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Abstract

We consider a control problem for a single bioreaction occuring in a continuous and well mixed bioreactor, assuming that the
bioreaction’s kinetics is not represented by a validated model. We develop a nonlinear controller and prove the global asymptotic
stability of the closed loop system towards the equilibrium corresponding to the set point. Since this control law needs the
knowledge of some parameters, we derive an adaptive version of the nonlinear controller and prove again the global asymptotic
stability of the closed loop system. Finally, we show the relevance of our approach on a real life wastewater treatment plant.
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1 Introduction

Biological processes have become widely used in the in-
dustry for the last decades, with different purposes: ei-
ther to produce some chemical compounds synthesized
by a microorganism (alcoholic fermentation...), to culti-
vate a biomass for its utilization (baker’s yeast...) or ex-
traction of its metabolites (carotene from plankton...), or
to degrade a pollutant (wastewater treatment...). There-
fore, bioreactors require advanced regulation procedures
to ensure the bioprocesses’ performances and efficiency.

However, the control of bioreactors is a delicate problem
since most of the time the available biological models are
only rough approximations. Indeed, biological systems
are known to be highly variable and difficult to measure
so that no reliable biological law is available. A way to
circumvent this difficulty is the mass-balance based mo-
delling (Bastin & Dochain, 1990): the biological lacks of
knowledge are located in dedicated terms, namely the
bioreaction’s kinetics.

In this paper we focus on continuous bioprocesses; some
different approaches for their control can be found in the
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literature. The three main trends are: local approaches,
global approaches based on full model knowledge and
global approaches taking into account some model
uncertainties. Local approaches (Heinzle, Dunn & Ry-
hiner, 1993) use the linearized model around the desired
operating point together with linear systems control’s
results. Global approaches are mainly linearizing con-
trollers (Perrier & Dochain, 1993; Bastin & Van Impe,
1995; Proell & Karim, 1994), using full model knowl-
edge for exact model linearization. The main drawback
of these global approaches is that they use perfect model
knowledge. Other global control techniques assuming
model uncertainties arise (Rapaport & Harmand, 2002),
using interval observers results (Gouzé, Rapaport &
Hadj-Sadok, 2000). However, a drawback common to
most of the aforementioned control strategies is that
they often do not explicitly take into account the non-
negativity constraints on the manipulated variables.

We consider in this paper a simple class of bioreactions,
often used to describe the growth of a single species of
microorganisms (Bailey & Ollis, 1986). Here, we only as-
sume qualitative hypotheses on the involved biological
phenomena: we do not suppose any analytical expres-
sion for the kinetic function. Therefore our approach ap-
plies to a broad class of microbial species. Despite these
modelling uncertainties, we develop a regulation proce-
dure, which guarantees the desired closed loop behavior
of the bioprocess: stabilization towards a chosen operat-
ing point, even unreachable in open loop. Then, we de-
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rive an adaptive version of this regulation procedure, to
take into account parameters uncertainty and/or tem-
poral evolution. Both results are global. Finally, we il-
lustrate the performance of such a controller with both
numerical simulation and real data on an efficient but
unstable wastewater treatment plant (WWTP), using
anaerobic digestion (AD).

2 General Model Description

We focus on a simple bioreaction occurring in a Contin-
uous Stirred Tank Reactor (CSTR). We consider a re-
action involving microorganisms of a single species (X),
growing on a substrate (S) and yielding a product (P ).
This reaction, which can result from a first approxima-
tion of a more complex reaction network, is written:

kS
r(.)−→ X + hP (1)

The reaction rate is given by r(.), this notation means
that we do not specify yet the variables which influence
it. The parameters k and h are yield coefficients associ-
ated with biomass growth and product synthesis.

2.1 The model for bioreactions in CSTR

Concentrations in the liquid phase are supposed to be
homogeneous in a CSTR. However, note that a part of
the biomass (and/or the product) can be attached (fixed
bed bioreactors). A liquid flow passes through the reac-
tor, the inflow feeds the reactor with the substrate S at a
concentration sin. The outflow is composed by the same
compounds than in the liquid phase of the reactor, sub-
strate S, biomass X and product P at concentrations s,
x and p respectively. According to classical mass-balance
based modelling (Bastin & Dochain, 1990), the state
variables s, x, p are solutions of the following system of
differential equations:

ẋ = r(.)− αux

ṡ = u(sin − s)− kr(.)

ṗ = hr(.)− βup

(2)

where u is the dilution rate (the nonnegative manipu-
lated variable). In the sequel, we will denote ξ = (x, s, p)
the state vector. We suppose that only a constant pro-
portion (α ∈ (0, 1]) of biomass X is not attached on the
support and thus is affected by dilution effects (Bernard,
Hadj-Sadok, Dochain, Genovesi & Steyer, 2001). We de-
fine β ∈ (0, 1] a coefficient of product non-fixation.

2.2 The r(.) modelling issue

The most crucial problem in solving equations (2) is the
formulation of a reasonable expression for the kinetic

function r(.). As described by Bastin & Dochain (1990),
a large number of analytical expressions have been pro-
posed to describe these kinetics. Here, we do not assume
any analytical expression for the function r(.), we only
make the following assumptions based on biological ev-
idence:

Hypothesis 1 (H1): We assume that:
a: r(.) is nonnegative and is at least a function of s and x
b: ∀s, x positive, r(s, x, ..) is positive
c: r(s, x, ..) is a C1 function

Note that with (H1c), Cauchy conditions for uniqueness
of trajectories of (2) are fulfilled (Khalil, 1992). Since
most kinetics described in the literature verify these hy-
potheses (e.g. laws of Monod, Haldane, Contois... see
Bastin & Dochain (1990)), our work is very general.
However, in order to design our controller, we need an-
other hypothesis:

Hypothesis 2 (H2): We assume that the quantity:
y1 = λr(s, x, ..) (λ denoting a positive constant) is
available online from the plant.

This hypothesis is again very general and almost as ap-
plicable as (H1). Real sensors or numerical estimators
(Farza, Busawon & Hammouri, 1998) can indeed be used
to obtain online the quantity y1. Remark that, for a large
part of bioprocesses, the production (or consumption)
of gaseous components (O2, CO2...) is monitored and is
directly related to the reaction kinetics, therefore to y1

(Mailleret, Bernard & Steyer, 2003). In the sequel, we
will suppose that hypotheses (H1) and (H2) hold.

3 Controllers Design

Depending on the bioprocess purpose, we want to glob-
ally regulate either the substrate concentration s, the
product concentration p or the biomass concentration x.
However, in each case, we will see later that the values of
x and p obtained at equilibrium, are completely deter-
mined by the value of the targeted set point s? for sub-
strate concentration. Then, in the sequel, we will only
focus on the s regulation problem.

We propose in this section an output feedback controller,
that achieves the global asymptotic stabilization of a bio-
process, without any knowledge of its kinetics and with
respect to the non-negativity constraint of the input.
However, this static controller requires accurate knowl-
edge of the parameters k, sin and λ to achieve asymptotic
regulation without error. We propose thus an adaptive
control law performing exact regulation towards the set
point despite parameter uncertainty.
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3.1 Simple nonlinear controller design

Let us denote s? ∈ (0, sin) the desired set point for
substrate concentration. We compute the corresponding
positive equilibrium values of the two last state variables:
x? = 1

αk (sin − s?) and p? = h
βk (sin − s?).

Proposition 1: Under assumptions (H1) and (H2), the
nonlinear feedback control law:

u(.) =
k

λ(sin − s?)
y1 =

k

(sin − s?)
r(s, x, ..) (3)

globally stabilizes system (2) towards the positive set point
ξ? = (x?, s?, p?).

Proof: We have the following closed loop system:
ẋ = αu(.)(x? − x)

ṡ = u(.)(s? − s)

ṗ = βu(.)(p? − p)

(4)

From (H1a), it is straightforward that the non-negative
orthant of the state space is positively invariant by sys-
tem (4). Thus, for any positive initial state conditions
(that are assumed to be positive throughout the paper),
the control variable u(.) is such that: u(.) ≥ 0. Integrat-
ing system (4) and since u(.) ≥ 0, we show that ∀t ≥ 0:{

max(x?, x(0)) ≥ x(t) ≥ min(x?, x(0)) > 0

max(s?, s(0)) ≥ s(t) ≥ min(s?, s(0)) > 0
(5)

Using (H1b), we conclude that for any positive initial
state conditions and for all non-negative time, the func-
tion r(.) and thus the manipulated variable u(.) (follow-
ing law (3)) is bounded below by a positive constant.
Considering the closed loop system (4), it is straightfor-
ward to see that ξ? is globally exponentially stable. 2

3.2 Adaptive nonlinear controller design

The controller proposed in section 3.1 requires perfect
knowledge of the parameters k/λ and sin to perform
the stabilization towards the targeted set point without
static error. However, identification of these parameters
is a difficult task, especially for bioprocesses. To solve
this drawback, we propose an adaptive feedback control
law based on a new information obtained from the plant:

Hypothesis 3 (H3): We assume that the state variable
s = y2 is available from the plant.

In the sequel, we suppose that (H1), (H2) and (H3)
hold. Moreover s?, belongs to (0, sin). Let us denote χ =
(x, s, p, γ) the new state vector and γ? = k/(λ(sin−s?)).

Proposition 2: Under assumptions (H1), (H2) and
(H3), the nonlinear adaptive feedback control law:{

u(.) = γ(t)y1 = γ(t)λr(s, x, ..)

γ̇ = Ky1(s? − y2)(γ − γm)(γM − γ)

With: 0 < k
λsin

< γm < γ? < γM and K > 0

(6)

globally stabilizes system (2) towards the positive set point
χ? = (x?, s?, p?, γ?).

Proof: Control law (6) yields to the closed loop system:
ẋ = y1( 1

λ − αγx)

ṡ = y1[γ(sin − s)− k
λ ]

ṗ = y1(h
λ − βγp)

γ̇ = Ky1(s? − y2)(γ − γm)(γM − γ)

(7)

In the sequel we will only consider positive initial condi-
tions x(0), s(0), p(0) and γ(0) such that γ(0) ∈ (γm, γM ).
With these initial conditions x, s, p remain non-negative
and γ remains in (γm, γM ). Using γ boundary values,
as for equation (5), we show that ∀t ≥ 0 the state vari-
ables s(t) and x(t) remain positive; thus using (H1b) we
conclude that y1 = λr(.) is bounded below by a posi-
tive constant. We are now able to make the time change
t′ =

∫ t

0
y1(τ)dτ (Chicone, 1999). Let us make the useful

change of coordinate: v = sin−s. The closed loop system
(7) becomes (denoting with a prime the time derivatives
with respect to t′, and v? = sin − s?):

x′ = ( 1
λ − αγx)

p′ = (h
λ − βγp)

v′ = γ?v? − γv

γ′ = K(v − v?)(γ − γm)(γM − γ)

(8)

The dynamical system (8) is an autonomous triangular
system (Viel, Busvelle & Gauthier, 1995): the system
in v and γ does not depend upon the two other state
variables x and p. Now we consider the sub-system in v
and γ:{

v′ = γ?v? − γv

γ′ = K(v − v?)(γ − γm)(γM − γ)
(9)

First we want to show that the state of system (9) enters
the set {v > 0} in finite time. Considering the dynamics
of v(t) in the set v ≤ 0, we show that v′ ≥ γ?v? > 0,
which proves that v enters the set {v > 0} in finite
time. In the sequel, we will consider the initial time
(by time translation if necessary) belonging to the set
E = {v > 0, γ ∈ (γm, γM )}. We introduce the Lasalle
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function used by Harrison (1979) in the context of Lya-
punov stability for predator-prey models:

W (v, γ) =

v∫
v?

w − v?

w
dw +

γ∫
γ?

w − γ?

K(w − γm)(γM − w)
dw

We check that W (v, γ) is defined, non-negative on E and
vanishes only for v = v? and γ = γ?. Furthermore:

W ′ = −
(

γ?

v
(v? − v)2

)
Thus, W ′ is defined and negative on E and vanishes only
for v = v?. Lasalle’s theorem implies that every solution
of system (9) approaches the largest invariant set in the
domain defined by W ′ = 0 (Khalil, 1992); let us denote
this set Ω = {v = v?, γ ∈ (γm, γM )}. Now, consider
a trajectory initialized in Ω at v = v? and γ 6= γ?;
with respect to system (9) it is clear that this trajectory
escapes from Ω and therefore that the largest invariant
set in Ω is the fixed point (v?, γ?). Then (v?, γ?) is a
globally attractive fixed point for system (9).

A straightforward Jacobian matrix computation at the
point (v?, γ?) proves that this fixed point is locally sta-
ble too. Then, we conclude that (v?, γ?) is a globally
asymptotically stable (GAS) fixed point for system (9).

Now let us study the behavior of the last two state vari-
ables x and p on the set defined by v = v? and γ = γ?.
The corresponding system is linear and has a single equi-
librium (x?, p?) = ( 1

λαγ? , h
λβγ? ) which is GAS. In order

to finish the proof, we need the following result for au-
tonomous triangular systems, which is proved by Viel et
al. (2000).

Lemma: Consider the triangular system in Rn:

(Σ)

{
ż = f(z, w)

ẇ = g(w)

with: z ∈ Rn−k, w ∈ Rk, f(.) and g(.) C1 functions.
Moreover we assume that:
A1: w = 0 is a GAS fixed point for ẇ = g(w)
A2: z = 0 is a GAS fixed point for ż = f(z, 0)
A3: every forward orbit of system (Σ) is bounded
Then, 0 is a GAS fixed point for system (Σ)

Note that assumptions (A1) to (A3) hold for system (8).
Thus applying the Lemma (after state translation) to
system (8), we conclude that the fixed point defined by
v = v?, γ = γ?, x = x? and p = p? is a GAS fixed point
for (8). Thus, coming back to the original time and state
variables, we conclude that the control law (6) globally
stabilizes system (2) towards the point χ?. 2

Remark: If we want to regulate x, we can build an adap-
tive control using x measurements with a set point x?.
For example for x we have:
γ̇ = K(x− x?)(γm − γ)(γM − γ)
with: 0 < k

λsin
< γm < 1

λαx? < γM

The same kind of adaptation can be done for p regulation.

Remark: Suppose kinetics measurement is corrupted by
a (small) relative perturbation η(t) such that y1 = (1 +
η)r(.). Then, since y1 is in factor in system (4) (resp.
(7)), one can show the state remains asymptotically in
a ball centered on ξ? (χ?), of a radius proportional to η
amplitude, highlighting controller’s robustness.

3.3 The problem of discrete time y2 measurements

In practice the substrate s is sometimes only available
at low frequency time measurements y2(iT ) = s(iT ) (T
the sampling period). We show that the control law (6)
still works, but requires slow adaptation, i.e. a small K.

Indeed, we can choose a K small enough ensuring that γ
is a slow variable of the closed loop system while s, x, p
are fast ones. Singular perturbation theory (Khalil,
1992) applies, such that s remains on the manifold
s = sin−k/λγ. Straightforward calculus shows that the
adaptive equation is such that ∀t ∈

[
iT, (i + 1)T

)
:

γ̇ = y1
Kk

λγ?γ(iT )
(γ? − γ(iT ))(γ − γm

)
(γM − γ)

Integrating this equation between iT and (i + 1)T , we
find the recurrent expression of γ((i + 1)T ). Then, we
show that a sufficient condition for the convergence of
the sequence (γ(iT ))i∈N towards γ? is:

0 < T <
1
K

[
2λγ?γm

k max(y1)(γM − γm)2

]
Then for all sampling period T , there exists a small
enough K, such that T fulfills this necessary condition.

4 Real life example: an anaerobic WWTP

Anaerobic digestion (AD) consists of a succession of bi-
ological degradations that take place in the absence of
oxygen and by which organic matter is decomposed and
bioconverted on the one hand into biogas (i.e., a mixture
of CO2 and CH4) and, on the other hand, into microbial
biomass and residual organic matter.

The main advantages of AD processes for water treat-
ment are a good capacity to treat substrates at high
concentrations, and the possibility for energy recovery
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through methane combustion. However, many industri-
als are still reluctant to use AD processes, because of
an intrinsic disadvantage: they have two stable equilib-
rium points (Bernard et al., 2001). One is an operating
point while the other corresponds to biomass washout.
AD processes require therefore a regulation procedure to
work safely. Moreover, the control’s robustness towards
kinetics modelling is important, since there does not ex-
ist any reliable model.

We thus propose a very simple model, describing the key
features of AD, derived from (Bailey & Ollis, 1986). This
model focuses only on the main bioreaction and is thus a
basic summary of the whole bioreaction. Denoting S the
chemical oxygen demand (COD, pollutant matter), X
the bacterial population performing anaerobic digestion
to produce methane, we have the reaction (1), and:

r(s, x, ..) = µ(s)x

The specific growth rate µ(.) of biomass X is often rep-
resented as a Haldane law:

µ(s) =
µms

Km + s + s2/Ki

with µm, Km, Ki biological (positive) constants. Note
that with this expression for r(s, x), hypothesis (H1) is
fulfilled. The model for compounds concentration is of
the form (2), but with no equation for the produced
methane. Indeed, since the methane solubility is very
low, the produced methane is mainly gaseous. Then dis-
solved methane remains at steady state and of zero con-
centration. Moreover, the gaseous outflow of methane
can be easily measured on the plant, so that (H2) holds:

QCH4 = λr(s, x) = y1

4.1 Simulations

AD’s model is simulated to evaluate the benefits of the
control law (6) through comparison between open loop
and closed loop performances. Together with a substrate
concentration set point s? = 4 gCOD/L, we assume the
following realistic parameters’ values α = 0.8, µm = 0.9
day−1, Km = 9 g/L, Ki = 3 g/L, k = 2, γm = 0.1334
L/g, γM = 0.4 L/g and K = 0.8. Results are shown in
Figure 1. For the open loop model, it results in applying
the dilution u? = µ(s?)/α = 0.2455 day−1 , while for the
closed loop model, the control law is computed from the
expression (6). We choose a piecewise constant influent
pollutant concentration sin (unknown) to highlight the
adaptive controller’s action. It must be kept in mind
that the destabilization (see e.g. the open loop system
in Figure 1) of the process implies the disappearance
of the biomass from the digester. Then the digester has
to be inoculated again, which lasts for months, while
wastewater is no longer treated.
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Fig. 1. Simulations of the open loop plant (continuous line)
and of the closed loop plant with the control law (6) (dashed
line) (figures B, C, D). On figure A the piecewise constant
influent concentration sin (continuous line) is shown. Note
that the step in sin is lethal for the open loop digester.

Indeed from t = 0 to t = 60 both the open loop and
the closed loop systems converge towards the equilib-
rium corresponding to the set point s = s?. At t = 60,
influent substrate concentration increases from 10 to
15gCOD/L. On the one hand, it results in the destabi-
lization of the open loop process: the biomass starts to
be washed out of the bioreactor. On the other hand, the
closed loop process escapes from the equilibrium s = s?

for a short time but, the control law (6) drives the state
variables back towards the equilibrium corresponding to
the set point s = s?; the change of sin has been effi-
ciently rejected. Then, at t = 120, sin decreases from 15
to 12.5gCOD/L. Destabilization of the open loop sys-
tem still goes on though the decrease of sin. The control
law remains efficient and rejects the sin change again.

4.2 Real Life Experiments

An experimental test of the controller has been per-
formed on a fully instrumented fixed bed anaerobic di-
gester (Steyer, Bouvier, Conte, Gras & Sousbie, 2002),
located in Narbonne (France), at the “Laboratoire de
Biotechnologie de l’Environnement” (LBE) of INRA.
Raw industrial distillery wastewaters obtained from
local wineries in the area of Narbonne, France, were
used. They have different characteristics according to
the wineries where the wastewater is taken from. The
process is a pilot-scale up-flow anaerobic fixed bed re-
actor and has a useful volume of about 1m3 (Steyer et
al., 2003).

Two transient changes obtained for the input variable
and for the controlled variable s using the control law
(3) are presented in Figure 2. Transients are presented
for two different set points values s?. These experiments
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perfectly agree with the expected qualitative behavior
of the closed loop plant (a first order with an unsettled
gain) and thus validate our approach on a real life pro-
cess. Unfortunately, the adaptive version of the control
law (6) has not been tested yet.
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Fig. 2. Input (inflow) and s behaviors during two transients:
cases A and B

Nevertheless, the practical interest of the control law
was also demonstrated in an additional experiment (see
Figure 3). In this case, a technical problem in the feed-
ing line indeed lead to feed the process with pure water
(instead of vinasses) while the control law was driving
the process to a new steady state. This experiment is as
well representative of the presence of a toxicant in the
feeding (Mailleret et al., 2003).
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Fig. 3. Input (inflow) and s behaviors as the digester is fed
with water

This failure happens at t = 9h in Figure 3. Reaction of
the control law was then particularly safe since it de-
creased the feed flow down to its minimal technological
value. It is to be mentioned that most other control laws
(e.g. PID controllers) would have instead increased the
feed flow to maintain the COD concentration at the de-
sired value. In such a case, washout of the bacterial pop-
ulation would probably occur. This safety characteristic
of our control law is a key advantage for practical appli-
cations and allows us to foresee industrial implementa-
tion.

5 Conclusion

We have proposed two control laws for the regulation
of a generic model of simple bioreactions in continu-
ous stirred tank bioreactors. We have proved the global
asymptotic stability of both closed loop systems towards
a chosen operating point, while the laws fulfill the input
non-negativity constraint. Moreover, no assumption has
been made about the analytical expression of the biore-
action’s kinetics r(.). In addition, these control laws are
robust to a relative noise on r(.) measurements and the
adaptive law does not require any model parameters.

Some other work shows that the controllers can also be
applied to a broader class of positive systems (Mailleret,
2003), and to more complex bioreaction schemes such as
variable yield bioreactions (Mailleret, Gouzé & Bernard,
2003) or “cascade” bioreactions (Mailleret et al., 2003).

Finally, the real-life experiments we performed on a
pilot-scale anaerobic WWTP show the practical rele-
vance of our approach, together with an unexpected
safe behavior towards some process failures.
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