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Abstract

In this paper we consider an unstable biological process used for wastewater treat-
ment. This anaerobic digestion ecosystem can have two locally stable steady states
and one unstable steady state. We first study the model and characterise the attrac-
tion basin associated to the normal operating mode. In a second step we estimate
the size of this attraction basin by using a simplified criterion that turns out to
be a good approximation. Finally we apply the approach on a real anaerobic di-
gestion plant, and we show that the proposed criterion allows to rapidly detect the
conditions of a destabilisation.
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1 Introduction and motivation

Control of biological systems is a very delicate problem since one has to deal
with highly nonlinear systems described by poor quality models. In some cases
this control issue can be really crucial when perturbations can move the system
from one steady-state to another. This is especially the case for the anaerobic
digestion process: a more and more popular bioprocess (Angelidaki et al.,
2003) that treats wastewater and at the same time produces energy through
methane (CH4). This process can also produce hydrogen (H2) under specific
conditions. This complex ecosystem involves more than 140 bacterial species
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(Delbès et al., 2001) that progressively degrade the organic matter into carbon
dioxide (CO2) and methane (CH4). However this process is known to be very
delicate to manage since it is unstable (Fripiat et al., 1984): an accumulation
of intermediate compounds can lead to the acidification of the digester.

To solve this problem, many authors have proposed controllers (Perrier and
Dochain, 1993; Steyer et al., 1999; Mailleret et al., 2004) that were able to
ensure the local or even the global stability of the system using the dilution
rate of the bioreactor as input.

These control laws are however difficult to apply in practice due to the lack of
available sensors on this type of process. Moreover, by essence they act on the
influent flow rate, and they may therefore not accept all the incoming wastew-
ater. It means that this type of controllers implies a storage of the wastewater
to be treated. In practice storage tanks are very small and this solution is
therefore difficult to setup on a long term basis. As a consequence, the con-
trollers are often disconnected at the industrial scale and the plant manager
manually operates the process trying both to avoid process destabilisation and
wastewater storage.

The approach that we propose has the objective to provide the operator with
a risk index associated to his management strategy. The idea is therefore to
determine from the global analysis of the nonlinear system whether the process
has been triggered to a dangerous working mode. This risk index can also be
used in parallel to a controller that only guarantees local convergence.

The paper is organized as follows: in the second section a dynamical model of
an anaerobic digestion process is recalled. The third part puts the emphasis on
the analysis of the model dynamics. A simple criterion to assess the stability
of the process is set in the fourth section, and finally this criterion is applied
to a real process to determine its destabilisation risk.

2 Model presentation

There exists numerous dynamical models for anaerobic digestion, from the
basic ones considering only one biomass (Andrews, 1968) to detailed models
including several bacterial populations and several substrates. Among com-
plex models the IWA Anaerobic Digestion Model 1 (Batstone et al., 2002)
has imposed itself as a useful tool to simulate a digestion plant with more in-
sight into the process dynamics. However its excessive complexity makes any
advanced mathematical analysis of the model critical.

We thus consider a simplified macroscopic model of the anaerobic process
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based on 2 main reactions (Bernard et al., 2001), where the organic substrate
(S1) is degraded into volatile fatty acids (VFA, denoted S2) by acidogenic
bacteria (X1), and then the VFA are degraded into methane CH4 and CO2 by
methanogenic bacteria (X2):

• Acidogenesis:

k1S1
µ1(S1)X1−→ X1 + k2S2

• Methanogenesis:

k3S2
µ2(S2)X2−→ X2 + k4CH4

Where µ1(S1) and µ2(S2) represent the bacterial growth rates associated to
these 2 bioreactions.

The mass balance model in the CSTR (Continuous Stirred Tank Reactor) can
then straightforwardly be derived (Bastin and Dochain, 1990):

Ẋ1 = µ1(S1)X1 − αDX1 (1)

Ṡ1 =−k1µ1(S1)X1 + D(S1in − S1) (2)

Ẋ2 = µ2(S2)X2 − αDX2 (3)

Ṡ2 =−k3µ2(S2)X2 + k2µ1(S1)X1 + D(S2in − S2) (4)

D is the dilution rate, S1in and S2in are respectively the concentrations of in-
fluent organic substrate and of influent VFA. The kis are pseudo-stoichiometric
coefficients associated to the bioreactions. Parameter α ∈ (0 1] represents the
fraction of the biomass which is not retained in the digester. We denote by
ξ = (X1, S1, X2, S2)

T the state vector.

In the sequel, we will consider the rather generic mappings µ1 and µ2, satisfying
the following properties:

Hypothesis 1 µ1 is an increasing function of S1, with µ1(0) = 0.

Hypothesis 2 µ2 is a function of S2 which increases until a concen-
tration SM

2 and then decreases, with µ2(S
M
2 ) = µM and µ2(0) = 0.

For the numerical application in the real example, we will consider the follow-
ing kinetics that verify Hypotheses 1 and 2:

µ1(S1) = µ̄1
S1

S1 + KS1

(Monod)

µ2(S2) = µ̄2
S2

S2 + KS2 + S2
2

KI2

(Haldane) (5)
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In the mathematical analysis of this system, assumption is made that the
environment of the bacteria remains constant and we will thus assume that
D, S1in and S2in are positive constants. All the initial conditions are assumed
to be positive.

3 Model analysis

3.1 Analysis of the acidogenic dynamics

The subsystem (1,2) is close to a classical model with a Monod kinetics but
slightly modified by the term α. This makes the study of this system less
straightforward than for Monod model (with α = 1), for which the global sta-
bility has been demonstrated (see e.g. Smith and Waltman (1995)). However
its behaviour remains simple as stated in the following Property:

Property 1 System (1,2) with positive initial conditions admits a single glob-
ally stable equilibrium. If αD < µ1 (S1in) this equilibrium is in the strictly
positive orthant.

Proof: a detailed proof is given in Appendix B.

It follows that the useful working point (X∗
1 , S

∗
1) of system (1,2) is globally

asymptotically stable. As a consequence we have the following property:

Property 2 After a transient time T, system (1,2) satisfies the inequality
k1 µ1(S1)X1 ≤ DS1in.

Proof: First let us note that at steady-state k1µ1(S
∗
1)X

∗
1 = D(S1in − S1) <

DS1in. So the inequality of Property 2 holds for the equilibrium.

We have shown with Property 1 that the normal working point ξ∗1 = (X∗
1 , S

∗
1)

was globally asymptotically stable. Therefore after a transient period all the
trajectories will reach any neighbourhood of the steady state ξ∗1 and especially
by continuity a neighbourhood where the inequality holds.

Remark: in practice this condition is often already met at initial time and in
all the cases the transient time T is small.

4



3.2 Analysis of the methanogenic dynamics

In anaerobic digestion the accumulation of VFA might result from the imbal-
ance between acidogenesis and methanogenesis leading thus to acidification.
Since the methanogenesis is slower and can be inhibited it turns out to be the
limiting step.

We now consider the methanogenic system given by equations (3) and (4)
after a period greater than T (cf. Property 2). The total concentration of
VFA available for the second step of the process is S2in + k2

D
µ1 (S1) X1 ≤

S2in + k2

k1
S1in = S̃2in.

In order to study the methanogenesis as a stand-alone process we consider
S̃2in as a worst-case upper bound of the total concentration of VFA in the
reactor.

Thus the methanogenic system is reduced to a one-stage process independent
of the acidogenic phase:

 Ẋ2 = µ2(S2)X2 − αDX2

Ṡ2 = D(S̃2in − S2)− k3µ2(S2)X2

(6)

This system is close to a generic Haldane model but, as for the acidogenic
subsystem, it is modified by the term α.

Property 3 System (6) with initial conditions in Ω = R∗
+ × R+ admits a

globally exponentially stable equilibrium in the interior domain for αD <
µ2

(
S̃2in

)
. If µ2

(
S̃2in

)
< αD < µM it becomes locally exponentially stable

(l.e.s) and the acidification equilibrium is also l.e.s. For αD > µM the acidi-
fication equilibrium becomes globally exponentially stable (g.e.s.) (see Table 1
for more details)

Proof: We first study the bounds of the variables X2 and S2 in the same
way as for the acidogenic phase, considering the quantity Z2 = S2 + k3X2. It

follows that S2 ≤ max
(
S20, S̃2in

)
and X2 ≤

max

(
Z20,

S̃2in
α

)
k3

.

The trivial steady state ξ†2 corresponding to the bioreactor acidification is given

by
(
X†

2, S†2
)

=
(
0, S̃2in

)
.

Now we are going to explore the other steady states. They are solutions of the
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following system: µ2(S
?
2) = αD

X?
2 = 1

αk3
(S̃2in − S?

2)
(7)

Note that the steady states must verify S?
2 ≤ S̃2in to have 0 ≤ X?

2 .

First remark that, if S̃2in ≤ SM
2 then µ2 is an increasing function on the ad-

missible domain
[
0, S̃2in

]
. As a consequence the study of system (6) is identical

to the study of equations (1,2). We will then focus on the other case where
S̃2in > SM

2 .

As illustrated on Fig. 1, five cases are possible, depending on the parameters
values.
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Fig. 1. Possible solutions for µ2(S) = αD

cases 1. and 2. αD ∈
(
0, µ2(S̃2in)

]
: then the equation µ2(S2) = αD has a

single solution for S2 ∈
[
0, S̃2in

)
:

(X?
2 , S

?
2) =

(
S̃2in − µ−1

2 (αD)

αk3

, µ−1
2 (αD)

)

case 3. αD ∈
(
µ2(S̃2in), µM

)
: here the equation µ2(S2) = αD has two solutions

for S2 ∈
[
0, S̃2in

)
. Let us denote S1?

2 and S2?
2 such that µ2(S

1?
2 ) = µ2(S

2?
2 ) =
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αD:

0 < S1?
2 < SM

2 < S2?
2 < S̃2in

Application to the specific example: considering µ2 as expressed in (5) we can com-
pute analytically these steady states:

Si?
2 =

KI2

2

( µ̄2

αD
− 1
)

+ (−1)i

√(
KI2

2

( µ̄2

αD
− 1
))2

−KI2KS2, (8)

with i = 1 for the useful working point
(
X1?

2 , S1?
2

)
and i = 2 for the unstable

equilibrium
(
X2?

2 , S2?
2

)
(see Table 1 for the justification of this nomeclature).

then the two possible equilibria are:

S1?
2 < SM

2

X1?
2 = 1

αk3
(S̃2in − S1?

2 )
and

S2?
2 > SM

2

X2?
2 = 1

αk3
(S̃2in − S2?

2 )

case 4. αD = µM : there is a unique solution to equation µ2(S2) = αD:

(X?
2 , S

?
2) =

(
S̃2in − SM

2

αk3

, SM
2

)

case 5. αD > µM : here there is no solution to the equation µ2(S2) = αD. In
this case there is no other equilibrium than the acidification point.

3.3 Study of equilibria stability

We compute the Jacobian matrix of system (6) at any point on the non-
negative orthant:

J (X2, S2) =

 µ2(S2)− αD X2
∂µ2

∂S2
(S2)

−k3µ2(S2) −D − k3X2
∂µ2

∂S2
(S2)

 (9)

The stability of system (6) is now easy to assess by computing the trace and
the determinant of matrix (9) for all the considered cases:
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• For the interior steady states (X i?
2 , Si?

2 ):

trace(J ) =−D − k3X
i?
2

∂µ2

∂S2

(Si?
2 )

det(J ) = k3αDX i?
2

∂µ2

∂S2

(Si?
2 )

• For the acidification steady state (X†
2, S

†
2):

trace(J ) = µ2(S̃2in)− (1 + α)D

det(J ) =−D(µ2(S̃2in)− αD)

It straightforwardly leads to the classification proposed in Table 1 1 .

Table 1
Possible equilibria together with operating modes when S̃2in > SM

2

Case # Conditions int. acidi.

1) αD < µ2(S̃2in) g.e.s. un.

2) αD = µ2(S̃2in) l.e.s. un†.

3) αD ∈ (µ2(S̃2in), µM )
S1?

2 l.e.s.

S2?
2 un.

l.e.s.

4) αD = µM un†. l.e.s.

5) αD > µM / g.e.s.

Remark: the 2 cases denoted by ’un†.’ corresponding to non hyperbolic equi-
libria are:

• Case 2:
(
0, S̃2in

)
for αD = µ2(S̃2in). Let us remark that the region {S2 ≤

S̃2in, X2 ≥ 0} is positively invariant (any trajectory initialized in this do-
main stays in this domain). Moreover X2 is increasing in the sub-domain
{X2 > 0, S1?

2 ≤ S2 ≤ S̃2in}. The only way to reach the acidification X†
2 = 0

from the region {S2 ≤ S̃2in} is thus to start with a zero initial condition.

This proves that
(
0, S̃2in

)
is unstable.

• Case 4: (X?
2 , S

?
2) for αD = µM . It is clear that in this case Ẋ2 ≤ 0, and

therefore the point is unstable (there is however a region above X2 = X?
2

converging toward this steady-state).

1 l.e.s.: locally exp. stable, g.e.s.: globally exp. stable, un.: unstable, int.: interior,
acidi.: acidification.
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Fig. 2. Possible orbits in the phase plan: a) case 3, b) case 4.

3.4 Concluding remarks on stability

This study highlighted a special case of interest, for S̃2in > SM
2 and αD ∈(

µ2(S̃2in), µM

)
. Here there are 2 steady states in the interior domain, one of

which together with the acidification are stable. In this case, illustrated on
Fig. 2a), the asymptotic state of the system is a priori not predictable, and
depends on the initial conditions.

The next section will consist in characterising the size of the domain of initial
conditions leading to the interior steady state ξ1?

2 .

4 Attraction basin of the normal operating mode and stability cri-
teria

In this section we still focus on the methanogenic step to establish a stability
criterion, but we assume here specific forms for µ1(S1) and µ2(S2) given by
equations (5).
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4.1 Definition of the attraction basin and of the stability criterion

We have shown in the previous section that the state vector ξ2 remains bounded.
We thus consider the acceptable domain for (X2, S2) as follows:

K =

(
0,

S̃2in

αk3

]
×
[
0, S̃2in

]
(10)

Definition 1 For ξ1?
2 = (X1?

2 , S1?
2 ), the interior steady state of system (6),

we define its basin of attraction Λ as the set of initial conditions in K
converging asymptotically towards it.

Λ
(
D, S̃2in

)
=
{
ξ20 ∈ K | lim

t→+∞
ξ2(ξ20, t) = ξ1?

2

}
,

The main idea of this paper is to characterise the stability of the system by
the area of the attraction basin Λ. The process stability can then be assessed
by the relative surface of Λ in K (11).

Separatrix

PSfrag replacements

S̃2in

Acidification point

Non hyperbolic unstable

steady state

S2

X
2

Λ
?

K \Λ
?

Fig. 3. Maximal set of initial conditions considered within the set K (case 4).

However, from the previous study (see Table 1) it is worth noting that there

still exists a non empty attraction basin Λ? = Λ
(

µM

α
, S̃2in

)
associated to case 4

(αD = µM) where the interior equilibrium is unstable (see Fig. 2 b) ). We have
seen that although this steady state is unstable any trajectory initiated in the
region Λ∗ above it (above the separatrix) will converge towards it. However it
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is obvious that after any perturbation it will eventually converge towards ξ†2.
The region Λ∗ was then excluded from the considered domain.

Definition 2 We define the Index of Stability (IS) as the relative area of
the attraction basin on the domain K \ Λ? (see Figure 3):

IS
(
D, S̃2in

)
=

S
(
Λ
(
D, S̃2in

)
\ Λ?

)
S (K \ Λ?)

(11)

Where application S is the area of the considered domain.

4.2 Numerical computation of the stability index

The separatrix can be computed numerically by integrating System (6) in in-
verse time along the stable direction of the saddle point (X2?

2 , S2?
2 ) starting

very close to it. The computation of the attraction basin area follows straight-
forwardly.

However the numerical computation of IS does not provide any analytical
expression of the stability index that would base a management strategy. In
the following section we seek a simpler criterion related to IS .

4.3 Overloading tolerance of the process: a simple criterion

If the dilution rate is increased from zero, the interior equilibrium will remain

g.e.s. until D =
µ2(S̃2in)

α
(case 1,2). Then the second (unstable) steady state

appears in the interior domain together with a separatrix associated to the
attraction basin Λ

(
D, S̃2in

)
that does no longer occupy all the domain (case

3). The size of Λ
(
D, S̃2in

)
will then decrease and finally vanish for D ≥ µM

α

(case 4). It is worth noting that the distance between the 2 interior steady
states follows a rather comparable scheme: it will decrease from a maximum

distance when D =
µ2(S̃2in)

α
to zero for D = µM

α
(see Fig. 4 a) and b) ). For

D > µM

α
the acidification steady state is the only possible equilibrium and the

distance between the 2 interior steady states is no longer defined. From this
consideration we define the notion of Overloading Tolerance (OT):

Definition 3 We define for αD ∈
[
µ2(S̃2in), µM

]
the Overloading Toler-

ance (OT), M which is simply the distance between the 2 interior steady
states (see Fig. 4 a)):

M (D) = ‖ξ2?
2 − ξ1?

2 ‖ (12)
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We also define the Critical Overloading Tolerance (COT) Mc , which

is the maximum value of the overloading tolerance obtained for D =
µ2(S̃2in)

α
.

The practical stability criterion that we will consider (named Relative Over-
loading Tolerance, ROT) is then defined as follows:

m(D, S̃2in) =


0 for αD > µM

M(D)

Mc(S̃2in)
for αD ∈ [µ2(S̃2in), µM ]

1 for αD < µ2(S̃2in)

The OT given by the distance M between the 2 interior steady states can be
computed straightforwardly from equations (7) and (8):

M(D) = 2

√
1 +

1

α2k3
2

√(
KI2

2

(
µ̄2

α D
− 1

))2

−KI2KS2

From this relation, we can see that the OT is a strictly decreasing func-
tion of the dilution rate and that it is independent from influent composition
(S1in, S2in). The COT can be computed as follows:

Mc

(
S̃2in

)
=

√
1 +

1

α2k3
2

(
S̃2in −

KI2 KS2

S̃2in

)
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4.4 Comparison between stability index and relative tolerance

Using model parameters presented in Bernard et al. (2001), we have computed
the stability index IS and the ROT associated with several working conditions
(D, S1in and S2in).

As it can be seen on Fig. 5 the ROT represents a good approximation of the
stability index IS based on the real computation of the attraction basin size.
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Fig. 5. Relation between the stability index IS(D, S̃2in) and the Relative Toler-
ance Margin m(D, S̃2in) for various couples (S1in in gDCO.L−1, S2in in mmol.L−1):
(3,30), (0,25), (15,20), (30,30)

The relative tolerance appears then as a simple but relevant criterion to assess
the stability of an anaerobic digester.

From this criterion we define now the ”risk index” which will on-line indicate
to the operator the destabilisation risk he is taking;

r = 1−m(D, S̃2in)

In the next section we use this operational criterion to assess the management
strategy of a real anaerobic digester.
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5 Application to the on-line determination of the destabilisation
risk

In this section we apply the proposed index to a real experiment performed at
the LBE-INRA in Narbonne, France. The process is an up-flow anaerobic fixed
bed reactor with a useful volume of 0.948 m3. The reactor is highly instru-
mented and many variables were measured during the experiments (Bernard
et al., 2001). More details about the process and evaluation of its on-line
instrumentation are available in Steyer et al. (2002). The experiments were
performed with raw industrial wine distillery vinasses.

The risk index has been computed with parameters of Bernard et al. (2001).
Nevertheless, in order to favour a prudent strategy, and in the framework of
a “worst case analysis” the parameter KI2 defining the inhibition level has
been multiplied by a security constant δ (we have chosen δ = 0.7). For low
values of δ the seeming inhibition constant for the calculus of the risk index is
lower; therefore the system would be more easily inhibited and the risk index
reacts more rapidly. On the contrary high values of δ lead to a higher seeming
inhibition constant and the risk index would be less responsive to small changes
in the substrate concentration. The additional parameter δ enables to tune the
sensibility of the risk index.

The estimation of the risk index is presented on Fig. 6. It is worth noting
that the regimes associated with acid accumulation (i.e more than 1g.L−1)
are all characterised by a very high risk. More surprising, some a priori less
dangerous working modes are indeed also associated to a non zero risk. This
is especially the case at day 5 on Fig. 8 where the risk index is maximal
while the dilution rate and the VFA level do not foreshadow any specific risk.
This amplified sensibility is due to the tuning parameter δ. A very important
point is that the risk index increases immediately while it takes time for the
VFA to accumulate and even more time to observe a pH decrease which is the
usual indicator of the process destabilisation. As such it anticipates a potential
process acidification before it can be detected and it becomes to late to avoid
a dramatic biomass inhibition.

6 Conclusion

From the analysis of the nonlinear system describing the anaerobic process
we have proposed a criterion that assesses the risk associated to an operating
strategy. This index is highly correlated to the relative size of the normal
working mode attraction basin.
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Fig. 6. Dilution rate, measured VFA, pH and computed risk for an experiment
performed at INRA LBE.
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Fig. 7. Risk index and VFA (zoom from Fig. 6c). and d).).

The criterion turns out to be relevant to diagnose an operation strategy since
it can predict very early a future accumulation of acids. It can thus be run
as an indicator that helps an operator or even diagnoses the strategy of an
automatic controller which would not ensure global stability.

As mentionned at the beginning of this paper, several control laws have yet
been built to assure the durability of the process stability. A possible applica-
tion of this stability criterion is the triggering of an automatic robust controller
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Fig. 8. Dilution rate, measured VFA, pH and computed risk for an overload exper-
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whenever the risk index reaches a predifined level (Bernard et al., 2005).

In order to take into account the biological evolution of the system in the risk
index computation the next steps would consist in:

(1) studying the index risk sensitivity to the various parameters,
(2) developing a strategy for the on-line estimation of the most pertinent

ones.
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Appendix A

Let us define the generic differential system : ẋ = f(x, t)

x(t0) = x0

(13)

with x(t) ∈ Rn and f : Rn×R+ → Rn a continuous function. A steady-state
x∗ of system (13) is solution of:

0 = f(x∗, t) ∀t ≥ t0

Definition 4 (Local asymptotic stability) The steady-state x∗ is said to
be locally asymptotically stable if for any ε > 0, there exists δ > 0 and there
exists T such that

|x0 − x∗| < δ ⇒ |x(x0, t)− x∗| < ε ∀t ≥ T + t0

Definition 5 (Global asymptotic stability) The steady-state x∗ is said to
be globally asymptotically stable if for any ε > 0 and for any δ > 0, there exists
T such that

|x0 − x∗| < δ ⇒ |x(x0, t)− x∗| < ε ∀t ≥ T + t0

Definition 6 (Local exponential stability) The steady-state x∗ is said to
be locally exponentially stable if there exists δ > 0 and there exist non-
negative constants γ1 and γ2, such that for all t0 > 0

|x0 − x∗| < δ ⇒ |x(x0, t)− x∗| < γ1|x0|e−γ2(t−t0) ∀t ≥ t0

Definition 7 (Global exponential stability) The steady-state x∗ is said
to be globally exponentially stable if for any δ > 0 there exist non-negative
constants γ1 and γ2, such that for all t0 > 0

|x0 − x∗| < δ ⇒ |x(x0, t)− x∗| < γ1|x0|e−γ2(t−t0) ∀t ≥ t0

Appendix B

The positivity of the variables of this system is trivial since µ1(0) = 0. To
demonstrate the boundedness in a compact set of R2

+we consider the quantity
Z = S1 + k1X1:
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Since α ∈ (0 1]: D(S1in − Z) ≤ Ż ≤ αD
(

Sin

α
− Z

)
Ṡ1 ≤ D (S1in − S1)

It follows that Z and S1 are asymptotically bounded; Since S1 ≥ 0 the upper
bound for Z is also an upper bound for k1X1:

min (Z0, S1in) ≤ Z ≤ max
(
Z0,

S1in

α

)
0 ≤ S1 ≤ max (S10, S1in)

0 ≤ X1 ≤
max(Z0,

S1in
α )

k1

The considered system (1,2) has 2 steady states: the trivial washout steady
state X†

1 = 0, S†1 = S1in which exists for any D, and another steady state in
the positive domain if and only if αD < µ1 (S1in), given by:

S?
1 = µ−1

1 (αD)

X?
1 = 1

k1α
(S1in − S?

1)
(14)

As µ1(.) is monotone system(14) has a unique solution in the positive domain
if and only if αD ≤ µ1 (S1in) (ensuring S?

1 ≤ S1in and thus X?
1 ≥ 0).

Application to the specific case of the real example: considering the expression of µ1

given in (5) we get:

(X?
1 , S?

1) =
(

1
αk1

(
S1in −KS1

αD

µ̄1 − αD

)
,KS1

αD

µ̄1 − αD

)

In order to assess the stability of (X?
1 , S

?
1) and

(
X†

1, S
†
1

)
we study the Jacobian

matrix of System (1,2) at these steady states:

J (X1, S1) =

µ1(S1)− αD X1
∂µ1

∂S1
(S1)

−k1µ1(S1) −D − k1X1
∂µ1

∂S1
(S1)

 (15)

The computation of the trace and determinant of (15) for both equilibria gives:

• For the useful interior working point (X∗
1 , S

∗
1):

18



trace(J ) =−D − k1X
?
1

∂µ1

∂S1

(S?
1) < 0

det(J ) = k1αDX?
1

∂µ1

∂S1

(S?
1) > 0

• For the washout steady state (X†
1, S

†
1) = (0, S1in):

trace(J ) = µ1(S1in)− (1 + α)D

det(J ) =−D(µ1(S1in)− αD) < 0

This shows that only the useful working point (X?
1 , S

?
1) is an attractor, the

washout steady state being a saddle point.

To conclude the proof and determine the global behaviour of (1,2) we change
variables (X1, S1) to (X1, Z). With this reformulation the system becomes : Ẋ1 = µ1(Z − k1X1)X1 − αDX1

Ż = D (Sin − Z) + (1− α) Dk1X1

Then the Jacobian matrix is:

J (X1, Z) =

 ? µ
′
1 (Z − k1X1) X1

(1− α) Dk1 ?

 (16)

It follows directly that this system is cooperative (i.e the off-diagonal terms
of the Jacobian matrix are non-negative). Furthermore the system is asymp-
totically bounded in a compact included in R2

+. Hence from Theorem 2.2 of
Chapter 3 in Smith (1995) for two-dimensional systems, the limit can only be
a stable equilibrium point. Since the acidification equilibrium is unstable the
system cannot converge towards it.
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