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Abstract In this paper we propose a methodology to
determine the structure of the pseudo-stoichiometric co-
efficient matrix K in a mass balance based model and
to identify its coefficients from a set of available data.
The first stage consists in estimating the number of re-
actions that must be taken into account to represent the
main mass transfer within the bioreactor. This provides
the dimension of K. Then we propose a method to di-
rectly determine the structure of the matrix (i.e. mainly
its zeros and the signs of its coefficients). These meth-
ods are illustrated with simulations of a process of lipase
production from olive oil by Candida rugosa.

1 Introduction and motivation

Macroscopic modelling provides simple dynamical mod-
els which have proved of great interest in bioengineering
for the design of on-line algorithms for bioreactor moni-
toring, control and optimisation [1,2]. In such works, the
dynamical behaviour of a stirred tank bioreactor is of-
ten described by the following general macroscopic mass-
balance model:

dξ(t)

dt
= K r(t) + v(t), (1)

In this model, the vector ξ = (ξ1, ξ2, . . . , ξn) T is
made-up of the concentrations of the various species in-
side the liquid medium. The term v(t) represents the net
balance between inflows, outflows and dilution effects.
The term K r(t) represents the biological and biochemi-
cal conversions in the reactor (per unit of time) accord-
ing to some underlying reaction network. The (n × p)
matrix K is a constant pseudo-stoichiometric matrix.
r(t) = (r1(t), r2(t), . . . , rp(t))

T is a vector of reaction
rates (or conversion rates). It is supposed to depend on

the state ξ and on external environmental factors such
as temperature, light or pressure, etc

The pseudo-stoichiometric (PS) matrix K is associ-
ated to a macroscopic reaction network that lumps to-
gether the many intracellular metabolic reactions of the
various involved microbial species. The reaction network
summarises then the main mass transfer throughout the
bioreactor by a few reactions involving mainly extracel-
lular compounds and biomasses without describing into
all details the intracellular behaviour. Each column of
the matrix corresponds to a chemical or biological re-
action of the underlying macroscopic reaction network.
The coefficients kij j = 1, . . . , p are associated with the
jth reaction. A positive kij means that the ith species
ξi is a product of the jth reaction, while a negative kij

means that ξi is a substrate of the jth reaction. If kij = 0
the species ξi is not involved in the jth reaction.

In this paper, we are concerned with modelling situa-
tions where the on-line concentrations ξi of the involved
species are measured but the structure of the reaction
network is a priori questionable and therefore the ma-
trix K is partially unknown. The objective, as in [5], is to
provide guidelines to the user for the identification of the
structure of a macroscopic reaction network and the de-
termination of the PS matrix K from the available data.
Note that the method can also be applied to simplify a
known detailed intracellular metabolic network and pro-
vide a simpler reaction network that represents the main
mass transfers throughout the system and directly con-
nect initial substrates to final products. In such a case
the concentrations ξi would result from simulations of
a model based on the detailed known reaction network
and matrix K is to be found from these “data”.

The usual approach dedicated to the determination
of reaction networks relies on the linearisation of the
dynamics around a reference solution [9,7] and identi-
fication of the local jacobian matrix. This approaches
are then suitable for data close to steady state. Here, in
the spirit of [6,3], we use linear algebraic properties to
exploit the structure of the bioprocesses (Equation (1))
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and our arguments do not rely on any linearisation. As
a consequence we are not limited to steady state data
and we can exploit all the available measurements, even
when associated to transient states.

The problem is illustrated with the following exam-
ple.

Example: Let us consider the example of a com-
petitive growth on two substrates [12] which could rep-
resent, for instance, the production of lipase from olive
oil by Candida rugosa. Here the microorganism is sup-
posed to grow on two substrates that are produced by
the hydrolysis of a primary complex organic substrate.

The following 3-step reaction network has been as-
sumed in the literature [6]:

– Hydrolysis:

k11S1 + E −→ S2 + k31S3 + E

– Growth on S2:

k22S2 + k62O −→ X + k72P

– Growth on S3:

k33S3 + k63O −→ X + k43E + k73P

where S1 is the primary substrate (olive oil, made of
several compounds, mainly triglycerides), S2 (glycerol)
and S3 (fatty acids) are the secondary substrates. E is
the enzyme (lipase), X the biomass (Candida rugosa), O

the dissolved oxygen and P the dissolved carbon dioxide.
The associated PS matrix is:

K =





















−k11 0 0
1 −k22 0

k31 0 −k33

0 0 k43

0 1 1
0 −k62 −k63

0 k72 k73





















4
with kij > 0.

We shall assume that this reaction network is un-
known to the user and has to be discovered from data
of the species concentrations. Here the data will be sim-
ulated by a model but of course in practice the data are
obtained from experiments.

Generally, the choice of a reaction network and its
associated PS matrix K results from modelling assump-
tions. Sometimes however, a complete description of the
reaction network is a priori not available. This can be
a consequence of a lack of phenomenological knowledge
on some of the involved mechanisms, letting a part of
the reaction network questionable. The problem can also
arise when it is desired to reduce a complicated given re-
action network to a much simpler model. This situation
especially occurs for models describing wastewater treat-
ment processes involving a bacterial consortium made of

a broad range of bacterial species degrading a mixture of
organic substrates. For example, more than 140 bacte-
rial species have been found [8] in an anaerobic digestion
wastewater treatment plant.

We first propose a method to determine the size of
matrix K ı.e. the number of independent reactions that
are distinguishable from the available data. Then we
show how the structure of matrix K can be estimated,
using the a priori available knowledge on the process.
By structure we mean the sign and the location of the
non-zero entries of matrix K. In addition, the method
can also provide an estimate of the parameters kij if the
available knowledge is sufficient.

2 Determination of the number of reactions

2.1 Introduction

In this section, we intend to determine the minimum
number of reactions which are needed in order to ex-
plain the observed behaviour of the process, without any
prior knowledge on the underlying reaction network. We
assume that the vectors ξ(t) of species concentrations
and v(t) of inflow/outflow balances are measured dur-
ing some time interval and exhibit significant variations
with time. We assume also that the number of measured
variables is larger than the number of reactions: n > p.
The PS matrix K and the vector of reaction/conversion
rates r(t) are unknown.

2.2 Theoretical determination of dim(Im(K))

The model equation (1) can be viewed as a linear dy-
namical system with state ξ and inputs r(t) and v(t)
(although we know obviously that r and v may be state
dependent). If we take the Laplace transform of this
equation, we get:

sΞ(s) = KR(s) + V (s) (2)

where Ξ(s), R(s) and V (s) are the Laplace transforms of
ξ(t), r(t) and v(t) respectively. A linear filter or smoother
with transfer function G(s) can then be used in order to
clean the data (noise reduction, decrease of autocorrela-
tions etc ...):

U(s) = KW (s) with U(s) = G(s)[sΞ(s) − V (s)]

and W (s) = G(s)R(s). Or, in the time domain:

u(t) = Kw(t) (3)

with u(t) and w(t) the inverse Laplace transforms of
U(s) and W (s) respectively. The vector u(t) can be com-
puted directly from the data by appropriate filtering/smoothing
techniques possibly involving delay operators.
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For example, the moving average is a very simple fil-
ter that can be applied to (1), and provides an expression
of the form (3) with (T denotes the considered moving
average window):

u(t) =
1

T

[

ξ(t) − ξ(t − T ) −
∫ t

t−T

v(τ)dτ

]

(4)

and

w(t) =
1

T

[∫ t

t−T

r(τ)dτ

]

Now the question of the dimension of matrix K can
be formulated as follows: what is the dimension of the
image of K ? In other words, what is the dimension of
the space where u(t) lives ? Note that we assume K to
be a full rank matrix. Otherwise, it would mean that the
same dynamical behaviour could be obtained with a ma-
trix K of lower dimension, by defining other appropriate
reaction rates. The determination of the dimension of
the u(t) space is a classical problem in statistical anal-
ysis. It corresponds to the principal component analysis
(see e.g. [11]) that determines the dimension of the vec-
tor space spanned by the vectors ki which are the rows
of K. To reach this objective, we consider the n × N

matrix U obtained from a set of N estimates of u(t):

U = (u(t1), . . . , u(tN ))

We will also consider the associated matrix of reac-
tion rates, which is unknown:

W = (w(t1), . . . , w(tN ))

We assume that matrix W is full rank. It means that
the reactions are independent (none of the reaction rates
can be written as a linear combination of the others).
We consider more time instants ti than state variables:
N > n.

Property 1 For a matrix K of rank p, if W has full
rank, then the n × n matrix M = UUT = KWWT KT

has rank p. Since it is a symmetric matrix, it can be
written:

M = PT ΣP

where P is an orthogonal matrix (P T P = I) and

Σ =

























σ1 0 . . . 0
0 σ2 0 0
...

. . .

σp

0
. . .

...
0 . . . 0

























with σi−1 ≥ σi > 0 for i ∈ {2, ..., p}.
Moreover, the eigenvectors associated with the σi gen-

erate an orthonormal basis of ImK.

This property is a direct application of the singular
decomposition theorem [10] since rank (M) = rank (KW ) =
rank (K) = rank (Σ) = p.

Now from a theoretical point of view, it is clear that
the number of reactions can be determined by counting
the number of non zero singular values of UUT .

2.3 Practical implementation

In practice, the ideal case presented above is perturbed
for three main reasons:

– The reaction network that we are looking for is a first
approximation of chemical or biochemical reactions
which can be very complex. The “true” matrix K is
probably much larger. The reactions that are fast or
of low magnitude can be considered as perturbations
of a dominant low dimensional reaction network that
we are actually trying to estimate

– The measurements are corrupted by noise. This noise
can be very important, especially for the measure-
ment of biological quantities for which reliable sen-
sors are not available.

– In order to compute u(t) we need a numerical im-
plementation of the filter G(s). Moreover an inter-
polation is often required to estimate the values of
ξ(ti) and v(ti) at the same time instants ti. These
processes generate additional perturbations.

2.3.1 Data normalisation In order to avoid condition-
ing problems and to give the same weighting to all the
variables, the data vectors u(ti) are normalised as fol-
lows:

ũi(tj) =
ui(tj) − a(ui)√

Ns(ui)

where a(ui) is the average value of the ui(tk) for k ∈
{1..N}, and s(ui) their standard deviation.

2.3.2 Practical determination of the number of reactions
In practice, for the reasons we have mentioned above,

it is well known that there are no zero eigenvalues for
the matrix M = UUT .

The question is then to determine the number of
eigenvectors that must be taken into account in order
to produce a reasonable approximation of the data u(t).
To answer that question, let us remark that the eigenval-
ues σi of M correspond to the variance associated with
the corresponding eigenvector (inertia axis) [11].

The method then consists in selecting the p first prin-
cipal axis which represent a total variance larger than a
fixed confidence threshold.

For instance, in the next example, we will consider
a threshold (depending on the information available on
noise measurements) at 95% of the variance. This leads
to the selection of 3 axis, and therefore p = 3.
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Remark: if rank (M) = n it means that rank(K) ≥
n. In such a case we cannot estimate p and measurements
of additional variables are requested in order to apply the
method presented here.

Parameter Value Unit

c0 0.5 g/l.day−1

c1 3 day−1

c2 1 g/l

c3 0.2 g/l

c4 20 g.day−1
l
−1

c5 1 g/l

c6 0.2 g/l

c7 2 g2/l2

c8 2 g/l

c9 0.2 g/l

c10 5 day−1

c11 15 g/l

c12 5 day−1

c13 0.5 g/l

Table 1 Parameters values.

2.3.3 Example: competitive growth on two substrates We
come back to the example which has been introduced
above. Consistently with Equation (1), the model for
the state

ξ = (S1, S2, S3, E,X, 0, P )t

involving 3 main reactions can thus be written:

dξ

dt
= K





r1

r2

r3



 + v(t)

where

v(t) = D(ξin − ξ) − Q(ξ)

with ξin = (S1in, S2in, S3in, 0, 0, 0, 0)t the vector of influ-
ent concentrations and Q(ξ) = (0, 0, 0, 0, 0, qo2(O), qco2(P ))t

the vector of gaseous flow rates.
The matrix K was chosen as follows:

K =





















−3 0 0
1 −5 0

0.3 0 −0.5
0 0 0.2
0 1 1
0 −2 −1
0 0.3 1.5





















For the simulation purpose, we assume that the ki-
netics of the three reactions are given by the following
expressions. They have not been selected on a realistic
basis, but more in order to illustrate our approach on a
broad variety of kinetics:

r1(S1, E) = c0
S1

S1+c8

E
E+c9

X

r2(S2, O,X) = c1
S2

S2+c2

O
O+c3

X

r3(S2, S3, O) = c4
S3

(S3+c5)(S2+c6)
O2

O2+c7

X;

The transfer between liquid and gaseous phase is repre-
sented by the classical Henry’s law:

qco2(P ) = c10(P − c11) and qo2(O) = c12(O − c13)

The values of the coefficients ci can be found in Table 1.

Initial Value Unit

condition

S1(0) 10 g/l

S2(0) 0 g/l

S3(0) 5 g/l

E(0) 5 g/l

X(0) 15 g/l

O(0) 0 g/l

P (0) 0 g/l

Table 2 Initial conditions used for the simulation.
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Fig. 1 Values of dilution rate, S1in, S2in and S3in used for
the simulation.

A 30 day run of the model has been performed us-
ing the initial conditions provided in Table 2. The col-
lected data have been corrupted with a white noise of
high magnitude (30% of the standard deviation of each
component) and sampled. Finally 380 data points are
available.

The data (after sampling) are presented in Figure 2.
The state variables S2, S3, E, X, P , O and of the gaseous
flow rates qO2

and qCO2
have been measured. We assume

here that the state variable S1 was not recorded in or-
der to illustrate the fact that our approach is applicable
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even if the full set of state variables is not available for
measurement. Moreover the dilution rate and the sub-
strate inflow rate (see Figure 1) have been selected in
order to guarantee that the system is sufficiently excited
and therefore that the recorded signals will have a suffi-
ciently informative content to expect good identification
results.
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Fig. 2 Experiment simulated from the kinetic modelling cor-
rupted with an additive white noise.

The vectors u(ti) are then computed by applying a
simple moving average from these data and subsequently
normalised as explained before. Finally, the eigenvectors
of UUT are computed.
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Fig. 3 Total variance explained with respect to the number
of reactions for the production of lipase from olive oil by
Candida rugosa.

Figure 3 represents the cumulated variance associ-
ated with the number of considered inertia axis. For in-
stance, we can see that two reactions are sufficient to ex-
plain 82% of the observed variance. Since three reactions
explain 95% of the total variance, it seems reasonable in
this example to use 3 reactions for the model.

The reader is referred to [4] for an application to real
data, for growth and vanillin production by cultures of
the fungus Pycnoporus cinnabarinus in bioreactors.

3 Estimation of the pseudo-stoichiometric

matrix K

Since we have a value for the number of involved reac-
tions, we are in a position to start the estimation of the
(totally or partially) unknown matrix K.

3.1 Determination of ImK

Let us use Property 1 which states that ImK is spanned
by the eigenvectors ρi associated with the non zero eigen-
values of UUT . Now, from the experimental data col-
lected through the matrix UUT we get p eigenvectors ρi

that span K. It means that each column ki of K is a
linear combination of the ρi. In other terms, there exists
a p × p matrix G such that

K = ρG

where the columns of matrix ρ are the eigenvectors ρj .
In other words, the family of possible PS matrices K is
parameterised by G.

Remark: In general, since the reaction rates are un-
known, matrix G (and therefore matrix K) is not iden-
tifiable: this can be easily understood on a very simple
example. If r1(ξ) and r2(ξ) are two reaction rates, the
term Kr(ξ) can be written:

Kr(ξ) = k1r1(ξ) + k2r2(ξ)

= k1+k2

2 (r1(ξ) + r2(ξ)) + k1−k2

2 (r1(ξ) − r2(ξ))

And therefore both matrices K = [k1 k2] and K̃ =
[k1+k2

2
k1−k2

2 ] can produce the same result. The reaction
rates associated with the second matrix are then: r̃1(ξ) =
r1(ξ) + r2(ξ) and r̃2(ξ) = r1(ξ) − r2(ξ).

3.2 Additional hypotheses

In order to make matrix G (and K) uniquely identifiable,
we need to introduce additional structural constraints.
At this stage, all the a priori knowledge on the reaction
network should be considered to improve the estimation
process.
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3.2.1 Normalisation First, we shall impose (without loss
of generality) that each reaction rate is normalised with
respect to one species, and therefore that each column of
matrix K contains one +1 or one -1. This induces obvi-
ously additional constraints on the possible matrices G.
Note that sometimes we may not know the sign of the
element: the two possible cases must then be considered.

3.2.2 Physical assumptions One can impose the con-
servation of elementary mass balances. For example if
one wants the carbon to be conserved in the model, if
ci is the carbon content of one unit of the state ξi, it
means that we should have for each of the p reactions
(j ∈ {1, . . . , p}):

n
∑

i=1

cikij = 0 (5)

Note however that for macroscopic mass balance where
the state variables represent a collection of compounds,
the carbon content of the variable can be undetermined.
However it can be bounded: c−i ≤ ci ≤ c+

i . Then equa-
tion (5) becomes an inequality.

An inequality can also be obtained if we assume that
some of the products are not measured, for example if
we have a loss of carbon through unmeasured products,
we get:

n
∑

i=1

cikij ≥ 0

3.2.3 Biological and biochemical assumptions When
additional constraints are still necessary, we use bio-
chemical assumptions.

When only a subset of the components are present in
the reaction at the initial time, the production or not of
new components with consumption or not of substrates
is an indicator of the variables that are necessary for the
reaction. It is clear for example that the first reaction
will involve only the substrates which were present at
the beginning of the fermentation.

We can for example deduce from this analysis that a
specific component is not involved in one of the p reac-
tions and therefore impose a zero in matrix K.

3.2.4 Other assumptions One can also try to find a
matrix K involving the minimum number of components
in each reaction (i.e. containing the maximum number of
zeros). If these hypotheses are not sufficient, several ma-
trices K can then be identified, parameterised by some
parameter, and their biochemical meaning must then be
assessed.

3.3 Validation

The main result provided by the previous analysis is the
determination of the variables which are substrates or

products in the reactions or, in other words, the obtained
signs of the entries of K.

Another expected result can be the determination of
the variables which are not involved in a reaction, cor-
responding to zero elements in the matrix K. However
it is actually very unlikely that the analysis will pro-
vide estimates of the elements of K which are exactly
zero. The idea consist then in replacing the very small
elements by zeros, and to validate the corresponding re-
action network using the techniques presented in [3,4].
These methods are based on the 5 following steps (see
[4] for more details):

1. Determination of the vectors which are in the left
Kernel of K, i.e. the vectors λ ∈ Rn such that:

λtK = 0 (6)

2. Determination of the associated regression, which is
directly deduced by left multiplying Equation (3) by
λt. Using Equation (6) it gives:

∑

λiui(t) = 0 (7)

3. Verification that the ui(t) involved in (7) are not re-
lated by any other linear relation associated to an-
other left Kernel vector λ (soundness of λ)

4. Computation of the ui(t) from the available data and
test of the significance of regression (7).

5. Test of the positivity of the PS coefficients identified
in the previous step.

This validation procedure will be illustrated in the
example study.

3.4 Example (continued)

3.4.1 Statement of the problem and considered data We
shall now illustrate the proposed approach with the sim-
ulation study of lipase production from olive oil. From
the previous study of the number of reactions, we know
that 3 reactions should be considered.

We assume here that the first reaction is known, and
therefore we only focus on the two other reactions. We
are thus in the process of estimating the submatrix K̄

extracted from K by removing the first line and the first
column.

A set of noisy data of the state variables S2, S3, E,
X, P , O and of the gaseous flow rates qO2

and qCO2
is

produced by simulation as described in Section 2. The
goal is to determine the 6×2 matrix K̄ from this data set.
More specifically, a question that we want to address is
to determine, from the data, which of the two reactions
produces the enzyme E.
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K̄ identified K̄ identified K̄

after validation
















−5 0
0 −0.5
0 0.2
1 1
−2 −1
0.3 1.5

































−3.54 0
0 −0.51

0.01 0.22
1 1

−1.34 −0.87
0.18 1.51

































−4.54 0
0 −0.50
0 0.19
1 1

−1.33 −0.72
0.34 1.24

















Table 3 True coefficients of matrix K̄ and identified values.

3.4.2 Estimation of K̄ Now, using a moving average,
we can compute the quantities Ui associated with the
6 state variables. Next we compute the matrix M =
UT U . The eigenvectors ρi associated with the two largest
eigenvalues are then the basis of ImK. Since G is a 2×2
matrix, the columns k̄1 and k̄2 of K̄ can be written:

k̄1 = α11ρ1 + α12ρ2 and k̄2 = α21ρ1 + α22ρ2 (8)

Now we proceed in two successive steps:

i. Normalisation.
The PS coefficients associated with the biomass growth

are normalised : k̄41 = 1 and k̄42 = 1. We get then:

k̄41 = 1 = α11ρ41 + α12ρ42

k̄42 = 1 = α21ρ41 + α22ρ42
(9)

Using Equations (8) and (9) with the obtained values
of ρ1 and ρ2, we can now write matrix K̄ parametrised
by α11 and α22 as follows:

K̄ =

















−1.42α11 − 2.65 −1.2α22 + 1.12
0.2α11 − 0.13 0.17α22 − 0.67

−0.08α11 + 0.062 −0.071α22 + 0.28
1 1

−0.19α11 − 1.2 −0.16α22 − 0.72
−0.53α11 + 0.51 −0.45α22 + 1.93

















ii. Biological hypotheses.
Now to determine uniquely matrix K̄ two additional

assumptions must be introduced.

Hypothesis: A reaction still takes place when only S2

[resp. S3] is present at the initial time, and no S3 [resp.
S2] is produced.

In other words this means that S2 is the only sub-
strate of one reaction and that S3 is the only substrate of
the other one. Thus we will impose k̄12 = 0 and k̄21 = 0.

These additional constraints allows us to compute
α11 (0.621) and α22 (0.93).

Finally we end up with an estimate of matrix K̄ (see
Table 3). It is worth noting that the identified matrix
K̄ is close to the true one. The value of the (theoreti-
cally zero) coefficient k̄13 is 0.01 which can be neglected
with respect to the other coefficients of K̄. Hence, the

unknown part of the structure of matrix K̄ has been
recognised. Moreover the estimates of the non-zero en-
tries of the matrix K̄ are quite accurate.

3.4.3 Validation Here we will validate the identified struc-
ture for K with respect to the available data. As it was
shown in the previous step, the following structure for
matrix K has been identified:

K̄ =

















−k̄11 0
0 −k̄22

0 k̄32

1 1
−k̄51 −k̄52

k̄61 k̄62

















Now the kernel of KT is spanned by the following 4
vectors:

λ̄1 =

















0
k̄32

k̄22

1
0
0
0

















, λ̄2 =

















k̄52−k̄51

k̄11

0
0

k̄52

1
0

















,

λ̄3 =

















− k̄32

k̄11

0
1

−k̄32

0
0

















, λ̄4 =

















k̄61−k̄62

k̄11

0
0

−k̄62

0
1

















The associated regressions are the following:

R1 : k̄32

k̄22

u3(t) + u4(t) = 0

R2 : k̄52−k̄51

k̄11

u2(t) + k̄52u5(t) + u6(t) = 0

R3 : − k̄32

k̄11

u2(t) + u4(t) − k̄32u5(t) = 0

R4 : k̄61−k̄62

k̄11

u2(t) − k̄62u5(t) + u7(t) = 0

(10)

Note that these regressions are sound [4] in the sense
that they do not involve a set of components that are
related together by another linear relationship.

The numerical results obtained from the considered
regressions are presented in Table 4. It results that all
the regressions (10) are highly significant, showing that
the estimated reaction network is validated.

Moreover, the following quantities are estimated in
Table 4:

{ k̄32

k̄22
,

k̄52 − k̄51

k̄11
, k̄52,

k̄32

k̄11
, k̄32,

k̄61 − k̄62

k̄11
, k̄62}

It is easy to compute the values of k̄11 to k̄62 from
this set, leading to the estimate of matrix K̄ proposed
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in Table 3. The final step consists in verifying that the
estimates of the PS coefficients are all positive. This con-
cludes the validation procedure.

Significance Unknown Value Interval

R1 YES k̄32

k̄22

2.36 [2.06 2.66]

R2 YES
k̄52−k̄51

k̄11

k̄52

−0.14
0.72

[-0.18 0.09]
[0.66 0.77 ]

R3 YES
k̄32

k̄11

−k̄32

−0.04
−0.2

[ -0.05 -0.03]
[ -0.21 -0.18]

R4 YES
k̄61−k̄62

k̄11

−k̄62

−0.35
−1.25

[ -0.42 -0.29 ]
[-1.33 -1.16]

Table 4 Significance (threshold 5%) of the regressions (10)
and parameter values.

4 Conclusion

Determining a macroscopic reaction network for a bio-
processes is a difficult issue mainly because of the com-
plexity inherent to biological systems. This problem is
fundamentally ill stated since the Pseudo-stoichiometric
matrix K is generally not identifiable from a data set.
We show in this paper how to identify the space gener-
ated by the columns of K and how to add constraints in
order to determine a unique (or a set of) matrix K.

Through the studied example we have demonstrated
that the proposed method can accurately estimate the
values of the PS coefficients in spite of noises due to
measurements and low sampling frequency.

It is worth noting that this approach does not neces-
sarily require the availability of all the state variables ξi

measurements. Of course, if the measurement of the ith

biochemical component ξi is not available the ith line of
matrix K cannot be determined by the method.
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