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Abstract. We present a complete mean field theory for a balanced state of a simple
model of an orientation hypercolumn. The theory is complemented by a description
of a numerical procedure for solving the mean-field equations quantitatively. With
our treatment, we can determine self-consistently both the firing rates and the firing
correlations, without being restricted to specific neuron models. Here, we solve the
analytically derived mean-field equations numerically for integrate-and-fire neurons.
Several known key properties of orientation selective cortical neurons emerge naturally
from the description: Irregular firing with statistics close to – but not restricted to
– Poisson statistics; an almost linear gain function (firing frequency as a function of
stimulus contrast) of the neurons within the network; and a contrast-invariant tuning
width of the neuronal firing. We find that the irregularity in firing depends sensitively
on synaptic strengths. If Fano factors are bigger than 1, then they are so for all
stimulus orientations that elicit firing. We also find that the tuning of the noise in the
input current is the same as the tuning of the external input, while that for the mean
input current depends on both the external input and the intracortical connectivity.
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1. Introduction

Neurons in primary visual cortex (V1) fire highly irregularly in response to visual stimuli,

but with reproducible firing rates. They do so despite the fact that they receive synaptic

input from thousands of other cortical neurons, which would lead to fluctuations in

the input that were small compared to the mean if excitatory and inhibitory inputs

were not balanced [1]. There has been some success in describing how such a balance

can emerge self-consistently from dynamics that are plausible for cortical networks.

This was accomplished by mean field-descriptions by van Vreeswijk and Sompolinsky

[2, 3] and Amit and Brunel [4, 5, 6]. However, their treatments do not permit a self-

consistent calculation of firing correlations. How to do this correctly was first shown
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for an all-inhibitory network by Hertz et al. [7] using the systematic formulation of

mean field theory due to Fulvi Mari [8]. In a recent paper [9] we presented a mean-field

theory for a balanced network model that allowed us to quantify how the irregularity in

firing and, more generally, the firing correlations depend on intrinsic network properties

such as synaptic strengths. The analysis was applied to a statistically homogeneous

network, representing a cortical column composed of neurons with similar response

characteristics. Here, we show how to extend this treatment to networks with systematic

structure, consisting of multiple cortical columns. In particular, we model an orientation

hypercolumn, composed of a set of orientation columns.

An orientation column contains neurons that respond strongest to elongated visual

stimuli of a specific orientation, the preferred orientation (PO). Orientation selective

neurons exhibit a tuned response to other orientations, with sharply decreasing firing

rates as the similarity between PO and stimulus orientation decreases, until the firing

is completely suppressed for orientations outside the tuning width of the neuron in

question. An important feature of orientation tuning is that the tuning width is

independent of the stimulus contrast [10]. It is not possible to capture this feature

in a single-neuron description using a Hubel and Wiesel feed-forward connectivity [11]

from the lateral geniculate nucleus (LGN); rather, cortical interactions are needed to

achieve contrast-invariant tuning (for review see [12]). Ben-Yishai et al [13] proposed a

model for which the tuning width is independent of the contrast, but a threshold-linear

relationship between input current and firing rate was an assumption of the model, and

the problem of the firing statistics was not addressed.

Here, we show how a contrast-invariant tuning width, an almost linear input-

output relationship, and irregular firing can all be explained by a balanced hypercolumn

model. With our mean-field treatment, we can quantify how certain network properties

like synaptic strengths, tuning of the LGN input and of the intracortical connectivity

influence the statistics and tuning of the neuronal firing. Using the Fano factor F (the

ratio of spike count variance and mean spike count) to quantify the irregularity in firing,

we find, e.g., that if F is significantly greater than 1 the orientation tuning of F reaches

a maximum at the PO (Fano factors greater than 1 are normally observed for neurons in

V1 [14]). We also make quantitative predictions about the tuning of the input currents

and their fluctuations.

2. Model and Methods

We model a single orientation hypercolumn in primary visual cortex, with a simplified

network architecture as indicated in Figure 1. The network comprises an excitatory

population and an inhibitory one, of sizes N1 and N2, respectively. Each population is

divided into n sub-populations (orientation columns), parameterized by an angle θ. The

angles, spaced equally between −π/2 and π/2, indicate the preferred orientation (PO),

to which the neurons in the corresponding column respond strongest.

We use leaky integrate-and-fire neurons and interconnect them randomly with a
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Figure 1. Structure of the model network. The hypercolumn consists of multiple
orientation columns, each of which has an excitatory and an inhibitory subpopulation
and is assigned a preferred orientation (PO) θ. Columns with more similar POs share
on average more connections than more dissimilar ones (the density of connections is
indicated only between one column and the rest, for clarity). The network receives
excitatory external input, weakly tuned to the stimulus orientation θ0. The inset
shows a sketch for the connectivity and connection strengths Jab within an orientation
column.

connection probability Pab(θ − θ′) that depends on the similarity of the POs. The

probability that a neuron with PO θ (in population a) receives afferent input from a

neuron with PO θ′ in population b is taken as

Pab(θ − θ′) =
Kb

Nb

(1 + γ cos 2(θ − θ′)) , (1)

where Kb is the expected overall number of inputs from neurons in population b. We take

the ratio Kb/Nb independent of b, i.e., excitatory and inhibitory neurons interconnect

with the same probability in our model. The functional form of (1) is motivated by

anatomical evidence that the connection probability between cortical neurons decreases

as their distance increases, and by the fact that orientation columns with similar PO

tend to lie closer together on the cortical surface than ones with dissimilar PO. We

followed Ben-Yishai et al. [13] in choosing the simplest possible form that is periodic

with period π. We assume that the degree of tuning, as measured by the parameter

γ ∈ (0, 1), is the same for both the inhibitory and the excitatory population.

Each nonzero synapse from a neuron in population b to one in population a is taken

to have strength

Jaθ,bθ
′

ij =
Jab√
Kb

(2)

where the parameters Jab are of order 1. With this scaling, the fluctuations in the input

current are also of order 1, the same order as the distance between reset and threshold

of our model neurons (cf. van Vreeswijk and Sompolinsky [2, 3]).
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The subthreshold dynamics of the membrane potentials are given by

duaθi (t)

dt
= −u

aθ
i (t)

τ
+ Iext

aθ (θ0) + Iaθ,rec
i (t), (3)

where the membrane time constant τ is chosen to be the same for all neurons. The

excitatory external input from the LGN, Iext
aθ (θ0), is assumed to be (weakly) tuned to

the orientation θ0 of the stimulus due to a feed-forward connectivity from the LGN as in

the classical model by Hubel and Wiesel [11]. For simplicity, we take it to be constant

in time and the same for all neurons i within a column. The functional form we use is,

similar to the tuning (1) of the intracortical connectivity,

Iext
aθ (θ0) = Iext

a (1 + ε cos 2(θ − θ0)), (4)

where ε ∈ (0, 1) is the degree of tuning, which is assumed to be the same for both

populations. (The condition ε < 1 assures Iext
aθ (θ0) to be non-negative, i.e. excitatory,

for all orientations). A more detailed model for this external input current, including

temporal fluctuations and random connectivity, was briefly described in an overview

article by Hertz et al. [15].

The recurrent input Iaθ,rec
i (t) from within the model cortex is given by

Iaθ,rec
i (t) =

2∑

b=1

θn∑

θ′=θ1

Nb/n∑

j=1

Jaθ,bθ
′

ij Sbθ
′

j (t), (5)

where Sbθ
′

j (t) =
∑
s δ(t− tsjθ′b) is the spike train of neuron j with PO θ′ in population b.

Mean Field Theory

In the following mean-field description of the orientation hypercolumn model, we

consider stationary firing only, for simplicity. However, the formulation is general enough

to allow for non-stationary rates. We presented such a time-dependent treatment for a

balanced single-column model elsewhere [9].

Because of the dilute random connectivity, each neuron receives a high number of

uncorrelated inputs (we assume Kb to be large, but smaller than Nb). According to

the central limit theorem, the recurrent input currents given by (5) can therefore be

described as Gaussian random processes. For stationary rates, the mean input current

is constant in time for any given neuron, although the level of the mean does vary from

neuron to neuron due to the random connectivity. In a general mean-field theory, one

must consider temporal correlations in these currents, i.e., not restrict the description

of the random processes to white noise.

To separate the mean of the currents from their fluctuations (“noise”), it is

convenient to apply such separations to the description of both the synaptic weights

Jaθ,bθ
′

ij and the spike trains Sbθ
′

j (t) in (5). For the weights we can write

Jaθ,bθ
′

ij = Jaθ,bθ
′

ij + δJaθ,bθ
′

ij , (6)
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where the bar means averaging over the index j, i.e., the neurons in the source

population:

Jaθ,bθ
′

ij =
1

Nb/n

Nb/n∑

j=1

Jaθ,bθ
′

ij (7)

Generally, we use the bar-notation for averaging over neuron populations, which will

always apply to the running index j in this work. To separate the spike trains into

static and dynamic components, we write

Sbθ
′

j (t) = rb(θ
′) + δrbθ

′
j + δSbθ

′
j (t), (8)

where rb(θ
′) = rbθ

′
j = 1/(Nb/n)

∑
j r

bθ′
j is the average rate of the neurons in sub-

population θ′ of population b. The difference between this average rate and the actual

rate of neuron j is denoted δrbθ
′

j . These two components are both static, describing

time-averaged quantities. The temporal fluctuations of the spike train and their possible

correlations in time are captured by the third term on the right-hand side of (8), δSbθ
′

j (t).

Using the central limit theorem and methods like those in [8] and [16] we can then derive

the following mean-field formulation of the recurrent current:

Irec
aθ (t) =

2∑

b=1

Jab

(√
KbAb +

√
1−Kb/NbBb(t)

)
, (9)

with

Ab =
1

n

θn∑

θ′=θ1

(1 + γ cos 2(θ − θ′))rb(θ′) (10)

Bb(t) =
1

n

θn∑

θ′=θ1

√
1 + γ cos 2(θ − θ′)

((
(rbθ

′
j )2

) 1
2 xbθ′ + ξbθ′(t)

)
(11)

where the values xbθ′ are drawn from a unit-variance normal distribution. Selecting

specific values xbθ′ effectively samples different neurons within the column population.

We have dropped the neuron index i because this statistical description of the input

current reduces the network problem to single neuron problems – one for each column

population, indexed by aθ. The terms ξbθ′(t) stand for realizations of Gaussian random

processes obeying

〈ξbθ′(t)ξbθ′(t′)〉 = Cbθ′(t− t′). (12)

Here, Cbθ′(t− t′) denotes the average autocorrelation function of the fluctuations in the

spike trains of neurons with PO θ′ in population b, given by

Cbθ′(t− t′) =
1

Nb/n

Nb/n∑

j=1

〈δSbθ′j (t)δSbθ
′

j (t′)〉. (13)

With the operation 〈·〉 we mean averaging over realizations of random processes, such as

stochastic spike trains. We will refer to such realizations as “trials” since they represent

(responses to) repeated presentations of the same stimulus in experimental settings.
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The balance condition

The input currents from the excitatory population and the inhibitory population have

mean values of order
√
K1 � 1 and

√
K2 � 1, respectively (see Equation (9)). In

addition, for the external input current (4) we take Iext
a =

√
K0Î

ext
a with

√
K0 � 1. If the

neurons are to exhibit irregular firing at a low rate, as cortical neurons do, these currents

must nearly cancel and threshold crossings have to be caused by the fluctuations in the

currents, which are of order 1. For our orientation hypercolumn model, this balance

condition implies that the average input currents in (3) have to add up to zero for each

orientation column θ:
√
K0Î

ext
a (1 + ε cos 2(θ − θ0)) +

2∑

b=1

Jab
√
KbAb = O(1), (14)

where Ab is defined in (10). Here, we have ignored the contribution of the leakage

current (the first term on the right-hand side of (3)), because it is small compared to

the input currents, and because the balance condition (14) holds only up to corrections

of O(1).

To solve these equations, we consider a continuum formulation for the weighted

average over all angles instead of the discrete formulation in (10) and write

Ab =
∫ π/2

−π/2
dθ′

π
(1 + γ cos 2(θ − θ′))rb(θ′). (15)

Then (14) becomes a pair of integral equations for ra(θ).

In the broadly tuned case (all orientation columns respond with non-vanishing mean

rates to every stimulus orientation), these integral equations can be solved directly. To

do so, we perform a Fourier expansion centered at θ0 of the mean rate within orientation

column θ′ and write rb(θ
′) = rb,0 + rb,2 cos 2(θ′ − θ0) + · · ·. For both the input current

and the connection probabilities, we have already used such Fourier notations with the

fewest possible terms to retain a periodic function with period π. Due to that choice,

all higher Fourier components for the mean currents vanish as well, and we get

√
K0Î

ext
a (1 + ε cos 2(θ − θ0)) +

2∑

b=1

√
KbJab[rb,0 +

1

2
γrb,2 cos 2(θ − θ0)] = 0. (16)

By solving for each of the two Fourier components of the mean rates separately, we

obtain

ra,0 = −
2∑

b=1

(Ĵ
−1

)abÎ
ext
b (17)

ra,2 = − 2ε

γ

2∑

b=1

(Ĵ−1)abÎ
ext
b =

2ε

γ
ra,0, (18)

where the matrix Ĵ is composed of the elements Ĵab = Jab
√
Kb/K0. Firing rates have to

be non-negative, so this solution can only be valid for ε ∈ (0, γ/2]. However, such

a broad tuning is not normally observed for cortical neurons. Rather, orientation

sensitive neurons tend to be more “narrowly tuned”, with firing suppressed for stimulus
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orientations θ0 that differ too much from the neuron’s preferred orientation θ: ra = 0

for |θ − θ0| ≥ θc for some tuning width θc. Within the parameter regime ε ∈ (γ/2, γ]

we find such narrowly tuned solutions to our model. The tuning width θc turns out to

be the same for both excitatory and inhibitory neurons, which is a consequence of the

population-independence of the tuning parameters ε and γ.

To find the solutions for the narrowly tuned case, we use our insight from the

broadly tuned case and make the ansatz

rb(θ
′) =

{
rb,0 + rb,2 cos 2(θ′ − θ0) for |θ′ − θ0| < θbc
0 for |θ′ − θ0| ≥ θbc,

(19)

where θbc = −1/2 cos−1(rb,0/rb,2). As mentioned above, since we have assumed equal

tuning in (1), θbc is the same for both b. Thus, in (15) the integration is restricted to

|θ′ − θ0| < θc. Because rb(θ
′) = 0 at θ′ − θ0 = θc, we can rewrite the part of the ansatz

for |θ′ − θ0| < θc in the form

rb(θ
′) = rb,2(cos 2(θ′ − θ0)− cos 2θc). (20)

With this approach, we can indeed find solutions for the tuning width and the rates

from the balance condition (14). Analogous to the solution for the broadly tuned case

(16), now the total mean-input current can be expressed as

〈Iaθ,tot〉 =
√
K0Î

ext
a (1 + ε cos 2(θ − θ0))

+
2∑

b=1

√
KbJab[rb,2f0(θc) + γrb,2f2(θc) cos 2(θ − θ0)],

(21)

where

f0(θc) =
∫ θc

−θc

dθ′

π
(cos 2θ′ − cos 2θc) =

1

π
(sin 2θc − 2θc cos 2θc) (22)

f2(θc) =
∫ θc

−θc

dθ′

π
cos 2θ′(cos 2θ′ − cos 2θc) =

1

π
(θc − 1

4
sin 4θc). (23)

(We have borrowed the notation from Ben-Yishai et al. [13] who studied a different kind

of model that contains similar expressions; see also [17]). Again, the total current (21)

has to vanish for all orientation columns θ, so both the constant and the cos 2(θ − θ0)

terms vanish separately:

Îext
a +

2∑

b=1

Ĵabrb,2f0(θc) = 0 (24)

εÎext
a + γ

2∑

b=1

Ĵabrb,2f2(θc) = 0 (25)

Dividing (24) by (25) yields

f2(θc)

f0(θc)
=
ε

γ
, (26)

which can be solved for θc. Note that (26), and thus the tuning width of the mean rates,

does not depend on the overall strength of the input, Iext
a (i.e., the “contrast” of the

stimulus). We find therefore contrast-invariant tuning of the mean rates as a result of
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cortical interactions, in agreement with experimental findings [10]. Having calculated

θc, we can find the mean rates with help of (24), via

ra,2 = − 1

f0(θc)

2∑

b=1

(Ĵ−1)abÎ
ext
b , (27)

and by using the equality ra,0 = −ra,2 cos 2θc.

The above calculations show how cortical interactions are responsible for a

narrowing of the tuning of the population firing rates, relative to the tuning of the

input to the network. We can proceed one step further in our analytical treatment of

the mean-field model and consider the tuning of the neuronal input noise spectrum. We

can write the dynamic noise in the input current as

〈δIrec
aθ (t)δIrec

aθ (t′)〉 =
2∑

b=1

J2
ab

∫ π/2

−π/2
dθ′

π
(1 + γ cos 2(θ − θ′))Cbθ′(t− t′), (28)

where we have used the continuum notation for the weighted averages. The correlation

function Cbθ′(t− t′) has a piece proportional to rb(θ)δ(t− t′), which gives

lim
ω→∞〈|δI

rec
aθ (ω)|2〉 =

2∑

b=1

J2
ab

∫ π/2

−π/2
dθ′

π
(1 + γ cos 2(θ − θ′))rb(θ′) (29)

=
2∑

b=1

J2
ab[rb,2f0(θc) + γrb,2f2(θc) cos 2(θ − θ0)]. (30)

To obtain (30), we performed calculations analogous to the ones for solving the integrals

for the rate equations. Using (26) and (27), we can then write the flat contribution to

the noise spectrum as

lim
ω→∞〈|δI

rec
aθ (ω)|2〉 = −Îext

a [1 + ε cos 2(θ − θ0)]
2∑

b=1

J2
ab

2∑

c=1

(Ĵ−1)bcÎ
ext
c , (31)

This result states that the high-frequency limit of the neuronal input noise has the same

orientation tuning as the external input to the neuron.

For t 6= t′, it is not possible to calculate analytically solutions to (28) because the

correlation function Cbθ′(t− t′) needs to be evaluated numerically. Similarly, the tuning

of the irregularity in the neuronal firing (as described by, e.g., the Fano factor) can only

be determined by solving the full mean-field model numerically.

3. Numerical procedure

In our simulations, we modeled the orientation hypercolumn as an assembly of 30

orientation columns, with their preferred orientations θ equally spaced between −π/2
and π/2 (or between −90 and 90 degrees, as in the figure captions). We used parameter

values corresponding to N1 = 8000 excitatory and N2 = 2000 inhibitory neurons, and

a membrane time constant of τ = 10 ms for all neurons. The generic intra-cortical

connection strengths Jab in (2) were taken as
(
J11 J12

J21 J22

)
=

(
0.5 −2

1 −2

)
. (32)
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The synaptic strengths of the afferent inputs from the LGN are taken to be stronger

for the excitatory neurons; specifically, in (4), we chose Iext
2 = 2

3
Iext

1 . To study the role

of the overall strength of synapses, we multiply the generic synaptic weights (including

the strength of the external input) by a common scaling factor Js.

We use an iterative approach that was originally developed for spin glass models

[18] to find self-consistent solutions of the firing statistics given by the rates ra(θ), the

rate fluctuations (raθj )2, and the correlations Caθ(t−t′). We start with initial estimates of

these quantities, which we obtain by using a white-noise approximation in the analytical

treatment described above. We then generate many realizations of Gaussian synaptic

currents using (4) and (9), which we use to drive single integrate-and-fire neurons.

By collecting their firing statistics, we obtain improved estimates of the rates, rate

fluctuations, and correlations. These are then used to repeat the cycle until the input

and output statistics are consistent.

For the hypercolumn model, we need to determine these firing statistics for each

population a (excitatory and inhibitory) within each orientation column θ. However,

because of the inherent symmetry in the network topology, at each iteration step we

only need to run simulations for half of the columns and mirror the results to obtain

improved statistics for the entire network. To collect the firing statistics from the

column population aθ, we run many trials of single neurons that are sampled from the

entire column population. This is achieved by generating Gaussian input currents that

fluctuate not only in time (by generating realizations of the dynamic and appropriately

colored input noise ξbθ′(t) in (11)), but also differ in their overall size due to the random

numbers xbθ′ in (11), which reflects the fact that different neurons have in general

different connectivity patterns. (Note that we have used here – as throughout the text

– the indices aθ for referring to the “target column”, whereas bθ′ runs over all “source

columns”). For a more detailed account on handling some of the subtleties in obtaining

the correct statistics, see [9].

Once the procedure converges, which takes tens to hundreds of iterations, depending

on the set of parameters and the specific approach taken, one has obtained a set of self-

consistent firing statistics, describing the population responses for a specific network

input (stimulus contrast and stimulus orientation). Equipped with these population

statistics we can then calculate input and firing statistics for individual neurons. To

specify such a neuron, we select a set

{xbθ′ : b = 1, 2; θ′ = θ1, . . . , θn} (33)

and keep it fixed over all trials to collect the statistics for that neuron. The xbθ′ represent

the intrinsic variability across the population in the strength of synaptic input due to

the randomness in the connectivity of the network.

4. Results

We concentrate first on results describing response characteristics of neurons obtained

from their firing statistics. It is possible to compare these results directly with known
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Figure 2. Contrast-invariant tuning width. Average over 100 neurons (upper-left
panel) and three randomly chosen neurons. The parameter values for the stimulus
tuning and the connectivity tuning were ε = 0.5 and γ = 0.625, respectively, resulting
in a tuning width of 43.2 degrees according to the calculations. Contrast-invariant
tuning is observed for both averaged and single-neuron tuning, despite the small
distortions and asymmetries for single neurons. (See the text for further details)

properties like contrast-invariant tuning, or with the variability in spike counts. We

then describe results pertaining to properties of the neuronal input currents (and their

orientation tunings) for the hypercolumn model.

4.1. Tuning of the neuronal firing

For the present model, we have shown analytically above that the tuning width of the

column population rates is invariant with respect to the contrast of the stimulus (see

Equation (26)). We investigated whether such contrast-invariant tuning is also observed

for single, randomly chosen neurons. The number of afferent connections that a given

neuron receives from neurons with another preferred orientation is a random number

drawn from a probability distribution given by (1). This will in general distort the shape

of the neuron’s tuning curve. Figure 2 shows the tuning curves of three randomly chosen

neurons from the column with θ = 0 for three different contrasts Îext
a = 0.5, 1, and 2.

For our network with 30 orientation columns and 2 populations, the resulting realization

of the random connectivity to a single neuron is therefore determined by a set of 60

random numbers (see Equation (33)). To record the neuronal responses, these sets were

held fixed, while the network was presented successively with stimuli of all orientations

θ0. Also shown in Figure 2 is the result of averaging over the tuning curves of n = 100

randomly chosen neurons. While the averaged tuning is both smooth and symmetric, the
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Figure 3. Tuning of the gain function. Upper panel: Spike count as a function
of stimulus contrast, parameterized by the stimulus orientation. The input-output
relationship is linear, and the slope decreases as the stimulus orientations θ0 becomes
more dissimilar to the neuron’s preferred orientation θ = 0 (results shown for neuron
5 in Figure 2). Lower panel: Spike count ratios for two pairs of spike counts resulting
from doubling the contrast. At the preferred orientation (PO) and for orientations
not too far from the PO, doubling the contrast doubles the spike count. For more
dissimilar stimulus orientations, the ratios decrease systematically.

tuning curves of single neurons show small distortions and asymmetries. Additionally,

the overall strength of the response varies from neuron to neuron. However, despite the

somewhat irregular shapes, the contrast-invariance of the tuning width is preserved for

single, randomly chosen neurons. The analytical treatment predicts a threshold-cosine

shape of the tuning, while the curves shown here, including the averaged ones, show a

rounded fall-off to zero with non-zero rates for angles just outside the tuning width. This

“rounding artifact” appears to be due to a slow convergence of the numerical procedure

at extremely low firing rates; the artifact is reduced when the algorithm is run for more

iterations.

In all our simulations, we observe an almost linear input-output relationship

between stimulus contrast and firing rate, in agreement with experiments (see, e.g.,

Figure 1 in [12]). Figure 3 shows how the input-output relationship depends on the

stimulus orientation. In the upper panel of Figure 3, the spike count is plotted as a

function of the external input strength Îext
1 , i.e. the contrast of the stimulus, for a

single neuron (neuron 5 of Figure 2). The slope changes systematically with stimulus

orientation θ0, getting smaller as the difference between the stimulus orientation and

the neuron’s preferred orientation increases. The lower panel of Figure 3 shows the

spike count ratios of two pairs of spike counts that resulted from doubling the stimulus

contrast. In contrast to the upper panel of Figure 3, these curves show results of
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Figure 4. Tuning of the Fano factors. Tuning curves, parameterized by relative
synaptic strengths Js, are shown for the same three neurons as in Figure 2 and for an
average over 100 neurons (upper left panel). The Fano factors F depend systematically
on Js: stronger synapses lead to higher Fano factors. On average, F stays either above
1 for all orientations or below 1 for all orientations. For F ≈ 1, the tuning is almost
flat, while it reaches a maximum (resp. minimum) at the preferred orientation for
F > 1 (resp. F < 1).

averaging spike counts over 100 neurons, in order to make the general tendency clearer.

It can be seen that for the preferred orientation, doubling the stimulus almost perfectly

doubles the spike count (this is also true for single neurons, as can be read off from

Figure 2). This relationship also holds for stimulus orientations away from the PO,

until about 20 degrees difference, which is about half the tuning width of these neurons.

For larger orientation differences, the ratio decreases. It seems likely that at large

orientation differences (near the tuning width) this reduction is due to the rounding

artifact for very low spike rates discussed above. For intermediate orientation differences,

say 20–35 degrees, the reason for the reduction is not evident to us.

We characterize the irregularity in the neuronal firing by the Fano factor F . For

a Poisson process F = 1, while F 6= 1 implies temporal correlations in the spike times:

F > 1 indicates a tendency towards “bursty” spiking behavior, and F < 1 indicates

more regular spike trains with narrower interspike interval (ISI) distributions. Figure 4

shows the tuning of the Fano factor for three different overall connection strengths

Js = 0.4, 0.7, and 1.2. As in Figure 2, the results for (the same) three individual

neurons are shown, as well as an averaged tuning curve. It can be seen that the Fano

factor depends systematically on the overall strength of connectivity: stronger synapses

lead to more irregular spike counts. The averaged tuning curves reveal two further

properties, which we observed consistently in all our simulations, performed with many
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Figure 5. Analysis of Fano factor tuning: tuning of mean spike count and spike
count variance for relative synaptic strengths Js = 0.4, 0.5, . . . , 0.9. For each Js, the
variance stays either below the mean or above the mean for all orientations (upper and
lower panels, respectively), resulting in ratios F < 1 and F > 1 for all orientations.
The variance increases with Js – most sensitively at the preferred orientation (PO). For
F ≈ 1, the variance and mean tuning curves are almost identical, resulting in an almost
flat tuning of their ratio F , while for F 6= 1 the ratios reach a minimum/maximum at
the PO.

different sets of parameters: First, Fano factors are either less than 1 at all angles or

greater than 1 at all angles. Second, if they are considerably greater than 1, they peak

at the preferred orientation, falling off as the difference between stimulus orientation

and PO increases; in the case where F stays below 1, the opposite tuning is observed,

i.e., the Fano factor reaches a minimum at the preferred orientation. We can shed some

light on the emergence of these two properties by looking at pairs of tuning curves for

the spike count variance and the mean spike count and then systematically changing

the connection strengths. We show these tuning curves for 6 different values of Js in

Figure 5. It can be seen that both the mean and the variance peak at the PO, falling

off towards increasing angle differences. Furthermore, for F ≈ 1 at Js = 0.7, the tuning

curves are nearly identical resulting in almost untuned Fano factors close to 1. For lower

Js values, the variance curve stays entirely below the mean curve, while the opposite

is true for Js values bigger than 0.7. Therefore, the ratio of the curves, which is the

tuning curve of the Fano factor, stays either always below 1 or always above 1. The

size of the spike count variance depends sensitively on the overall connection strengths

Js. Apparently, this sensitivity is strongest at the PO, decreasing towards greater angle

differences. Therefore, the Fano factor reaches its minimum for the cases with F < 1
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Figure 6. Autocorrelation tuning. Upper panels: Weak synapses with Js = 0.5.
There is a dip to negative values for small time differences. It decreases in strength
at greater time differences. The dip indicates a relative refractoriness to emitting a
spike immediately after a previous one, resulting in Fano factors F < 1. Lower panels:
Strong synapses with Js = 1.3. There is a hill of positive correlations for short intervals,
falling off to zero for increasing time differences. The hill indicates a tendency toward
clustered spikes, resulting in F > 1. The autocorrelations for excitatory neurons
(left panels) and inhibitory neurons (right panels) show the same qualitative features,
differing only in overall size.

(respectively its maximum for F > 1) when the stimulus is at the preferred orientation.

As already mentioned, Fano factors that deviate from 1 indicate temporal

correlations in the spike trains. The nature of these correlations and their orientation

dependence is summarized in Figure 6 for a case with F < 1 (Js = 0.5; upper panels)

and a case with F > 1 (Js = 1.3; lower panels) for both excitatory neurons (left panels)

and inhibitory ones (right panels). For Js = 0.5, there is a negative dip for small

time differences, indicating a relative refractoriness to emitting a spike immediately

after a previous one. For stronger synapses (Js = 1.3) there is no such refractoriness.

On the contrary, for strong synapses, we observe positive correlations for small time

differences. For both strong and weak synapses, the correlations are strongest at the

preferred orientation and decrease monotonically for less optimal stimulus orientations.

The autocorrelations for excitatory and inhibitory neurons show the same qualitative

features, differing only in their overall size.

In Figure 7 we illustrate how the firing statistics depend on ε and γ, which

determine how strongly the input current and the intracortical connectivity are tuned

(see equations (4) and (1), respectively). Fano factor tuning curves (left panels) and

firing rate tuning curves (right panels) for three different combinations of ε and γ are
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Figure 7. Dependence of the Fano factors on tuning parameters ε and γ at three
different values of relative synaptic strengths Js. Fano factors and mean spike
counts are shown for three different combinations of ε (external input tuning) and
γ (connectivity tuning). The tuning of both the Fano factors and the mean counts are
controlled by the ratio ε/γ.

shown, parameterized by Js, the scaling factor for the synaptic strengths. As shown

analytically above, the ratio ε/γ determines the tuning width of the neuronal firing (see

Equation (26)). This is reflected by the identical firing tuning widths in the first and

second row of Figure 7, for both of which ε/γ = 0.8, resulting in a tuning width of

θc = 43.2 degrees. The third row of Figure 7 shows results for the same external input

tuning ε = 0.5 as in the first row, but for a different ratio ε/γ = 0.6. This results in

θc = 67.7 degrees and an accordingly broader tuning curve of the firing, plotted in the

right panel of the third row. The curves for the Fano factor tuning in the left panels of

Figure 7 suggest that the tuning of the firing irregularity is – just as the tuning of the

firing itself – only dependent on the ratio ε/γ. (We consistently found this dependence

in all our simulations.)

4.2. Tuning of the neuronal input current

Our analytical treatment of the balanced hypercolumn model reveals that the high-

frequency neuronal input noise power has the same tuning as the external input. In

Figure 8 we show simulation results of the noise tuning for the same three combinations

of ε and γ as in Figure 7. For the panels in the first and the second row of Figure 8,

ε/γ = 0.8, but ε = 0.5 and ε = 0.25 in the upper and middle rows, respectively.
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Figure 8. Dependence of the noise on tuning factors ε and γ. External input
and dynamic input noise versus tuning of the neuronal firing for the same three
combinations of ε and γ as in Figure 7. It can be seen that the tuning of the noise is
determined by ε, while the tuning of the firing rate is determined by the ratio ε/γ.

While the tuning of the neuronal firing is identical for these two cases, the noise tuning

is weaker in the middle row, reflecting the weaker tuning of the external input (left

panels). The results presented in the third row of Figure 8 show a case with a broader

tuning of the response, resulting from a different ratio between ε and γ, but with the

same ε = 0.5 as in the first row. For these two cases, the tunings on the input side –

concerning external input and dynamic noise – are practically indistinguishable, while

the tunings of the firing differ. Thus, the noise tuning is determined by ε, unlike the

response tuning, which depends on the ratio ε/γ.

The balanced state for the orientation hypercolumn implies that the mean input

currents (external and recurrent currents), which are each of O(
√
Ka) with Ka � 1,

cancel up to corrections of O(1). It is not straightforward to calculate the tuning of the

resulting net mean current, since the balance condition (14) does not allow inferences

about its size. However, the solutions obtained by the numerical algorithm provide direct

access to the net mean currents, which we depict in Figure 9 for the same combinations

of ε and γ as for the noise tuning in Figure 8. It is clear from Figure 9 that the tuning of

the mean input, unlike the dynamic input noise tuning, is not determined by the tuning

of of the external input. Rather, it seems to be the ratio ε/γ that primarily determines

it, as suggested by the almost identical tunings for the two cases with identical ε/γ.

Since the tuning of the external input and that of the noise variance are the same, the

left panels of Figure 9 also show how the tuning of the noise compares to that of the



Mean field theory for a balanced hypercolumn model in V1 17

−0.4

−0.2

0

0.2

R
es

. M
ea

n 
(a

st
er

is
ks

)

−0.4

2

4

In
pu

t (
so

lid
)

0

5

10

S
pi

ke
 c

ou
nt

−0.4

−0.2

0

0.2

R
es

. M
ea

n 
(a

st
er

is
ks

)

−0.4

2

4

In
pu

t (
so

lid
)

0

5

10

S
pi

ke
 c

ou
nt

−50 0 50
−0.4

−0.2

0

0.2

R
es

. M
ea

n 
(a

st
er

is
ks

)

θ
−50 0 50

−0.4

2

4

In
pu

t (
so

lid
)

−50 0 50
0

5

10

θ

S
pi

ke
 c

ou
nt

ε = 0.5; γ = 0.625 (ε/γ = 0.8: θ
c
 = 43.2)

ε = 0.25; γ = 0.3125 (ε/γ = 0.8: θ
c
 = 43.2)

ε = 0.5; γ = 0.833 (ε/γ = 0.6: θ
c
 = 67.7)

Figure 9. Dependence of the mean input current on tuning factors ε and γ. External
input tuning and mean-input tuning versus tuning of the response for the same three
combinations of ε and γ as in Figure 7 and Figure 8. The tuning of the mean input is
not determined by ε; rather, as for the spike count tuning shown in the right panels,
the ratio ε/γ plays an important role.

mean input current for the three combinations of ε and γ.

5. Discussion

In this work, we presented a complete mean field theory for a balanced network with

structural inhomogeneity, together with an algorithm that allows one to find the self-

consistent solutions for the mean rates, their cell-to-cell fluctuations, and the correlation

functions. We applied the theory to a simple model of an orientation hypercolumn in

primary visual cortex, comprised of integrate-and-fire neurons. Despite the relative

simplicity of the model, the resulting dynamics capture several key properties known

about responses of orientation selective cortical neurons in vivo. Within this description,

we can pinpoint how the resulting neuronal dynamics are controlled by parameters of

the model, and quantify their influence.

Specifically, we find contrast-invariant tuning of the neuronal firing not only for the

population rates, as derived from the analytical treatment, but also for single, randomly

chosen neurons. Moreover, the firing rate increases linearly with the strength of the

input current (i.e., the contrast of the stimulus). Note that these are network effects

originating in the dynamical balance between excitation and inhibition, not properties

of isolated neurons. This is in agreement with experimental results, where such a linear
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input-output relationship can only be found for cortical neurons in vivo, but not for

single neurons in vitro.

Another network effect that emerges naturally from the self-consistent dynamic

balance, in combination with the static randomness in the connectivity, is the irregularity

in the neuronal firing. We are able to describe it quantitatively through the correlation

functions, which are determined self-consistently in the theory. Such firing-statistical

issues cannot be addressed in “rate models”, which simply assume a particular relation

between average input current or membrane potential and firing rate. While it is possible

to calculate the firing variability in the mean-field treatment of Brunel [6], it cannot be

done in a self-consistent manner because of the assumption that the neuronal input is

uncorrelated in time (white noise). Here we color the noise self-consistently. Poisson-

like statistics (Fano factor F = 1) are only one possibility within a continuum of firing

statistics that depend sensitively on the strengths of the synapses: stronger synapses

generally lead to higher Fano factors. The underlying mechanism can be summarized as

follows: Stronger synapses increase the probability of a spike shortly after reset, which

leads to a higher tendency of spikes occurring in “clusters”, thereby increasing the spike

count variance. A detailed account of this mechanism, involving the dependence of the

membrane potential distribution on the synaptic strength can be found in [9], where the

analysis was carried out for a single cortical column.

The mean field theory applied to the present model allows us to study tuning

properties of both the neuronal firing and the neuronal input and their dependence on

network parameters. Concerning the irregularity of firing, our results suggest that F

stays either above 1 or below 1 for all orientations. Moreover, the modulation strength

of F over angles increases, relative to the almost untuned case of F ≈ 1, with increasing

(resp. decreasing) overall values of F , reaching a maximum (resp. a minimum) at the

preferred orientation.

Concerning the tuning of the input currents, we find analytically that the high-

frequency input noise power has the same tuning as the external input to the neuron

(which in turn is determined by a Hubel-Wiesel feed-forward connectivity from the

LGN). In our numerical calculations we observe a close fit between the tuning of the

overall input noise and the one of the external input. This suggests that the tuning

of the external input may be a good predictor for the noise tuning, and vice versa. In

contrast, we find that the tuning of the mean input current does not reflect the one of

the external input, but is predominantly determined by the ratio ε/γ of the modulation

strengths of the external input and the cortical interactions.

Some of our results (the existence of a stable, asynchronous low-rate state,

contrast-invariant orientation tuning, and the inverse relation between the sharpness

of orientation tuning and intracortical tuning strength γ) were obtained previously by

Wolf et al. [19] in an extension of van Vreeswijk and Sompolinsky’s stochastic binary

model [2, 3] to a hypercolumn, but the treatment of a spiking neuron model and all the

results for correlations of both input and output are new here. Also new is that we go

beyond population statistics and make quantitative predictions about input and output
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characteristics of individual neurons, which can be tested directly.

Firing irregularity of neurons in primary visual cortex has been investigated

experimentally for a long time (see, e.g., [20, 21, 22, 23, 14]). Well studied is also

the dependence of firing rate on the stimulus orientation [10, 24], but we are not aware

of studies investigating the dependence of firing irregularity on the orientation. Our

predictions concerning the tuning of the input currents (for both mean and noise) can be

tested experimentally by systematically changing ε (the external input tuning strength)

via changing the spatial modulation of the stimulus and then observing how the the

mean and noise tunings are affected separately.

The mean field theory presented here, in combination with the numerical procedure

for finding the self-consistent solutions, can be applied to models that capture more

of the known neuronal and cortical physiology. For example, it is straightforward to

incorporate conductance-based synapses into the hypercolumn model, as has already

been done for a single-column model (see [25] and [15]). It is also straightforward to use

different, possibly more realistic neuron models – even several kinds of neuron models

within one given network model, since the neuronal dynamics are explicitly simulated

within the numerical procedure for collecting the firing statistics. Here, we have shown

how the theory can be applied to networks with non-homogenous architecture, using a

simple one-dimensional model for a cortical hypercolumn. This model can be thought of

as describing an annulus around a pinwheel center. Using the same general techniques as

introduced here, the model can be extended to incorporate a two-dimensional geometry

to describe an entire pinwheel. Similarly, as we have shown for orientation selectivity,

it is possible to include other coding features, such as spatial phase, for example. Thus,

the power of this mean-field approach lies in its generality, which makes it possible to

quantify dynamics of balanced, highly connected networks.
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