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Abstract – In this chapter, we provide the key ideas on how to build software sensors

(also called observers) for wastewater treatment plants (WWTPs). We give an overview of

the existing linear and nonlinear observers and discuss criteria that help to identify which

observer is best suited with respect to the amount of information being available for the

WWTP. Depending on the model reliability, the available measurements and the level of

uncertainties associated to the influent concentrations, different class of observers can be

considered. We distinguish between those that rely on a full model description (e.g., the
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extended Kalman filter), and those based on a mass-balance model wherein the biological

kinetics are assimilated to unknown inputs (e.g., the asymptotic observer). Moreover, if

bounds are known for the uncertainties, then interval observers can be designed. We discuss

the principles of each class of observers and illustrate them through a number of examples.

1.1 INTRODUCTION

A major bottleneck in the application of advanced monitoring and optimization strategies

for WWTPs lies in the difficulty of measuring chemical and biological variables. Even

though considerable progress in on-line sensors technology has been made over the recent

years, it is still often difficult to measure many of the key state variables such as biomass

concentration, specific bacterial activity or intermediate products concentration. Hence,

the idea of using observers, also called software sensors, that combine a number of readily

available on-line measurements (gaseous flow rates, pH, dissolved gases, etc.) with a

process model for estimating the values of (unmeasured) state variables.

Quite of few methods have been proposed to design such observers. In this chapter,

we shall only focus on those approaches that are relevant to the field of WWTPs. It

is worthwhile noting that the principles underlying the design of observers can be quite

different. Therefore, the choice of an observer inherently depends on the specificities of

the problem at hand. In practice, this choice is strongly guided by the reliability of the

process model as well as the amount and accuracy of the data. If a reliable process model is

available and if this model has been thoroughly identified and validated, either an (extended)

Kalman filter or a high gain observer can be developed. When the process model is not

accurate enough, an asymptotic observer relying on mass-balance principles, but not on the

uncertain kinetics, shall be used instead. Finally, If bounds are known for the uncertain

inputs and/or parameters, an interval observer can be used for predicting intervals in which

the unmeasured variable are guaranteed to belong (instead of pointwise estimates).

The type of observer to be constructed should not only be based on the model quality,

but it must also account for the objectives to be achieved. Indeed, an observer can have

other purposes than simply monitoring a WWTP. It can be developed with the objective of



PRELIMINARIES 3

applying a control action that needs an estimate of some internal state; it can also be used

for diagnosing whether a failure occurred during process operation or not.

The remainder of this chapter is organized as follows. A number of useful definitions

and results are given in section 1.2. Observers that require a full-model description of the

process are presented in section 1.3, with emphasis placed on linear systems. The design

of observers relying on the mass-balance principles is discussed in section 1.4. Interval

observers that exploit knowledge of bounds on the model uncertainty are presented in

section 1.5. Finally, section 1.6 concludes the chapter.

1.2 PRELIMINARIES

This section gives an overview of the main theoretical concepts in system observability.

These concepts are useful in the analysis conducted later on. The interested reader is

referred to [8, 17] for additional information.

It is first fundamental to study the observability property of a system prior to designing

an observer. Intuitively, observability consists of determining whether the measured signals

contain sufficiently rich information to estimate the unmeasured state variables; a system is

then said to be observable if it satisfies this property from a theoretical point of view. The

problem to address next is to derive an observer for the problem at hand, i.e. an auxiliary

dynamic system that provides the state estimates. At this point, it should be noted that the

problems of observability and observer design are very different in nature. In particular,

the observability property does not give any clue on how to build an observer.

The theory of observation has been extensively developed in the linear case. Several

methods also exist in the nonlinear case, but are tailored to specific classes of models.

1.2.1 Notion of Observability

We consider the following general model driving the process dynamics:











dx(t)
dt

= f
(

x(t), u(t)
)

; x(0) = x0

y(t) = h
(

x(t)
)

(S)



4 STATE ESTIMATION FOR WASTEWATER TREATMENT PROCESSES

where u ∈ IRm is the input vector; y ∈ IRp, the output vector; x ∈ IRn, the state vector

made-up of the concentrations of the various species inside the liquid phase; and x0, the

vector of initial conditions. The applications f and h provide the dynamics of the state

variables and the links between the state variables and the measurements, respectively.

The objective is to estimatex(t) from the measurementsy(t). Observability is a structural

property of a system that states whether this is possible or not.

Property 1 The system (S) is said to be observable, if x(t) can be uniquely determined from

y(t), dy(t)
dt

, d2y(t)
dt2

, . . . , dny y(t)
dtny , and u(t), du(t)

dt
, d2u(t)

dt2
, . . . , dnuu(t)

dtnu
, for some (possibly

infinite) ny ≥ 0 and nu ≥ 0.

The reader is referred to [8, 17] for more details.

1.2.2 General Definition of an Observer

Once a system has been shown to be observable, the next step is to design an observer that

estimates the state variable x based on a model and a set of input/output measurements.

The principle of an observer is presented in Fig. 1.1. Roughly speaking, an observer is

an auxiliary dynamic system coupled to the original system via the measured inputs and

outputs. This is formalized in the following definition.

u yProcess
x

z
xObserver

Figure 1.1. Observer principle

Definition 1 An observer is an auxiliary system (O) coupled to the original system (S) as:











dz(t)
dt

= f̂
(

z(t), u(t), y(t)
)

; z(0) = z0

x̂(t) = ĥ
(

z(t), u(t), y(t)
)

(O)
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where z ∈ IRq denotes the state of the observer; f̂ is the observer dynamics; and ĥ relates

z to the estimate x̂ of the real system. An observer has the property that the observation

error converges to zero asymptotically:

lim
t→∞

‖x̂(t) − x(t)‖ = 0.

A desirable property for an observer is the ability to tune the convergence rate in order

for the estimates to converge more rapidly than the original dynamics of the system. An-

other desirable property is that the estimate x̂(t) should remain equal to x(t) under proper

initialization, i.e. when it is initialized with the true value x(0). This easily justifies that

following structure is often used to design observers in practice:











dx̂(t)
dt

= f(x̂(t), u(t)) + k[z(t), h(x̂(t)) − y(t)]

dz(t)
dt

= f̂(z(t), u(t), y(t)) with k(z(t), 0) = 0.

This observer consists of a replica of the original dynamics corrected by a term that depends

on the discrepancy between both the measured and predicted outputs. Note also that the

correction amplitude is tuned via the function k that is often referred to as the observer gain

(internal tuning of the observer).

1.3 OBSERVERS FOR LINEAR SYSTEMS

For time-invariant, linear systems, the general system (S) simplifies to











dx(t)
dt

= Ax(t) + Bu(t)

y(t) = Cx(t)
(S`)
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with A ∈ IRn×n (n ≥ 2) and C ∈ IRp×n. A well known observability criterion for (S`) is

given by the rank condition:

rank



















C

CA

...

CAn−1



















= n.

1.3.1 Luenberger Observer

Theorem 1 If the pair (A, C) is observable, a Luenberger observer for (S`) is obtained as

[16]
dx̂(t)

dt
= Ax̂(t) + Bu(t) + K(Cx̂(t) − y(t))

where K is a n × n gain matrix that can be used for tuning the convergence rate of the

observer, and can be chosen in order for the observation error to converge to zero arbitrarily

fast.

Proof. The dynamics of the observation error e(t) = x̂(t) − x(t) is given by

de

dt
= (A + KC)e,

and is independent of the input u(t). The result follows from the pole placement theorem

which guarantees that the error dynamics can be chosen arbitrarily. �

In principle, the gain matrix K can be chosen in such a way that the observation error

converges to zero as quickly as desired. However, the larger the gain of the observer, the

more sensitive it becomes to external perturbations (measurement noise for example). A

good compromise must thus be sought that ensures both stability and accuracy at the same

time. The Kalman filter, discussed in subsection 1.3.3 below, proposes a way of achieving

such a compromise.
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1.3.2 The Linear Case up to an Output Injection

A particular situation wherein a linear observer can be designed for a nonlinear system

arises in the simple case where the nonlinearities depends on the output y only:











dx(t)
dt

= Ax(t) + φ(t, y(t)) + Bu(t)

y(t) = Cx(t)

with φ being a (known) nonlinear function in IRn. The following “Luenberger-like” ob-

server has linear dynamics with respect to the observation error:

dx̂(t)

dt
= Ax̂(t) + φ(t, y(t)) + Bu(t) + K(Cx̂(t) − y(t)).

In particular, the error dynamics can be chosen arbitrarily, provided that the pair (A, C)

is observable. Here again, however, an adequate choice for the gain vector K is one that

guarantees a fast enough convergence of the observer, while keeping it stable.

1.3.3 Kalman Filter

The Kalman filter is notorious in the field of linear systems (see e.g. [15]). Loosely

speaking, a Kalman filter can be seen as a Luenberger observer with a time varying gain.

More specifically, the gain is chosen in such a way that the variance of the observation

error is minimized (or, equivalently, the integral between t0 and t of the squared errors is

minimized); for this reason the Kalman filter is often referred to as the optimal estimator.

Consider an observable continuous-time system in the following stochastic representa-

tion:
dx(t)

dt
= Ax(t) + Bu(t) + Gw(t) ; x(t0) = x0 (1.1)

where w(t) ∼ (0, Q(t)) is a white noise process with zero mean and covariance Q(t).

Suppose that initial state x0 is unknown, but there is available a priori knowledge that
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x0 ∼ (x̄0, P0). Suppose also that measurements are given at discrete times tk according to

yk = Cx(tk) + vk (1.2)

where vk ∼ (0, Rk) is uncorrelated with w(t) and x0.

Besides initialization, a continuous/discrete Kalman filter for system (1.1,1.2) consists

of two steps: a propagation step (between two successive measurements), followed by a

correction step (at measurement times):

Initialization (t = t+0 ):

P (t0) = P0 , x̂(t0) = x̄0

Propagation (t+k−1 ≤ t ≤ t−k , k ≥ 1):

dP (t)
dt

= AP (t) + P (t)AT + GQ(t)G

d ˆx(t)
dt

= Ax̂(t) + Bu(t)

Correction (t = t+k , k ≥ 1):

Kk = P (t−k )CT
[

CP (t−k )CT + Rk

]−1

P (t+k ) = (I − Kk(t)) P (t−k )

x(t+k ) = x(t−k ) + Kk

(

zk − Cx(t−k )
)

At this point, we shall emphasize on several points. Note first that the foregoing Kalman

filter can be applied to time-varying linear system, i.e. with matrices A, B, C and G

depending on time. One should however keep in mind that observability must be proven

for such systems prior to constructing the observer. Note also that Kalman filters can

be extended by adding a term −θP (t), θ > 0, in the propagation equation of P . This

exponential forgetting factor allows us to consider the case where Q = 0. Finally, estimating

the positive definite matrices R, Q and P0 often proves to be tricky in practice, especially

when the noise properties are not known precisely.
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1.3.4 The Extended Kalman Filter

Consider a continuous-time nonlinear system of the form

dx(t)

dt
= f(x(t)) + G(t)w(t) ; x(t0) = x0, (1.3)

with measurements at discrete time tk given by

yk = h(x(tk)) + vk. (1.4)

The idea behind Extended Kalman Filter (EKF) is to linearize the nonlinear system (1.3,1.4)

around its current state estimate x̂(t) [15]. By doing so, the problem becomes equivalent to

building a Kalman filter for a non-stationary linear system (1.1,1.2) with A and C taken as

A(t) =
∂f

∂x

∣

∣

∣

∣

x̂(t)

, C(tk) =
∂h

∂x

∣

∣

∣

∣

x̂(tk)

.

The EKF is used routinely and successfully in many practical applications, including

WWTPs, even though few theoretical guarantees can be given as regards its convergence

[2, 15]. Note also that multirate versions of the EKF have been developed to handle those

(rather frequent) situations where measurements are available at different samplings rates

[10]. An application of EKF in alternating activated sludge WWTPs is detailed hereafter.

Other applications to the activated sludge process can be found, e.g. in [18, 23].

1.3.5 Application to an Alternating-Activated-Sludge Plant

We consider an alternating-activated-sludge (AAS) WWTP similar to the one shown in

Fig. 1.2. AAS plants degrade both organic and nitrogenous compounds by alternating aero-

bic and anoxic phases in the bioreactor. Besides dissolved oxygen (DO) concentration that

is routinely measured in activated sludge WWTPs, both nitrate (NO) and ammonia (NH)

concentrations can also be measured on-line (at a lower frequency than DO, though). The

objective here is to estimate the concentration of COD in the bioreactor based on these

measurements.
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PSfrag replacements influent

aeration tank

settler

recycled sludge

effluent

wasted sludge

Figure 1.2. Typical small-size alternating activated sludge treatment plant.

A multirate EKF is developed based on the reduced nonlinear model given in [6]. This

5-state model describes the dynamics of COD, NO, NH, organic nitrogen (ND) and DO,

and was shown to be observable under both aerobic and anoxic conditions (with the afore-

mentioned measurements).

Numerical simulations have been performed by using a set of synthetic data produced

from the full ASM1 model [12] corrupted with white noise. The DO, NO and NH measure-

ments are assumed to be available every 10 sec., 10 min. and 10 min., respectively. The

results are shown in Fig. 1.3.; for the sake of comparison, the EKF estimates are compared

to the open-loop estimates (i.e., without correction).
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Figure 1.3. Estimated COD concentration (left plot) and observation error (right plot).

These results show satisfactory performance of the EKF for COD estimation. However,

it should be noted that the COD estimates are very sensitive to model-parameter mismatch,

which is hardly compatible with the fact that some parameters are time-varying and/or

badly known in real applications. This motivates the development of mass-balance-based

observer that are independent of the uncertain kinetic terms.
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1.4 OBSERVERS FOR MASS-BALANCE-BASED SYSTEMS

The underlying structure of many WWTP models consists of two parts [2]: (i) a linear part

based on mass-balance considerations; and (ii) a number of nonlinear term that describes

the biological reaction rates (kinetics). These latter kinetic terms are often poorly known

in practice, and there is little hope to construct a reliable observer by accounting for such

uncertain terms. In contrast to the previous section wherein a full-model structure was used

in the observer design, we shall show, in this section, how to take advantage of the foregoing

twofold structure to design observers that are independent of the uncertain reaction rates,

via a linear change of variables. As we shall see, the main condition to design a so-called

asymptotic observer is that enough variables are measured. Note also asymptotic observers

fall into the broad class of observers with unknown inputs [7, 13, 14], whose principle relies

on cancellation of the unknown part via a change of variables.

1.4.1 Preliminaries

Throughout this section, we consider mass-balance models for WWTPs of the following

form [2]:
dx

dt
= Kr(x) − D(t)x + D(t)xin(t) − Q(x) (1.5)

where x, xin ∈ IRn represent the concentrations in the reactor and the influent, respectively;

D ∈ IRn×n, the dilution rate matrix; Q(x) ∈ IRn, the gaseous exchange between the

reaction medium and the environment; r(x) ∈ IRp, the reaction rates; and K ∈ IRn×p,

a constant pseudo-stoichiometric coefficient matrix. In this representation, K r(x) stands

for the biological and biochemical conversions in the reactor (per unit of time) according

to the underlying macroscopic reaction network.

Suppose that the set of available measurements y corresponds to is partitionned into y1

and y2 such that:

• y1 is a set of q ≤ n measured state variables; without loss of generality, we assume

that y1 corresponds to the first q components of x, y1 = [x1, . . . , xq ]
T .

• y2 consists of the measured gaseous flow rates, y2 = [q1(x), . . . , qn(x)]T .
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The measurements y1 induce a partition of the state variables x = [x1, x2] with x1 = y1.

Accordingly, Eq. (1.5) can be rephrased as

dx1

dt
= K1r(x) − Dx1 + Dxin

1 − Q1(x)

dx2

dt
= K2r(x) − Dx2 + Dxin

2 − Q2(x) (1.6)

where matrices K1 and K2, vectors xin
1 , xin

2 , q1 and q2 are such that

K =







K1

K2






, xin =







xin
1

xin
2






, q =







q1

q2






.

1.4.2 Asymptotic Observers

Constructing an asymptotic observers for system (1.5) requires the following two technical

assumptions to hold.

Assumption 1 (i) There are more measured quantities than reactions, i.e. q ≥ p; (ii)

Matrix K1 has full rank.

These assumptions guarantee that a non-zero r cannot cancel the term K1r and the q × p

matrix K1 has a left inverse. Accordingly, there exists a p × q matrix G such that:

GK1 = Ip.

Let us denote A = −K2G and M = (A In−p). An observer for subsystem (1.6) can be

obtained as indicated in the following lemma.

Lemma 1 (see [2]) If D is positive definite, the solution x̂2 of the auxiliary system

dζ̂2

dt
= −D(ζ̂2 − Mxin) − My2

x̂2 = ζ̂2 − Ay1

converges to the solution x2 of subsystem (1.6), asymptotically.
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1.4.3 Application to an Anaerobic Digester

We consider a very simple model of the anaerobic digestion process that accounts for a

single “global” degradation step of the soluble COD (St) by the biomass Xt [1]:

ktSt
µt(.)Xt
−→ Xt + kmCH4

where kt and km are the yield coefficients associated to COD degradation and methane

production, respectively; µt(·) stands for bacterial growth rate. The corresponding mass-

balance model reads:

dSt

dt
= −ktµt(·)Xt − D(St − S in) (1.7)

dXt

dt
= µt(·)Xt − αDXt

qCH4
= kmµt(·)Xt (1.8)

where qCH4
stands for the methane outflow rate; D, the dilution rate; and α, the fraction

of bacteria not attached onto a support (i.e., being affected by the dilution rate D in the

reactor).

The objective is to design an asymptotic observer for the biomass Xt, based on COD

measurements, without knowing the reaction rates µt(·). In this case, we have x1 = y1 =

St, x2 = Xt and Q(x) = 0. Moreover, K1 = −kt and K2 = 1, hence a possible choice

for matrices A and G is: G = −1/kt, A = 1/kt. Finally, lemma 1 provides the following

auxiliary differential system:

dζ̂2

dt
= −αD(ζ̂2 −

S in

αkt

) − (1 − α)D
y1

kt

(1.9)

X̂t = ζ̂2 −
y1

kt

. (1.10)

Eqs. (1.9)-(1.10) is an observer for the biomass concentration in the digester. However,

this observer may provide poor estimates in practice, because of the large errors made on
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S in and kt. A more appropriate solution is then to use an interval observer for coping with

uncertainty, as discussed in the following section.

1.5 INTERVAL OBSERVERS

Usual observers rely on the implicit assumption that the process model is a good approxima-

tion of the real plant. Nevertheless, we have seen that WWTP models are often corrupted.

In such situations where large modeling and measurement errors prevail, one can no longer

construct an exact observer (i.e., with the guarantee that the observation error converges

to zero asymptotically and that the convergence rate can be tuned). Instead, the observa-

tion principle must be weakened. In this section, we explain how to derive rigorous bounds

enclosing the estimated states by accounting for the uncertainty in the process model [9, 19].

1.5.1 Principle

Interval observers require knowledge of time-varying bounds enclosing the uncertainty,

v−(t) ≤ v(t) ≤ v+(t). These bounds are used to calculate time-varying bounds enclosing

the state variable to be estimated.

Consider the following general system:











dx(t)
dt

= f(x(t), u(t), w(t)) ; x(t0) = x0

y(t) = h(x(t), v(t))

(SI)

where known lower and upper bounds are available for the uncertain quantities w ∈ IRr

and v ∈ IRs,

w−(t) ≤ w(t) ≤ w+(t) ∀ t ≥ t0

v−(t) ≤ v(t) ≤ v+(t) ∀ t ≥ t0.

Based on the fixed model structure (SI) and on the set of measured data, an auxiliary

dynamic system (OI) can be designed such that it provides a lower bound and an upper
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bound for the state variables:







































dz−

dt
= f−(z−, z+, u, y, w−, w+, v−, v+) ; z−(t0) = g−(x−

0 , x+
0 )

dz+

dt
= f+(z−, z+, u, y, w−, w+, v−, v+) ; z+(t0) = g+(x−

0 , x+
0 )

x− = h−(z−, z+, u, y, w−, w+, v−, v+)

x+ = h+(z−, z+, u, y, w−, w+, v−, v+).

(OI)

Definition 2 (interval estimator) System (OI) is said to be an interval estimator of system

(SI) if for any pair of initial conditions x−(t0) ≤ x(t0) ≤ x+(t0), there exists bounds

z−(t0), z+(t0) such that the solutions of the coupled system (SI ,OI) verifies:

x−(t) ≤ x(t) ≤ x+(t) ∀ t ≥ t0.

Interval estimators result from the coupling of two estimators which provide both an

underestimate x−(t) and an overestimate x+(t) of x(t). Of course, such bounds can be

very large, thus making interval observers practically useless in some cases. However, for

particular classes of systems (e.g., linear systems up to an output injection), theoretical

guarantees can be given that the time-varying intervals [x−(t), x+(t)] converge to a “limit”

interval of finite magnitude [9]. Moreover, the convergence rate towards this limit interval

can be tuned if certain properties hold [20]. Note that these ideas find their origin in

the theory of positive systems [21]. More recently, probabilistic observers have been

formulated for a class of uncertain biological processes [5]; these observers take advantage

of the knowledge of probability density functions (PDFs) for the uncertain parameters to

calculate the PDFs of the unmeasured sate variables.

An application of interval observers to an anaerobic WWTP is presented next; another

application to an activated sludge process can be found in [11].
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1.5.2 Application to an Anaerobic Digester

We consider the same reduced model of an anaerobic digestion plant as in subsection 1.4.3.

The objective is to design an interval observer that estimates the COD concentration St

from on-line methane measurements, with µt(·) and α being unknown.

Using Eq. (1.8) of the methane flow rate, Eq. (1.7) can be rephrased as:

dSt

dt
= −γqCH4

− D(St − S in
t )

where the uncertain parameterγ = kt/km is such thatγ− ≤ γ ≤ γ+; the inlet COD concen-

tration S in
t (t) fluctuates between known bounds as S in

t

−
(t) ≤ S in

t (t) ≤ S in
t

+
(t), ∀t ≥ t0;

and the initial COD concentration is bounded as S−

t (t0) ≤ St(t0) ≤ S+
t (t0).

Property 2 The auxiliary dynamic system











dS−

t

dt
= −γ+qCH4

− D(S−

t − S in
t

−

)

dS+
t

dt
= −γ−qCH4

− D(S+
t − S in

t

+
)

is an interval observer for St, i.e. guarantees that S−

t (t) ≤ St(t) ≤ S+
t (t) at each t ≥ t0.

Proof. It is easily verified that both lower bound e− = St − S−

t and upper bound e+ =

S+
t − St on the observation error remain positive. (See [3] for details.) �

In practice, it was found that the upper bound S+
t (t) is weak when large uncertainties are

considered for γ and S in
t (t). These considerations motivate the following improvements.

Improvements The idea for reducing prediction intervals consists of using structured

kinetic models for µ(·), despite uncertainty. We suppose here that the process does not

operate in a region where inhibition phenomena occur, and use a Monod kinetic model for

obtaining an estimate of qCH4
as

q̂CH4
(St) = kmµt

St

St + KSt

X̂t
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where X̂t =
Sin

t −St

αkt
. Then, these estimates are used in the following robust observer [3],

dSt

dt
= −γqCH4

− D(St − S in
t ) + λ(qCH4

− q̂CH4
(St)). (1.11)

Finally, an interval observer is derived from Eq. (1.11) as











dS−

t

dt
= φε(S

−

t )
[

−γqCH4
− D(S−

t − Sin) + λ(Sin − S−

t )
(

qCH4
− ˆqCH4

+(S−

t )
)]

dS+
t

dt
= φε(S

+
t )

[

−γqCH4
− D(S+

t − Sin) + λ(Sin − S+
t )

(

qCH4
− ˆqCH4

−(S+
t )

)]

where the function φε(S
−

t ) = S−

t /(S−

t + ε) (with 0 < ε � inf St(t)) is used to enforce

St ≥ 0; and the bounds q̂−CH4
and q̂+

CH4
on q̂CH4

are calculated by considering the bounds

µ−

t and µ+
t on µt. This observer is applied to a real process in the next paragraph.

Application to Real Measurements The interval observer given in Eq. (1.11) was

implemented on a pilot-scale fixed bed up-flow anaerobic digester used for wine wastewater

processing. Both the dilution rate D and methane outflow rate qCH4
were measured on-line

at a high frequency. Besides on-line measurements, a COD sensor was also used to validate

the observer predictions. Details on the plant configuration and the experiments can be

found in [4, 22]. The predictions of the interval observer are presented in Fig. 1.4., together

with the off-line COD measurements.
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Figure 1.4. Methane flow rate (left plot) and interval observer (- -) for soluble COD (right plot).
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1.6 CONCLUSIONS

In this chapter, we have presented a number of methods to design observers for WWTPs.

Of course, other techniques exist and we did not pretend to be exhaustive. The observers

presented herein assumed constant parameter values in the models. In some cases however,

the parameters can evolve during process operation. Algorithms to estimate the parameters

must then be used, hence leading to adaptive observers.

For bioprocesses and WWTPs in particular, the type of observer to be considered must

be chosen by considering the reliability of the process model at hand, as well as the available

measurements. Moreover, designing an observer always results from a trade-off between

its robustness towards modeling uncertainties and disturbances, and its convergence rate.

Finally, the implementation of an observer requires a discretization to be performed as

regards the continuous-time equations, e.g. an Euler type algorithm. Although not difficult,

discretization must be performed carefully. In the case of low measurement frequency, for

example, the use of a continuous/discrete observer shall be preferred to full discretization

of a continuous-time observer.

To conclude, it is worth insisting on the fact that an observer should always be validated

prior to using it in a real treatment plant. In particular, systematic and extensive comparisons

should be made between the observer predictions and direct on-site measurements (other

than those used to calibrate the observer).
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