaic-like.

(4) In the analysis by Tass (1995), he derived these equations for the Wilson–Cowan
model using ‘synergetics’. However, he appeared to have assumed that the nonlinearities
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Figure 16. Visual patterns seen in the case of a mixture of four or more modes. Same
wavenumbers as in figure 15. (a), (c), (d) Mixture of four modes (d) mixture of eight modes.

have a zero second derivative at the homogeneous state. In the absence of these quadratic
terms, the coefficients for the bifurcation equations are degenerate in the following sense:
b = c = d = 2a. With this symmetry assumption, in the four-dimensional case, only single
modes are stable which implies that only stripes can be generated. Similarly, in the eight-
dimension case, only stripes are stable. By neglecting or ignoring the role of the quadratic
terms, whole classes of solutions are unstable.

Tass has some very nice figures which illustrate the patterns when viewed in visual-space
coordinates, transformed from the rectilinear cortical coordinates. Some of his patterns are
remarkably close to the patterns reported in Siegel (1977) that are drawn by subjects who
have taken mescaline.

Figure 15 illustrates some of these patterns in visual coordinates for the four- and eight-
dimensional case. Figure 16 shows complex mixtures in the case of a 16-dimensional
nullspace.

8.4.2. Bifurcation at an imaginary eigenvalue.In this case, the dimension of the nullspaces
in each of the two cases above is doubled since the eigenfunctions are multiplied by e±iωt .
Tass (1997) derived the bifurcation equations when there are eight and 16 eigenfunctions.
As in the case of bifurcation to stationary patterns, the solutions to the neural network have
the form: (

u(x, y, t)

v(x, y, t)

)
=
(
U0

V0

)∑
k

zkϕk(x, y)e
±iωt .
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As with his analysis of the stationary solutions, Tass assumed that the nonlinearity has no
quadratic terms at the critical value of the bifurcation. This simplifies the calculation of the
coefficients of the bifurcation equations. His results are summarized in the (less general)
analogue of the above theorem.

Theorem 3.
(i) For the case of an eight-dimensional nullspace, the bifurcation equations in the case

of no quadratic terms in the nonlinearity are:

z′1 = νz1− (a + bi)

(
2z2

∑
k 6=1

zkz̄k + z2
1z̄1+ z̄3z2z4

)
z′2 = νz2− (a + bi)

(
2z2

∑
k 6=2

zkz̄k + z2
2z̄2+ z̄4z1z3

)
z′3 = νz3− (a + bi)

(
2z3

∑
k 6=3

zkz̄k + z2
3z̄3+ z̄1z2z4

)
z′4 = νz4− (a + bi)

(
2z4

∑
k 6=4

zkz̄k + z2
4z̄4+ z̄2z1z3

)
.

There are two different types of stable solutions:
(a) zj =

√
ν/ae−itνb/a for somej andzk = 0 for k 6= j .

(b) zj = re−i(ζj+�t) for all j where,r = √ν/(5a), � = −bν/a, andζ2+ζ4−ζ1−ζ3 = π .
(ii) For the case of a 16-dimensional nullspace, the bifurcation equations in the case of

no quadratic terms in the nonlinearity are:

z′j = νzj − (a + bi)

{
2zj

(∑
k 6=j

zkz̄k + zj z̄j
)
+ 2z̄−j

∑
k(j)

zkz
−
k

}
where we have used the notationz−j to mean the amplitude of the mode whose spatial
wavenumber is the negative of the wavenumber corresponding to modej ; andj (k) is the
set of all indices that do not include wavenumberj or its negative. There are two types of
stable solutions:

(a) zj =
√
ν/ae−itνb/a for somej andzk = 0 for k 6= j .

(b) Four modes coexist and are equal in amplitude,r = √ν/(5a) and frequency,
� = −bν/a. There are essentially two subtypes, perpendicular pairs,(1, 3) and (2, 4),
and non-perpendicular pairs,(1, 3) and (5, 7). These all have the same phase relationship
as in case (i)b.

Remarks.
(1) If there are quadratic terms in the nonlinearity at the bifurcation point, then the

coefficients are more complicated than those in the theorem, however, the terms themselves
are the same.

(2) As an example of the 16-dimensional case, the eight spatial wavevectors
corresponding to these modes are pairs(n,m) with eigenfunctions, einx+imy . The eight
pairs are

{(1, 2), (2,−1), (−1,−2), (−2, 1), (2, 1), (1,−2), (−2,−1), (−1, 2)}.
Thus, we see immediately that modes 1, 2 and 4, 3 are perpendicular.

(3) In each of the two cases (i), (ii) the single mode pattern corresponds to travelling
waves.
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(4) The second class of patterns is more interesting and corresponds to two different
patterns blinking in succession. For example, horizontal and vertical strips would, when
transformed to visual space, result in starburst patterns slowly changing into bulls eyes
and back again. Diagonal stripe pairs lead to spirals which switch from clockwise to
anticlockwise.

As in his paper on stationary patterns, Tass (1997) has a number of striking pictures of
these patterns and their temporal evolution in the visual space coordinate system.

8.4.3. More complex models.The patterns described in the previous sections are all related
to bifurcations due to the rotational symmetry of the two-dimensional cortical sheet. Wiener
(1994) extended the purely spatial model to include local orientation cells in the manner of
Hansel and Sompolinsky. In the simplest case, the equations are:

V (x, y, θ, t) =
∫ t

−∞
h(t − t ′)dt ′

∫ π

0
dθ ′

×
∫
�

dx ′ dy ′w(x − x ′, y − y ′, θ − θ ′)f (V (x ′, y ′, θ ′, t ′).
The functionw could either be of the form:

w(x, y, θ) = W(x, y)Q(θ)
or of a more complicated type. Wiener suggested that the connections between cells may
not be isotropic with circular symmetry, but rather anisotropic with elliptical symmetry
and the major axis aligned with the preferred orientation. Thus, cells in the ‘layer’ with
preferred orientation of, for example,π/4 would have stronger coupling along the diagonal
than along the orthogonal direction. In his thesis, Wiener considered the consequences of
this and used the results to explain some of the fine structures of visual hallucinations such
as the zig-zag patterns and cobwebs.

Mogilner and Edelstein-Keshet (1995) analysed equations with orientation and space
together in a different context, but many of the behaviours of their models can probably
occur in these models. They find patches with preferred orientations as well completely
aligned regions. The interaction of orientation and spatial location is also very important
in the development of cortical maps (Kohonen 1989) where patches of orientation patterns
are distributed across space in a periodic manner.

The difficulty in using the additional coordinate of orientation, is that the map from
cortical column activity to visual perception is not entirely clear. The complete bifurcation
analysis of these models as well as their neurological interpretation remains an unsolved
problem.

9. Conclusions

We have reviewed the behaviour of neural networks that arise from biological principles
in a steady-state environment. Our methods are those of dynamical systems and applied
mathematics. We have shown that these techniques are particularly useful when the models
have some intrinsic structure whether it is spatial or temporal. It is likely that real nervous
systems are not randomly or globally connected networks but rather do have some intrinsic
spatial order at least in the lower sensory areas. We have used rather simple models for
neurons since a rather complete analysis is then possible. However, real neurons are much
more complicated and a single neuron is able to produce an astonishing array of dynamic
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behaviours. Furthermore, the possibility of modifiable synapses, active dendrite, etc makes
the computational ability of even a single neuron incredibly powerful. The analysis of single
neuron models with gated channels and multiple compartments is in its infancy. One can
only hope that the milieu in which a single neuron lies in some sense simplifies what is
important so that the present highly reduced models can shed light on real biology.
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Appendix. Proof of theorem 2

The actual form of the bifurcation equations can be determined by symmetry arguments,
thus we will concentrate on the stability issues. We will assume that all coefficients are
positive, since negative coefficients will lead to instabilities. Since all coefficients are real,
we only need to look for real solutions. As long as all the coefficients are different, it is then
trivial to show that the only fixed points are those that we have described above. Stability
of the solutions to the four-dimensional solutions is routine. The eight-dimensional model
is more complicated. I only sketch the idea. First look at the real part of the equations;
next multiply, for example ther1 ≡ Rezj equation byr1 and introduce the new variable,
R1 = r2

1. Rescaling time, we are left with the competitive logistic equation:

R′1 = R1(ν − aR1− bR2− cR3− dR4)

and similar equations for the others. Again with no loss in generality letν = 1. Then
linearize the equations about each of the possible fixed points. The single mode is very
simple and leads to an upper triangular matrix whose eigenvalues can be picked off by
inspection. For the two model solutions, the linearization leads to a block upper-triangular
matrix with two 2× 2 blocks. The eigenvalues of these two symmetric blocks are easily
found. For the triplet solutions, the resultant linearized equations are block triangular with
a 1× 1 and 3× 3 block. Without loss in generality, suppose that onlyz4 = 0. Then the
eigenvalue of the lower 1× 1 block is negative if and only ifa < d. The upper block is a
positive constant times[−a −b −c

−b −a −d
−c −d −a

]
.

The characteristic polynomial for this is

(x + a)3− (d2+ b2+ c2)(x + a)+ 2bcd = 0.

Letting ν = x + a, we must solve:

f (ν) = ν3− (d2+ b2+ c2)ν + 2bcd = 0.

f (d) = −d(b − c)2 < 0 so that there must be a root,ρ, to f (ν) which is greater than
d. Thus, there is an eigenvaluex = ρ − a. However, recall thata < d is necessary for
stability and thus, this eigenvalue is positive and the instability is assured. Finally, in the
last case, the linearized system is a positive constant times the 4× 4 matrix:

−a −b −c −d
−b −a −d −c
−c −d −a −b
−d −c −b −a

 .
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The eigenvectors for this matrix are [1, 1, 1, 1]T , [1, 1,−1,−1]T , [1,−1,−1, 1]T , and
[1,−1, 1,−1]T from which the result follows.
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