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Abstract

In this paper we study a pursuit evasion game in which information is costly. The pursuer has to

pay, i.e. lose some time, whenever he wants an information on the evader’s position. Therefore

the capture will be done in successive stages. The pursuer gets an information, then moves using

an open loop control, and so on. We characterize the set C1 of the initial states that the pursuer

can capture in one stage whatever the evader does. This set is taken as a new target for an other

stage. In this way we characterize the set Cn of the initial states the pursuer can capture in n
stages in the worst case. We also give a pursuer’s strategy that minimizes the total duration of the

game, as opposed to the number of stages.

This research has been supported in part by the French Direction des Recherches et Etudes Techniques
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1 Introduction.

It is well known that perfect information covers a very small part of reality, that makes sense of
any attempt to understand situations with non perfect information. In this paper we intend to
study a class of dynamic games in which information is costly. More precisely, we take an interest
in “pursuit-evasion” games, in which the pursuer is blind and has to pay whenever he wants to
have information concerning the evader’s position. Since the payoff of a pursuit evasion game is in
terms of time, we may consider that the pursuer loses time for each piece of information he wants.
For example, let us imagine the following game. It involves two players, Paul the pursuer, and
Elise the evader. Paul has a headband on his eyes and want to catch Elise. Whenever he wants to
know where she is, he has to stand still in order to unknot his headband and see her position. This
kind of situation allows us to study the compromise between spending a lot in order to have good
information, or not increasing the cost but playing with poor information.

The basic idea of this work consists of researching successive capture areas Cn. The capture will
be done in sucessive stages. In the interior of each stage the pursuer does not receive information.
He has then to move with an open loop control, and this control must be available whatever the
evader does. The set Cn will be the set of all initial states capturable in n stages. This idea has
been developed, without costly information notions, by Pierre Bernhard and Gregory Tomski in
[1].

The game we investigate shares many aspects of search games since Paul wants to capture Elise
independantly of what she does. One does not have to assume that she actually attempts to escape.
(see, e.g. [3], [4])

2 Game Rules.

Let’s call Paul (P ) the blind pursuer and Elise, (E), the evader. We note yP and yE which are
their respective positions at each time, and

x(t) = yE(t)− yP (t),

Elise’s position in Paul’s coordinate system. We consider that both Paul and Elise can have an
infinite acceleration, and that their motions are only restricted by a maximum speed. For the sake
of being a litle less restrictive, we add a constant drift term w, which we arbitrarily put in Paul’s
dynamics. We get thus

ẏP = u+ w with ‖ u ‖≤ a,
ẏE = v with ‖ v ‖≤ b,

where w is a given fixed speed such that : ‖ w ‖≤ a, and obviously a > b.
In Paul’s coordinate system, this dynamics become :

ẋ(t) = v − u− w, with











‖ u ‖≤ a,
‖ w ‖≤ a,
‖ v ‖≤ b,

(1)

u and v being the players respective controls.
The game is a “pursuit-evasion game ”, so the cost is expressed in terms of time. We will

consider that for each piece of information he wants, Paul loses the time δ. During this lapse of
time, he has to stay still (ẏP (t) = 0). It is in this sense that we consider that the information is
costly.
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A stage of this game is then defined as being a period made up of a motion period and an
information period (of duration δ). We notice that this notion of stage is only connected with the
pursuer.

We also define a target set. We will say that capture occurs, as soon as x(t) ∈ C0, for t the end
of a stage. For the sake of making computations easy, we will let :

C0 = B(0, R0), R0 ∈ IR. (2)

(For A ∈ IR2 and a ∈ IR, B(A, a) stands for the sphere of radius a and of center A).

Let x0 be the initial state of the system, and τ the length of the first stage. At the end of this stage
we have :

x(τ) = x0 +

∫ τ

0
(v(s) − u(s)− w)ds,

that is, taking into account the fact that P keeps still during the interval [τ − δ, τ ], (u is then −w).

x(τ) = x0 +

∫ τ

0
v(s)ds−

∫ τ−δ

0
u(s)ds − w(τ − δ).

We will state

Qτ = {
∫ τ

0
v(s)ds, ‖ v ‖< b},

Pτ = {
∫ τ−δ

0
u(s)ds, ‖ u ‖< a}.

Qτ and Pτ stand for all Elise and Paul’s respective possible movements during a perod τ . With
these notations, x(τ) may be written again as :

x(τ) = x0 + q − p− Ω1(τ),

where
qτ ∈ Qτ , pτ ∈ Pτ ,
and
Ω1(τ) = w(τ − δ) ∈ IR2.

In the sequel, Pτ , Qτ , and C0 will be balls, and Ω1 has the simple form given above. It is clear,
however, that a large part of the derivation does not use these special forms, and carries over to
more general dynamics and target set.

3 One stage capturability.

In this section we intend to find out all the possible initial states x0, that allow Paul to catch Elise
at the end of a stage of length τ = τ(x0), whatever Elise does during this stage. In a broad terms
we will speak of a state that P can bring into the set C0. We will also find the controls that Paul
has to use for doing so.

3.1 Geometric difference.

First of all let us define the geometric difference (also called Minkovski’s difference, or erosion)

between two sets A and B (noted A
∗

− B. See [2]

A
∗

− B = C ⇒ B + C ⊂ A

B + C ⊂ A⇒ C ⊂ A
∗
− B
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where
B +C = {b+ c | b ∈ B, c ∈ C},

or similarily

A
∗
− B = {a ∈ A such that ∀b ∈ B, a+ b ∈ A}.

We can easily prove the main relation we will use :

B(A, a)
∗

− B(B, b) =

{

B(A−B, a− b) if a ≤ b,
∅ otherwise.

3.2 Capturability.

Let x0 be the initial state. Elise will be caught at the end of a first stage, if a stage duration
τ = τ(x0) ≥ δ and a control p = pτ (x0) of Paul exist, such that for all controls q ∈ Qτ , we have :

x(τ) ∈ C0,

that is, in expanded form
∀q ∈ Qτ , x0 + q − p− Ω1(τ) ∈ C0,

that is
x0 − p ∈ (C0

∗

− Qτ ) + Ω1(τ). (3)

This last equation is meaningful if the erosion C0

∗

− Qτ is not equal to the empty set. Finally such
a p can be found, and thus the initial state x0 can be captured, if a duration τ = τ(x0) ≤ δ exists,
such that :

x0 ∈ (C0

∗

− Qτ ) + Ω1(τ) + Pτ .

Let us note C1(τ) this last set, C1(τ) is then the set of all the initial states that are capturable in
one stage of duration τ . Therefore the set of all the initial states that can be caught in one stage
is :

C1 =
⋃

τ>δ

C1(τ).

As a matter of fact, we will see that C1(τ) is non void only for τ ∈ [τm1 , τ
s
1 ], so that we may write :

C1 =

τs
1
⋃

τ=τm
1

C1(τ),

that is

C1 =

τs
1
⋃

τ=τm
1

(C0
∗
− Qτ ) + Ω1(τ) + Pτ ,

The interval [τm1 , τ
s
1 ] will be described more precisely later.

This set still needs to be computed explicitly, taking into account the specific geometry of the
involved sets. The set C1 may be written again :

C1 =

τs
1
⋃

τ=τm
1

(B(0, R0)
∗

− B(0, bτ)) + Ω1(τ) +B(0, a(τ − δ)),
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that is finally

C1 =

τs
1
⋃

τ=τm
1

B(Ω1(τ) , (a− b)τ − aδ +R0) (4)

In order to define τm1 and τ s1 , we have to take into account

– the erosion condition noticed above :

B(0, R0)
∗

− B(0, bτ) 6= ∅ that implies that τ <
R0

b
= τ s1 ,

– the fact that each stage has a duration greater than the information cost δ :

τ ≥ δ that implies that τm1 = δ.

Furthermore we need to have
R0

b
= τ s1 ≥ τm1 = δ,

that implies that C1 is not the empty set if the condition

R0 ≥ bδ (5)

is satisfied.

– Lastly, we have to make sure that all the sphereB1(τ), τ ∈ [τm1 , τ
s
1 ] are non empty. According

to the last remark (5), R1(δ) = R0 − bδ is positive, so R1(τ) is positive to, since τ ≥ δ, and
then B1(τ), τ ∈ [τm1 , τ

s
1 ], is non empty.

To summarize :

C1 =

τs
1
⋃

τ=τm
1

B(Ω1(τ) , R1(τ)) (6)

where






















Ω1(τ) = w(τ − δ),
R1(τ) = (a− b)τ − aδ +R0,

τ s1 =
R0

b
,

τm1 = δ,

(7)

with the existence condition :
R0 ≥ bδ. (8)

Remark : Let us take the x axis aligned with the vector w. On the one hand we have :

Ω1(τ)

(

ω(τ)
0

)

, ω(τ) =‖ w ‖ (τ − δ),

and on the other hand we have :

R1(τ) = (a− b)τ − aδ +R0.
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It follows that

R1(τ) =
a− b

w
ω(τ)− bδ +R0.

The radius of the sphere is therefor linear in ω(τ), and the coefficient is a−b
w

. In cases where this
coefficient is greater than 1, the set C1 is reduced to the sphere

C1 = B(Ω1(τ
s
1 ), R1(τ

s
1 )).

We still need to make sure that C1 is a non trivial set, that is that C1 is not included in the
capture set C0. We have to make sure that τ ∈ [τm1 , τ

s
1 ] exists such that either the condition

‖ Ω1(τ) ‖ +R1(τ) > R0,

or the condition
‖ Ω1(τ) ‖ −R1(τ) < −R0

is satisfied. Given that ‖ Ω1(τ) ‖ and R1(τ) are increasing, it appears that it is enough to make
sure that one of the two following conditions is true :

(a) ‖ Ω1(τ
s
1 ) ‖ +R1(τ

s
1 ) > R0,

or
if a− b > w :
(b) ‖ Ω1(τ

s
1 ) ‖ −R1(τ

s
1 ) < −R0,

if a− b < w :
(b′) ‖ Ω1(τ

m
1 ) ‖ −R1(τ

m
1 ) < −R0.

One can easily prove that (b′) is always false, that (b) implies that

δ ≤ R0(
1

b
−

1

a− w
),

and that (a) is equivalent to the weakest condition, that will be taken then :

δ ≤ R0(
1

b
−

1

a+ w
). (9)

Conclusion :

For any initial state belonging to the set C1, Paul has an open loop control that makes him
sure to catch Elise whatever she does. Accordingly to (3), if x0 ∈ C1 is the initial state, a duration
τ(x0) = τ and a control pτ (x0) belonging to Pτ exist such that :

−pτ (x0) ∈ (C0

∗

− Qτ ) + Ω1(τ)− x0 ∩ op(Pτ ) = op(Pτ (x0)).

(For a set A, we note op(A) = {a | − a ∈ A).

Paul has to chose a duration τ such that the previous set, Pτ (x0) is non empty, and then he can
play according to any control in it. Nevertheless in order to minimize the duration of this stage,
he must chose the minimum τ such that the set Pτ (x0) is non empty. With the dynamics we have
chosen it is enought to choose τ such the following set

B(x0 − Ω1(τ) , R0 − bτ) ∩B(0, a(τ − δ)

is reduced to a singleton, which contains, then, the right control.
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4 n stage capturability.

In a reccurcive way we define Cn as the set of all initial states that Paul can bring into the set Cn−1

whatever Elise does. In other words, Cn is the set of initial states that Paul can capture, whatever
Elise does in no more than n stages.

We shall prove the following fact :

Proposition :

Cn =

ts
n
⋃

t=tm
n

B(Ωn(t), Rn(t)),

with






























Ωn(t) = w(t− nδ)
Rn(t) = (a− b)t− naδ +R0

tsn =
Rs

n−1

b

tmn = sup

(

tmn−1 + δ,
naδ −R0

a− b

)

,

(10)

under the existence condition :
Rs

n−1 > bδ.

From now on, B(Ωn(t), Rn(t) will alternatively be denoted as Bn(t).

Proof :

Let us suppose the proposition true at the rank n, and let us prove it at the rank n+ 1.
Let x0 be a state that belongs to the set Cn+1. Accordingly to the definition of Cn+1, a duration

τ = τ(x0) > δ and a control pτ (x0) = p ∈ Pτ must exist, such that,

∀q ∈ Qτ , x0 − p+ q ∈ Cn,

that is as previously

x0 − p ∈ (Cn

∗

− Qτ ) + Ω1(τ), (11)

or
x0 ∈ (Cn

∗
− Qτ ) + Ω1(τ) + Pτ .

That allows us to write :

Cn+1 =

τs
n+1
⋃

τ=τm
n+1

( (Cn

∗
− Qτ ) + Ω1(τ) + Pτ ),

where τmn+1 and τ sn+1 are precisely defined further. We have then to compute this set taking into
account the geometry of the sets involved in it.

Cn

∗

− Qτ = {ξτ | ∀qτ ∈ Qτ , ξτ + qτ ∈ Cn} ,

that is

Cn

∗
− Qτ =







ξτ | ∀qτ ∈ Qτ , ξτ + qτ ∈
ts
n
⋃

tm
n

B(Ωn(t), Rn(t)),
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Q

C

B
n

n

(t)

Figure 1:

Due to the shape of the sets, it is equivalent to write (see figure 1 bellow) :

Cn

∗

− Qτ = {ξτ | ∀qτ ∈ Qτ , ∃t ∈ [tmn , t
s
n], ξτ + qτ ∈ B(Ωn(t), Rn(t))}

or still

Cn

∗

− Qτ =

ts
n
⋃

t=tm
n

(

B(Ωn(t), Rn(t))
∗

− Qτ

)

,

=

ts
n
⋃

t=tm
n

B(Ωn(t), Rn(t)− bτ).

We still need to make sure that this last erosion is allowed, and that the result is not the empty
set. As previously that is equivalent to take :

τ sn = Rs

n

b
,

and
τ > τmn = δ,

(12)

and the inequality τ sn ≥ τmn produces the existence condition :

Rs
n > bδ.

For the union, we only keep the t ∈ [tmn , t
s
n] that make the set B(Ω(t), Rn(t)− bτ) non empty. We

can take t ∈ [t̄mn (τ), tsn] with :

t̄mn (τ) = sup(
naδ −R0

a− b
+

bτ

a− b
, tmn ).
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Hence we have

Cn+1 =

τs
n
⋃

τ=τm
n

{(

Cn

∗

− Qτ

)

+Ω1(τ) + Pτ

}

=

τs
n
⋃

τ=τm
n







ts
n
⋃

t=t̄m
n
(τ)

B (Ωn(t) + Ω1(τ) , Rn(t)− bτ + a(τ − δ))







=

τs
n
⋃

τ=τm
n







ts
n
⋃

t=t̄m
n
(τ)

B (Ωn(t) + Ω1(τ) , (a− b)(t+ τ)− (n+ 1)aδ +R0)







=

τs
n
+ts

n
⋃

t+τ=τm
n
+t̄m

n
(τm

n
)

B (w(t+ τ − (n+ 1)δ) , (a− b)(t+ τ)− (n+ 1)aδ +R0)

and finally, using (12) and the reccurence hypothesis (10)

Cn+1 =

ts
n+1
⋃

t=tm
n+1

B(Ωn+1(t), Rn+1(t)), (13)

with


























































tmn+1 = sup

(

tmn + δ,
(n+ 1)aδ −R0

a− b

)

; tm0 = 0,

tsn+1 = tsn +
Rs

n

b
, Rs

n = Rn(t
s
n) ; ts0 = 0,

Ωn+1(t) = w(t− (n+ 1)δ)

Rn+1(t) = (a− b)t− (n + 1)aδ +R0

(14)

with the existence condition.
Rs

n > bδ. (15)

As previously we can prove that the radius Rn+1(t) is a linear function of ωn+1(t) (the absicissa
of the center Ωn+1(t)). The coefficient is still a−b

w
. When this coefficient is greater than 1, the set

Cn+1 is simply the sphere :
Cn+1 = B(Ωn+1(t

s
n), Rn+1(t

s
n)),

We still need to make sure that this set is not a subset of Cn. As previously we have to verify
that one of the following conditions is true :

(a) ‖ Ωn+1(τ
s
n+1) ‖ +Rn+1(τ

s
n+1) >‖ Ωn(τ

s
n) ‖ +Rn(τ

s
n)

or if a− b > w
(b′) ‖ Ωn+1(τ

s
n+1) ‖ −Rn+1(τ

s
n+1) <‖ Ωn(τ

s
n) ‖ −Rn(τ

s
n)

and if a− b < w
(b′) ‖ Ωn+1(τ

m
n+1) ‖ −Rn+1(τ

m
n+1) <‖ Ωn(τ

m
n ) ‖ −Rn(τ

m
n )
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That is equivalent to imposing the condition :

δ < Rs
n

(

1

b
−

1

a+ w

)

. (16)

♦♦

We should point out the rather unexpected fact that Cn(t) is expressed in terms of the total
capture time t, and not of the detailed sequence τ1, τ2, . . . , τn.

As previously the equation (11) gives Paul his control; For each initial state x0 belonging to
Cn, he first have to choose the duration τ(x0) = τ such that the set

Pτ (x0) = op((Cn

∗

− Qτ )) + Ω1(τ)− x0 ∩ Pτ

is non empty, and then he can play according to any control in it. In order to minimize the duration
of the stage he chooses τ minimum such that Pτ (x0) is non empty, which is equivalent equivalent,
with our hypothesis, to choose τ such that Pτ (x0) is a singleton.

5 Capturability sets.

Now a question naturally arises : “Are all initial states capturable in a finite number of stages ?”.
We have chosen not to develop the calculus : it is rather cumbersome and does not have any interest
in itself. We will just expose the results.

First of all we can prove that :

tsn =
R0

b

(

1− αn

1− α

)

−
αδ

1− α

(

n−
1− αn

1− α

)

and
Rs

n = αRs
n−1 − aδ

= αnR0 − aδ
1 − αn

1− α

(17)

with α = a
b
.

The analysis of the variation of these quantities allows us to study the variations of the bound
of the sets Cn. The results are summed up bellow.

The fact that the set of capturability
C =

⋃

n

Cn

is finite or not, depend on the radius R0 of the target. In fact, it is quite natural to think that if
the target is very small, only few initial states will be caught. It has to be noted that the fact that
a− b is greater or smaller than w does not modify the conclusions.

Before giving the results, we first define the radius Rw
c by :

Rw
c

bδ
=

a+ b

a+ w − b
.

We can verify easily that R0
c is a fixed point for the sequence Rs

t given by (17).
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R0 ≤ Rw
c

The inequality (9) is not satisfied. We conclude that, for each initial state x0 6∈ C0, Elise might
always escape.

C = C0.

Rw
c < R0 < R0

c

A positif integer n0 exists such that Cn0+1 is a subset of Cn0
. The set of capturability is then

finit :

C =
n0
⋃

n=0

Cn.

For each initial state in C the capture is done with at more n0 stages.

R0 = R0
c

R0 is a fixed point of the sequence Rs
n. The set C is made up of union of an infinite number of

sets which have the same size.
C =

⋃

n

B(Ωn(τ
s
n), R0).

and

d(Ωs
n,Ω

s
n+1) = cste = w(

R0

b
− δ).

R0 > R0
c

we have :
lim
n→∞

Cn = IR2.

Each initial state can be captured in a finite number of stages.

6 Minimized time for capture.

Sections 3,4 and 5 give us a description of capturability sets as well as Paul’s controls. For each
state of Cn we have given a control that allows him, in the worst case, to bring the state into the
set Cn−1. Furthermore, we have exhibited a control that makes it in minimized time. Nevertheless
the problem of capture in minimax time is not yet solved, since there is no reason to beleive that
minimizing the length of the stage to come is optimal. This has consequences on the length of the
later stages. Moreover, it may happen that in some case it be better to make two short stages than
one longer. In this section we show that, with our hypothesis ((1) and (2) ), this never happens..

6.1 With fixed number of stages.

In this subsection we compute the minimized capture time with fixed number of stages. We will
note Tn(x) the minimum duration to capture Elise, in the worth case, with exactly n stage. By
a classical dynamic programming argument, Tn(x) is then defined by the following recurrence
equations.

T0(x) =

{

0 if x ∈ C0,
+∞ otherwise,

and

Tn(x) =
min
τ∈Jn

(

min
pτ∈Pτ

max
qτ∈Qτ

(τ + Tn−1(x− Ω1(τ)− pτ + qτ ))

)

Jn = [τmn , τ
s
n].

(18)
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We then have the two following propositions :

Proposition 1 :

Tn(x) = +∞ if and only if x /∈ Cn.

Proposition 2 :

Let x be an element of Cn we have :

Tn(x) = min {t ∈ [tmn , t
s
n] such that x ∈ Cn(t)} . (19)

with
Cn(t) = B(Ωn(t), Rn(t)).

Proof

The proof of the first proposition is obvious, we only give the proof of the second proposition.

Let us prove the proposition at the rank 1. Let x be an element of C1, the definition (18) of T0
gives us

T1(x) = min
τ∈Jn

(

min
pτ

max
qτ

( τ + T0(x− Ω1(τ)− pτ + qτ ) )

)

,

and accordingly to the definition (18) of T0,

T1(x) = min

{

τ ∈ Jn such that ∃pτ such that max
qτ

T0(x− Ω1(τ)− pτ + qτ ) = 0

}

,

that is

T1(x) = min {τ ∈ Jn such that ∃pτ such that ∀qτ x− Ω1(τ)− pτ + qτ ∈ C0} ,

or still, using the development of section 3.2 (see p 3)

T1(x) = min {τ ∈ Jn such that x ∈ B(Ω1(τ), R1(τ))} .

Let us suppose now the proposition true until n and let us prove it at the rank n + 1. Let x
be a state that belongs to the set Cn+1, let us compute Tn+1(x). (For x /∈ Cn+1 we know that
Tn+1(x) = +∞). Accordingly to (18) we have

Tn+1(x) = min
τ∈Jn

min
pτ

max
qτ

(τ + Tn(x− Ω1(τ)− pτ + qτ )) .

As x belongs to the set Cn+1 we know that a set that we will note Iτ (x) exists, such that for each
of its element τ , a control of Paul exists that captures Elise whatever she does.

Let us fixe the τ ∈ Iτ (x) and let us compute the following quantity :

Aτ = min
pτ

max
qτ

(Tn(x− Ω1(τ)− pτ + qτ )) .
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Let us note that if τ 6∈ Iτ (x) then obviously Aτ = +∞. Accordingly to the reccurence hypothesis
(19) we have :

Aτ = min
pτ

max
qτ

(min {t ∈ [tmn , t
s
n] = In such that x− Ω1(τ)− pτ + qτ ∈ Cn(t)}) ,

Let us fixe pτ ∈ Pτ (x0), and let us have a look at the quantity

max
qτ

(min{t ∈ In, x− Ω1(τ)− pτ + qτ ∈ Cn(t)}).

Let q̂τ and t̂(qτ ) the arguments of the maximum and minimum above. We have

x− Ω1(τ)− pτ + q̂τ ∈ Cn(t̂) ⊂
t̂
⋃

t≥tm
n

Cn(t).

Let qτ be any E’s control such that qτ 6= q̂τ . Then

min{t, x− Ω1(τ)− pτ + qτ ∈ Cn(t)} ≤ t̂,

and then for any qτ 6= q̂τ ,

x−Ω1(τ)− pτ + qτ ∈
t̂
⋃

t≥tm
n

Cn(t).

we therefore have

max
qτ

min{t ∈ Iτ , x− Ω1(τ)− pτ + qτ ∈ Cn(t)}

= min{t̂ ∈ In, ∀qτ , x− Ω1(τ)− pτ + qτ ∈
t̂
⋃

t>δ

Cn(t)}.

So we can write,

Aτ = min
pτ







min{t̂ ∈ In such that ∀qτ , x− Ω1(τ)− pτ + qτ ∈
t̂
⋃

t>tm
n

Cn(t)}







,

or

Aτ = min
pτ







min{t̂ ∈ In such that x− pτ ∈ (
t̂
⋃

t>tm
n

Cn(t))
∗

− Qτ +Ω1(τ)}







,

As the value of the inner min above depends on pτ , only through its existing, we have

Aτ = min{t̂ ∈ In such that ∃pτ such that x− pτ ∈ (
t̂
⋃

t>tm
n

Cn(t))
∗

− Qτ +Ω1(τ), }

= min{t̂ ∈ In such that x− Pτ

⋂

( (
t̂
⋃

t>tm
n

Cn(t))
∗

− Qτ +Ω1(τ) ) 6= ∅}.

And finally using calculations made before we obtain

Aτ = min{t̂ ∈ In such that x ∈ B(Ωn+1(t̂+ τ), Rn+1(t̂+ τ))}.
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We are now able to compute Tn+1(x) :

Tn+1(x) = min
τ∈Jn

(Aτ + τ)

that is

Tn+1(x) = min
τ∈Jn

(τ +min{ t̂ ∈ In such that x ∈ B(Ωn+1(t̂+ τ), Rn+1(t̂+ τ)) } }

= min{t ∈ In + [τmn , τ
s
n], such that x ∈ B(Ωn+1(t), Rn+1(t))}.

In + Jn = [tmn , t
s
n] + [τmn , τ

s
n]

= [tmn+1, t
s
n+1]

Finally we obtain the proposition for the stage n+ 1, that is :

Tn+1(x) = min{t ∈ In+1, such that x ∈ B(Ωn+1(t), Rn+1(t))}.

♦♦

6.2 Minimized capture time.

In this last subsection we intend to prove that Paul has to minimize the number of capture stages
in order to minimize the capture duration.
Proposition 3 :

If x belongs to the intersection Cn

⋂

Cn+1, then :

Tn(x) ≤ Tn+1(x).

Proof :

Let us start by a lemma . We will note ı(A) the interior of a set A and ∂A its boundary. We
have :

ı(A) = A \ ∂A.

Lemma :

If x ∈ ı(Cn(t)− Cn(t
m
n )), then a real t’ exists such that tmn ≤ t′ < t and x ∈ ∂Cn(t

′).

Proof :

An easy proof is given comparing the two functions d(x,Ωn(t)) and Rn(t).

♦♦

Let us come back to the proof of the proposition. Let x be an element of Cn ∩ Cn+1. Let us
note Tn+1(x) = tn+1 < +∞. On one hand we have :

Ωn+1(tn+1) = Ωn(tn+1 − δ),

and on the other hand :

Rn+1(tn+1) = Rn(tn+1 − δ)− bδ < Rn(tn+1 − δ).
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That allows us to conclude :

∂B(Ωn+1(tn+1), Rn+1(tn+1)) ⊂ B(Ωn(tn, Rn(tn)),

where
tn = tn+1 − δ < tn+1.

Hence x ∈ ı(Ωn(tn), Rn(tn)), and that allows us to write :

Tn(x) ≤ tn < tn+1 = Tn+1(x),

which ends the proof.

♦♦

7 The limit free information case.

Consider what happens when the cost of information decreases. It can be shown that the bounds
R0

−w, R
0
c and Rw

c are linear in δ. Therefore, the capturability set C increases when δ decreases. In
the limit, when δ = 0, information is free, and as expected, each initial state is in C.

Nevertheless, when δ goes to zero, the strategies found in this paper are still piecewise closed-
loop, which is different from the classical, closed loop, optimal pursuer strategy. Indeed, our limiting
strategy is still an optimal closed loop strategy in the following sense.

Let φp denote the optimal piecewise closed loop strategy of the pursuer, when δ = 0, and let
(φ∗, ψ∗) be a pair of optimal state feedback strategies of the pursuer and the evader respectively,
in the classical sense. Let also T denote capture time. Then it can be shown that :

T (φ,ψ∗) ≤ T (φp, ψ
∗) = T (φ∗, ψ∗) ≤ T (φ∗, ψ),

for any strategies φ and ψ.
However, if information is actually free, φ∗ is a better strategy in the following sense:

T (φ∗, ψ) ≤ T (φp, ψ),

for any strategy ψ of the evader.
The interpretation of the last inequality is that φ∗ takes better advantage of the evader’s “mis-

takes” (deviations from ψ∗) than φp, since they are sensed, and thus exploited, immediately and
continuously.
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