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1 Introduction

Using “Rabbit and Hunter” as an example of a dynamic partial information game, we will present
some important features of strategies.

After a description of the game rules, which are particularly simple, we will explore two ways
of solving it. The first one which uses the normal form of the game, provides us with a rather
simple method to obtain solutions, but unfortunately, due to the exponential growth of the number
of strategies with the final time, we are inefficient to compute them. The second one introduces
“behavioral strategies”. We will first compare mixed strategies to behavioral strategies and then
we will restrict our interest to this last class of strategies in order to solve the game.

2 The game.

2.1 description

A poor rabbit is moving along an infinite discrete line ZZ. At each instant he can jump right or left.
l is the maximal length of his motion. A bloodthirsty hunter shoots a bullet at every time, aiming
at a particular position of the line. The very important fact is that the bullet reaches the line two
or more time steps later (two in this paper). As a matter of fact, at each instant of the game one
bullet, or more, is flying to a position of the line ; The hunter knows this position, while the rabbit
lacks this information. Whatever happens, the game finishes at a fixed final time T . The hunter’s
wish is to maximize the probability to hit the rabbit while, for some reason, the rabbit wishes to
minimize it.

We also studied a second version of the game in which the hunter wants to maximize the number
of bullets reaching his opponent, while the rabbit wishes to minimize it. The resolution of this game
brings in tangible alteration only in computation, so we will restrict our paper to the first version
only.

2.2 Dynamics and notations.

In this paper we consider that the bullet takes two time steps to reache its aim. We denote :
• yt ∈ Z, the rabbit’s position at time t,
• ut ∈ U = {−l,−l + 1, . . . ,+l}, the rabbit’s control at time t, that is the length of his jump at
time t,
• yt = y1.y2 . . . .yt the sequence of the rabbit’s successive positions until time t ; Y t the set of such
sequences. The “.” denotes the concatenation of elements.
• If the rabbit is at y at time t, it will be on one of the 4l + 1 possible positions : y − 2l, y − 2l +
1, . . . , y+2l at time t+2. For every y ∈ Z, we denote V (y) = {y− 2l, y− 2l+1, . . . , y+2l} ; with
this definition, if the rabbit is on y at t, vt ∈ V (y) is the hunter’s control.
• Let ya and y be two rabbit’s successive positions, we define the set :
V ′(ya, y) = {ya − 2l, . . . , y − l − 1, y + l + 1, . . . , ya + 2l}.
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• At time t we denote zt, the position the flying bullet is aiming at. z1 = ∞ denotes the fact that
there is no flying bullet at the beginning of the game.

At each instant of time the state is defined by the pair xt = (yt, zt), and the following equations
describe the dynamics of the game :

y1 = y1 given
yt+1 = yt.(yt + ut) = yt.yt + u
z1 = ∞
zt+1 = vt .

Let us dwell on the fact that the hunter alone knows perfectly the state at every time, since the
rabbit does not know the part of the state zt.

3 First approach - Normal form of the game.

A first approach to solve this game is to utilize a classical method of game theory, which is the
normal form of the game. This method uses player’s pure strategies that we describe below.

We can define a pure strategy as a sequence of maps, a map for each game instant. Each map
associates a player’s control to each of his possible observations.

When the rabbit chooses his control the only information he has is the sequence of his past
positions. We can describe a rabbit’s pure strategy, α, through the sequence of his successive
positions from the initial time to the final time T . We call A the set of the rabbit’s pure strategies.

At each time, the hunter’s available and relevant information is the sequence of the rabbit’s
past positions, and the position the flying bullet is aiming at. Thus a hunter’s pure strategy can
be describe as follows : we note B the set of the hunter’s pure strategies :

β ∈ B, β = (β1, . . . , βT−2),

βt : Y t × ZZ → ZZ
yt, z → βt(y

t, z) = v ∈ V (yt)

Each pair of pure strategies, (α, β) ∈ A × B, generates a sequence of states (x1, . . . , xT ), or
similarly two sequences yT = (y1, . . . , yT ) and zT = (z1, . . . , zT ), and to each pair of sequences
yT , zT we can associate the outcome G̃(yT , zT ), such that :

G̃(yT , zT ) =

{
1 if ∃t, yt+1 = zt, that is if R is killed,
0 else.

(1)

The payoff associated to the pair of pure strategies (α, β), is then defined by :

G(α, β) = G̃(yT , zT ),

where (yT , zT ) is generated by (α, β).
Obviously there is no pair of optimal pure strategies, that is a pair of pure strategies that

realizes a saddle point for G. As a matter of fact, if there was a rabbit’s pure optimal strategy, the
hunter could compute it and kill the rabbit for sure, contrarily to the optimality notion. That leads
us to use mixed strategies, which are defined as probability laws respectively on A for the rabbit’s
mixed strategies and on B for the hunter’s one. For a pair of mixed strategies, (p, q), the payoff is
then defined by :

J(p, q) =
∑

α∈A, β∈B
p(α)G(α, β)q(β).

Hence we have to solve a saddle point problem in order to find optimal mixed strategies p∗ ∈
π(A), q∗ ∈ π(B) such that :
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v∗ = min
p∈π(A)

max
q∈π(B)

J(p, q)

= max
q∈π(B)

min
p∈π(A)

(p, q)

= J(p∗, q∗)

The game being finite, we know that the saddle point and consequently mixed optimal strategies
exist. This last problem is classically solved using two dual linear programming problems.

Let’s notice that this first method does not take in account the dynamical aspect of the game.
The dynamics only arises in the strategy description. Each player chooses at random a pure
strategy, then during the whole game he plays according to that pure strategy.

Theoretically the problem is well solved, and it would be so, if it were not for some computational
difficulties. The number of pure strategies becomes too large as the final time T increases, bringing
the size of the linear program beyond practical feasibility.

As seen before a pure rabbit’s strategy is a sequence of T successive positions. If l is the maximal
length of the rabbit’s jump, there are (2l + 1)T−1 possible pure strategies. Though this number is
large it does not prevent us from making computations. Let us compute the number of the hunter’s
pure strategies. For a given time and a given hunter’s observation there are 4l+1 possible hunter’s
controls, and since there are (2l+ 1)t possible observations at time t, and T − 2 decision times, we
come to the conclusion that the number of the hunter’s pure strategies is :

(4l + 1)1+(2l+1)+(2l+1)2+...+(2l+1)T−3
= (4l + 1)((2l+1)T−2−1)/2l,

that is, for example, if l = 1, 625 for only two shooting decisions and 513 for three shooting decisions.
That definitely makes clear that this method is not realistic. Nevertheless the resolution of some
“little ” games (T ≤ 4) helped us to understand some important features of optimal solutions.

4 Behavioral strategies.

In view of this impossibility to compute optimal mixed strategies for games with realistic game
space and final time, we were obliged to divert to another approach. This second approach is built
up on dynamic programming and uses another class of strategies : behavioral strategies.

4.1 Definitions.

We call rabbit’s behavioral strategy a sequence of maps φ = (φ1, . . . , φT−1), where φt associates
a probability law on possible controls at time t, to each of his possible observations at time t.
Consequently φt(y

t)(u) is the rabbit’s probability to jump to yt + u if the sequence of his past
positions is yt = (y1, . . . , yt). We note Φ the set of these behavioral strategies.

Similarly, we call hunter’s behavioral strategy a sequence of maps ψ = (ψ1, . . . , ψT−2), where ψt
associates a probability law on ZZ to each hunter’s possible observation. Then ψt(y

t, zt)(v) is the
hunter’s probability to aim at v at time t, if the rabbit’s past positions are yt, and if a flying bullet
is aiming at zt. Let us note that ψt(y

t, zt)(v) = 0 for each v ̸∈ V (yt). We note Ψ the set of these
strategies.

Any pair, (φ,ψ), of the rabbit and the hunter’s behavioral strategies generates some stochastic
variables yT , zT , and we can define the payoff of the game as the expectation :

J(φ,ψ) = Eφ,ψ(G̃(yT , zT )),

G̃ being defined by (1).
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4.2 Notes.

When players opt for a behavioral strategy, they have a dynamical behavior, which is quite natural.
Indeed, at each instant they choose their control at random according to a probability law provided
by their behavioral strategy, and function of their own information.

On the other hand, let us notice that contrarily to mixed strategies, behavioral strategies do
not care with past shots. Indeed only the last shots has influence on the future. All the past shots
are included in mixed strategies.

4.3 Behavioral strategies, mixed strategies.

We are tempted to think that the set of behavioral strategies is richer than the set of mixed
strategies. A simple example will prove us that this is not so. We will consider the case where
T = 4, and in which the rabbit has only two available positions, that is yt ∈ {1, 2}. Let us suppose
that y1 = 1.

Let us list all pure strategies : For each of the eight pure strategies this table gives us the aim
of the shot for each time (1 or 2), and for each possible information.

time 1 2
information y1 = 1 y2 = (1, 1) y2 = (1, 2)
strategy : 1 1 1 1

2 1 1 2
3 1 2 1
4 1 2 2
5 2 1 1
6 2 1 2
7 2 2 1
8 2 2 2

The set of mixed strategies is thus the set of probability laws on a discrete eight element set.
Its dimension is then seven.

Let us now look at behavioral strategies. They are defined by the five probabilities q1, q2, . . . , q5
of aiming at 1, depending on time and information :

time : 1 y1 = (1) q1
time : 2 y2 = (1, 1), z2 = 1 q2

y2 = (1, 1), z2 = 2 q3
y2 = (1, 2), z2 = 1 q4
y2 = (1, 2), z2 = 2 q5

These five probabilities being free, the behavioral strategy set is then a five dimensional set.

We have shown that two different classes of strategies can be considered. Existence theorem is
available only with mixed strategies, i.e in the richest class. We thus have to deal with the following
problems :

– How to relate mixed and behavioral strategies ?
– Is it enough to consider behavioral strategies ?
– Does there exist an optimal solution, that is a saddle point for J , in this last class of strategies ?

4.4 Definitions.

We define the map the rabbit’s behavior, γR, from the set π(A) of mixed strategies to the set Φ of
behavioral strategies in the following way :

γR : π(A) −→ Φ : p −→ φ

4



such that :

φt(y
t)(u) =

∑
α∈A2

p(α)∑
α∈A1

p(α)
.

where

A1 = {α ∈ A | α = (yt.y′t+1. . . . .y
′
T ), y′t+1, . . . , y

′
T being whatever },

and
A2 = {α =∈ A | α = (yt.yt + u.y′t+2. . . . .y

′
T ), y′t+2, . . . , y

′
T being whatever },

Similarly we define the map the hunter’s behavior, γH , from the set π(B) of mixed strategies to
the set Ψ of behavioral strategies :

γH(q) : π(B) −→ Ψ : q 7−→ ψ

such that

ψt(y
t)(v) =

∑
β∈B2

q(β)∑
β∈B1

q(β)
.

where
B1 = {β = (β1 . . . , βT−2) ∈ B | β1(y1,∞) = v1,

βi(y
i, vi−1) = vi , i = 1, . . . , t− 2 et βt−1(y

t−1, vt−1) = z } ,
and
B2 = B1

∩
{β = (β1, . . . , βT−2) ∈ B | βt(yt, z) = v} .

Note that γR(p) and γH(q) for p ∈ π(a) and q ∈ π(B) are conditional marginal probabilities.
The main property of behaviors is the following :

Theorem 1 :
The payoff J(p, q), p ∈ π(A), q ∈ π(B), only depends on the behaviors γR(p) and γH(q).

Another way to say that :
There exists a mapping J̃ : Φ×Ψ → IR, such that,

∀(p, q) ∈ Π(a)×Π(B), J(p, q) = J̃(γR(p), γH(q)).

This allows us to state the result :

Corollary 2 :
The hunter and rabbit game admits a saddle point in behavioral strategies.

Proofs of these two results are developed in a more general set up in [2]. It should be noticed
that this theory extends to the case of continuously infinite sets of dicision variables. Our concept
of mixed strategies is closer to that of Kuhn than Aumant’s, and probably better suited to actually
solve (short) games.

The aim of the remainder of this article is to find a pair of behavioral strategies which satisfies
the saddle point condition.

5 Optimal behavioral strategies.

5.1 Players’ costs.

We will use dynamical programming technics to define players’ costs. Let us suppose for a while
that the hunter knows the rabbit’s strategy, say φ, and we note ψ his own strategy. Using the
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equation of Kolmogorov, the hunter’s costs can be defined recursively from final time T to initial
time. Let us note Vt(y

t, z) the hunter’s cost at xt = (yt, z), that is the probability to touch the
rabbit before time T if the actual state is (yt, z).

VT−1(y
T−1, z) =

∑
u∈U

φT−1(y
T−1)(u)VT (y

T−1.yT−1 + u,∞, z)

and

Vt(y
t, z) =

∑
u∈U

∑
v∈zz

ψt(y
t, z)(v)φt(y

t)(u)Vt+1(y
t.yt + u, v, z),

(2)

with

Vt(y
t, z, z′) =

{
1 if z′ = yt that is if R is killed,
Vt(y

t, z) else ,
(3)

Similarly let us suppose the rabbit guessed the hunter’s chosen strategy. The rabbit cannot use
the entire state (yt, z) for he does not know the actual value of z. (Here the problem of imperfect
information arises). The rabbit builds a function, Rψ,that provides him with a probability law on
possible values of z ∈ ZZ :

Rψt+1(y
t.yt+1)(z) =

∑
j ̸=yt+1

ψt(y
t, j)(z)Rψt (y

t)(j)

∑
j ̸=yt+1

Rψt (y
t)(j)

(4)

Note that Rψt (y
t)(z) = 0 for z ̸∈ V (yt). We took into account a rabbit’s extra information : “cogito

ergo sum ”. The sum is thus computed only in the cases where the rabbit is alive (j ̸= yt+1) and a
normalization term appears.

Now we can compute the rabbit’s costs, that is the probabilities to hit the rabbit before time
t, knowing only the part yt of the state. Let us note V t(y

t) these probabilities.

V t(y
t) =

∑
z∈zz

Rψt (y
t)(z)Vt(y

t, z), (5)

that is
V T−1(y

T−1) =
∑
u∈U

RψT−1(y
T−1)(yT−1 + u)φT−1(y

T−1)(u),

and

V t(y
t) =

∑
z∈zz

∑
u∈U

∑
v∈zz

ψt(y
t, z)(v)φt(y

t)(u)Vt+1(y
t.yt + u, v, z),

(6)

Let us note that at the initial time we have :

V 1(y
1) = V1(y

1,∞) = J(φ,ψ).

5.2 Theorem.

We can now state a theorem that characterizes optimal behavioral strategies. Its proof can be
found, in a more general set up, in [2].
Theorem 4 :

Let (φ∗ , ψ∗ ) be a pair of optimal behavioral strategies, that is a pair of strategies satisfying
the saddle point condition.
Then
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There exists a sequence of optimal cost functions (Vt)t and (Vt)t such that for all (yt, z) reached
with a non zero probability while playing according to (φ∗ , ψ∗ ) it is true that :

VT−1(y
T−1, z) =

∑
u∈U

φT−1(y
T−1)(u)VT (yT−1.(yT−1 + u),∞, z)

Vt(yt, z) = max
v∈zz

∑
u∈U

φ∗
t (y

t)(u)Vt+1(y
t.(yt + u), v, z)

= max
q∈Σm

∑
v∈zz

∑
u∈U

φ∗
t (y

t)(u)Vt+1(y
t.(yt + u), v, z)q(v)

=
∑
v∈zz

∑
u∈U

φ∗
t (y

t)(u)Vt+1(y
t.(yt + u), v, z)ψ∗

t (y
t, z)(v)

(7)

and
VT−1(y

T−1) = min
u∈U

Rψ
∗

T−1(y
T−1)(yT−1 + u)

=
∑
u∈U

Rψ
∗

T−1(y
T−1)(yT−1 + u)ψ∗

T−1(y
T−1)(u)

Vt(yt) = min
u∈U

∑
z∈zz

∑
v∈zz

Rψ
∗

t (yt)(z)Vt+1(y
t.(yt + u), v, z)ψ∗

t (y
t, z)(v)

= min
p∈Σn

∑
z∈zz

∑
v∈zz

∑
u∈U

Rψ
∗

t (yt)(z)p(u)Vt+1(y
t.(yt + u), v, z)ψ∗

t (y
t, z)(v)

=
∑
z∈zz

∑
v∈zz

∑
u∈U

Rψ
∗

t (yt)(z)φ∗
t (y

t)(u)Vt+1(y
t.(yt + u), v, z)ψ∗

t (y
t, z)(v)

=
∑
z∈zz

Rψ
∗

t (yt)(z)Vt(yt, z) ,

(8)

with Vt(yt, z, z′) defined as Vt(y
t, z, z′) by (3), and Rψ

∗

t by (4).
Furthermore we have :

v∗ = J(φ∗, ψ∗) = V1(y
1) = V1(y

1,∞).

The main difficulty in solving these equations stems from a fixed point problem arisen in them.
As a matter of fact the knowledge of Rψ

∗
is necessary to compute the pair (φ∗, ψ∗) of optimal

strategies, and conversely the knowledge of ψ∗ is necessary to compute Rψ
∗
. This precludes any

attempt to solve them in a classical way. Some attemps in order to solve them with fixed point
algorithms have been done, but up to now they failed.

6 Minimization of the opponent‘s information.

The remainder of this article is grounded on the intuitive idea of the following property on strate-
gies :

“It is quite natural to hope that even if my opponent guesses the strategy I actually play, he
cannot derive any advantage from it. In other words, additional information he can obtain knowing
my strategy does not help him to choose his own.”

One should notice that, at this level of vagueness, this property is indeed enjoyed by the optimal
mixed strategies of a game in normal form.
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We have adapted this last idea to the game under study, on both the rabbit and the hunter.
For the rabbit it comes :
If the hunter guesses the rabbit’s strategy, the relevant variables for him, at time t, if the

rabbit’s past positions are yt, is the place the rabbit may be two time steps latter, that is at time
t + 2, when the bullet shot at time t reaches its aim. The rabbit will strive to make this further
information irrelevant. A way to do that is to choose a strategy φ = (φ1, . . . , φT−1) such that for
each t in {1, . . . , T − 2} and for all y = yt, for all s ∈ {−2l, . . . , 2l} :

Probaφt,φt+1(yt+2 = y + s) =
1

2l + 1
,

that can be expressed through the system :

φt(y
t)(−l) φt+1(y

t.(yt − l))(−l) = 1
2l+1

φt(y
t)(−l) φt+1(y

t.(yt − l))(−l + 1) + φt(y
t)(−l + 1) φt+1(y

t.(yt − l + 1))(−l) = 1
2l+1

φt(y
t)(−l) φt+1(y

t.(yt − l))(−l + 2) + φt(y
t)(−l + 1) φt+1(y

t.(yt − l + 1))(−l + 1)

+ φt(y
t)(−l + 2) φt+1(y

t.(yt − l + 2))(−l) = 1
2l+1

...
φt(y

t)(l) φt+1(y
t.(yt + l))(l) = 1

2l+1 ,

Example : l = 1

t t+ 1 t+ 2

yt−2

yt−1

yt

yt+1

yt+2

φt(y
t)(0)

φt(y
t)(1)

φt(y
t)(−1)

φt+1(y
t.(yt − 1))(0)

φt+1(y
t.y)(0)

φt+1(y
t.(y + 1))(0)

φt+1(y
t.(y + 1))(1)

φt+1(y
t.(y − 1))(−1)

φt+1(y
t.(y + 1))(−1)

φt+1(y
t.(y − 1))(1)

φt+1(y
t.y)(1)

φt+1(y
t.y)(−1)

proba. to be there
1/5
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1/5
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Hunter’s point of view :
If the rabbit guesses the hunter’s strategy, say ψ, the only things that can help him to choose

his control at time t, in yt are the probabilities Rψ(yt)(yt + u), u ∈ U . As a matter of fact,
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Rψ(yt)(yt + u), are the probabilities that a bullet arrives at time t + 1 on the rabbit’s accessible

places. The most unfavourable set up for the rabbit is when there exists a value αψt such that for
all u ∈ U :

Rψt (y
t)(yt + u) = αt.

6.1 A sufficient condition.

We have exhibited a hunter’s strategy that satisfies the last property. We then confronted it with
a rabbit’s strategy that also satisfies a minimized information condition. That allows us to state
the following proposition :
Proposition 5.
hypothesis H1 :

Let φ = (φ1, . . . , φT−1) be a rabbit’s behavioral strategy that satisfies the following minimized
information condition. For each yt and for each i ∈ {−l, . . . , l}, we define the row vector of length
m = 4l + 1 :

Lit(y
t−1) = (0 . . . 0︸ ︷︷ ︸

i+l

φt(y
t−1.yt−1 + i)(−l), . . . , φt(yt−1.yt−1 + i)(l)︸ ︷︷ ︸

2l+1

0 . . . 0︸ ︷︷ ︸
l−i

),

and Nt(y
t−1) the n×m matrix made of the row Lit(y

t−1) (n = 2l + 1, m = 4l + 1) :

Nt(y
t−1) =


L−l
t (yt−1)

L−l+1
t (yt−1)

...
Llt(y

t−1)


For each t ∈ {1, 2, . . . , T} φ satisfies :

φt(y
t)′Nt+1(y

t) = (
1

m
, . . . ,

1

m︸ ︷︷ ︸
m

).

hypothesis H2 :
Let ψ = (ψ1, . . . , ψT−2) be a hunter behavioral strategy such that for each t ̸= 1 :

ψt(y
t, z)′ = (ν, . . . , ν︸ ︷︷ ︸

2l

, 1− 4lν, ν, . . . , ν︸ ︷︷ ︸
2l

) for each z ∈ V ′(yt−1, yt)

ψt(y
t, yt − l)′ = (0, . . . , 0︸ ︷︷ ︸

2l+1

, 1− (2l − 1)µ, µ, . . . , µ︸ ︷︷ ︸
2l−1

)

ψt(y
t, yt − l + i)′ = (0, . . . , 0︸ ︷︷ ︸

i−1

, 12 , 0, . . . , 0︸ ︷︷ ︸
2l+1

, 12 , 0, . . . , 0︸ ︷︷ ︸
2l−1−i

) for each i = 1, . . . , 2l − 1

ψt(y
t, yt + l)′ = (µ, . . . , µ︸ ︷︷ ︸

2l−1

, 1− (2l − 1)µ, 0, . . . , 0︸ ︷︷ ︸
2l+1

) ,

(9)

with

µ =
1

4l
and ν =

βt − 1
m

4lβt
, βt =

∑
z∈V ′(yt−1,yt)

Rψt (y
t)(z) ,

and for t = 1 :

ψ′
1(y

1,∞) = (
1

m
, . . . ,

1

m
) ∈ Σm .

Conclusion C1 :
Under H2 we have :
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ψ satisfies the following minized information condition, that is :
Let (αt)t∈IN be the real sequence :

α1 = 0, αt+1 =
1

m(1− αt)
,

Whatever the sequence yt and for each u ∈ U , we have :

Rψt (y
t)(yt + u) = αt.

We notice that these values depend only on time.
Conclusion C2 :

Under hypothesis H1 and H2, the couple of rabbit and hunter’s strategies (φ,ψ) when it exists,
is optimal.
Conclusion C3 :

Let the numerical sequences (ρs)s and (σs)s be :
ρs+1 =

1

m
σs + ρs

σs+1 = 1− ρs
ρ1 = 0
σ1 = 1 .

The values of rabbit and hunter’s criterions are :

Vt(yt, z) =


ρT−t + σT−tφt(y

t)(z − yt) if z − yt ∈ U

ρT−t else,

and
Vt(yt) = ρT−t+1 + σT−t+1αt .

The payoff is :
v∗ = J(φ,ψ) = ρT−1 .

6.2 Proof.

Conclusion C1.
An easy calculation which uses (4), yields the conclusion.

Conclusion C2 and C3.
They are obtained from dynamical programming. As a matter of fact, the conclusion C1 fixes

the different values of functions Rψt . The equations of optimality, (7) and (8), then reduce to
dynamical equations. The fixed point notion vanishes. The proof then consists of checking that for
each t = T − 1, . . . , 2, ψ and φ are respectively arguments of the minimum and the maximum of
the different costs.

6.3 Restrictions.

It remains to keep a check on conditions which allow existence of strategies satisfying H1 and H2.
hypothesis H1.

A sequence of maps has been exhibited. Nevertheless, the fact that it really is a strategy must
be verified. For each sequence yt, and each z, ψt(y

t, z) must belong to the simplex Σm, that is to
say that µ and ν must respectively stay in the intervals [0, 1

2l−1 ] and [0, 1
4l ]. The only difficulty is

to verify that ν is positive, i.e. to prove that βt ≥ 1
m , hence, αt ≤ 4l

mn , (n = 2l + 1, m = 4l + 1).

10



In order to demonstrate this last inequality, we first notice that (αt)t∈IN is an increasing, recur-

rent sequence, that converges toward
m−

√
m2 − 4m

2m
therefore

αt ≤
m−

√
m2 − 4m

2m
,

and on the other hand :
m−

√
m2 − 4m

2m
≤ 4l

nm
⇔ n2(m2 − 4m) ≥ (8l − 4ln− n)2

⇔ 16l3 − 14l2 − 4l − 1 ≥ 0 .

This last equality is true for l > 1, (one needs only to consider successive derivatives).In the case
l = 1, a detailed (and cumbersome ) analysis shows that there does not exist a hunter’s strategy,
satisfying assumption (H2), for each time t ≤ T − 2, as soon as T > 6.
hypothesis H2.

Attempt to find a general method to study the existence of strategies satisfying H2 have failed.
Nevertheless we have shown that in the case where l = 1 there is no such strategy as soon as T ≥ 5.

6.4 Conclusions.

we can regroup these results in the following table :
Case l = 1 :

T < 4 H1 and H2 we obtain optimal strategies.
are feasible.

T = 4 Only H1 is We obtain a hunter’s strategy that satisfies
feasible. a lower bound of the payoff.

T ≥ 5 neither H1 nor
H2 is feasible.

Case l > 1 :

T ≤ 4 H1 and H2 we obtain optimal strategies.
are feasible.

T ≥ 4 H1 is feasible. We obtain a hunter’s strategy that satisfies
H2 ? a lower bound of the payoff.

7 A new formulation for the rabbit’s costs - Hunter’s equalizing
strategies.

Although this last proposition does not provide a solution it credits the idea of minimized informa-
tion and lets us foresee the importance of functions Rψt . In this section we give another formulation

for the rabbit’s cost. This new formulation emphasises the fundamental role of the functions Rψt .
A consequence of this is the characterization of a class of the hunter’s equalizing strategies, which
is of importance.

7.1 A new formulation of the rabbit’s cost.

Proposition 6 :

Let (φ,ψ) be a pair of the rabbit and the hunter’s behavioral strategies, and let Rψt be the
functions associated to ψ and defined by (4),
then

11



The payoff J(φ,ψ) = V 1(y
1) is computed with the following recursive formulas :



V T−1(y
T−1) =

∑
u∈U

RψT−1(y
T−1)(yT−1 + u)φT−1(y

T−1)(u) ,

V t(y
t) =

∑
u∈U

φt(y
t)(u){Rψt (yt)(yt + u) + (1−Rψt (y

t)(yt + u))V t+1(y
t.(yt+u))} ,

and

V 1(y
1) =

∑
u∈U

φ1(y
1)(u)V 2(y

1.(y1+u)) .

(10)

Proof :

• Time t = T − 1.

It is the equatity (2) at time T − 1.

• Time 1 < t < T − 1.

According to (2) we have :

V t(y
t) =

∑
z∈zz

∑
u∈U

∑
v∈zz

Rψt (y
t)(z)φt(y

t)(u)Vt+1(y
t.(yt+u), v, z)ψt(y

t, z)(v) ,

then we use the definition (3) in order to write :

V t(y
t) =

∑
u∈U

φt(y
t)(u){(

∑
v∈zz

ψt(y
t, yt + u)(v)Rψt (y

t)(yt + u))

+
∑
v∈zz

∑
z ̸=yt+u

Vt+1(y
t.(yt+u), v) R

ψ
t (y

t)(z) ψt(y
t, z)(v)} ,

that is, recognizing the numerator of (4) in the second member of this equality :

V t(y
t) =

∑
u∈U

φt(y
t)(u){Rψt (yt)(yt + u)

+(1−Rψt (y
t)(yt + u))

∑
v∈zz

Vt+1(y
t.(yt+u), v)R

ψ
t+1(y

t.(yt+u))(v)} ,

and finally the formula claimed :

V t(y
t) =

∑
u∈U

φt(y
t)(u) {Rψt (yt)(yt + u) + (1−Rψt (y

t)(yt + u))V t+1(y
t.(yt+u))} .

7.2 A consequence : hunter’s equalizing strategies.

Proposition 7 :

Let ψ be a hunter’s behavioral strategy such that there exists a real sequence (αψt )t satisfying :

∀yt, ∀u ∈ U,Rψt (y
t)(yt + u) = αψt , (11)

αt only depends on time,
then
ψ is equalizing, that is, for each rabbit’s behavioral strategy the payoff J(φ,ψ) only depends on ψ :

∀φ, J(φ,ψ) = Jψ.

12



We note E the set of such hunter’s strategies.

Proof :
Let φ be any rabbit’s strategy. Let us compute the costs V t(y

t) if the hunter plays a strategy
ψ that satisfies the equality (11).
• At time T − 1, according to (10) :

V T−1(y
T−1) =

∑
u∈U

RψT−1(y
T−1)(yT−1 + u)φT−1(y

T−1)(u) ,

then using (11) at time T − 1,

V T−1(yT − 1) = αψT−1 .

this last value is independent of the sequence yT−1, we note :

V T−1(y
T−1) = V T−1 . (12)

• At time t, (10) gives :

V t(y
t) =

∑
u∈U

φt(y
t)(u){Rψt (yt)(yt + u) + (1−Rψt (y

t)(yt + u))V t+1(y
t.(yt + u))} ,

then using (11) and (12) we can write :

V t(y
t) =

∑
u∈U

φt(y
t)(u){αψt + (1− αψt )V t+1} ,

or
V t(y

t) = αψt + (1− αψt )V t+1 .

By induction, V t(y
t) is independent of yt, we note V t(y

t) = V t, and then we have :

V t = αψt + (1− αψt )V t+1 .

• Time 1 :
V 1(y

1) =
∑
u∈U

φ1(y
1)(u)V 2(y

1.(y1 + u))

= V 2

∑
u∈U

φ1(y
1)(u)

= V 2 .

♢♢

Note that the following property :

∃(αt(yt), ∀u ∈ U, Rψt (y
t)(yt + u) = αt(y

t),

is not enough to be sure that ψ is equalizing, Rψt (y
t)(yt + u) must be independent of both u and

yt.
The main interest of this class of strategies lies in the fact that it provides some strategies that

ensure the hunter of a lower bound of the payoff against any rabbit’s counter stoke. Note that the
strategies which satisfy the last proposition are equalizing. In the cases where the assumption (H2)
is not feasible, we have nevertheless lower bounds for the payoff.
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8 A conjecture.

We have just shown the importance of the functions Rψt . In this last section we apply the minimized
information notion on the hunter’s strategies. We first state a conjecture and give further some
justifications. This conjecture allows us to build an algorithm that computes easily the hunter’s
optimal strategies.

8.1 Statement.

There exists a hunter’s optimal behavioral strategy, ψ∗ that satisfies the following property :

∃(αψ
∗

t )t∈IN | ∀yt, ∀u ∈ U, Rψ
∗

t (yt)(yt + u) = αψ
∗

t .

8.2 Justifications.

A first justification lies in the fact that the interpretation of the conjecture in terms of “minimized
information” is quite natural. Another justification comes from the resolution of short games using
the normal form. Indeed, all the examples of solutions we have computed have the right property.
Let us note that for a special game, two different optimal strategies provide the same sequence
(αψt )t. A last justification consists of the proposition 5. If the assumptions are feasible then the
hunter’s optimal strategies satisfy the property (11) and are element of E.

8.3 Consequences : computation of the hunter’s optimal strategies.

Corollary 8 :
The hunter’s optimal strategies lying in E satisfy the following property :

∃(αmax,t)t ∀yt, ∀u ∈ U, Rψ
∗

t (yt)(yt + u) = αmax,t.

and
∀t, αmax,t = max

ψ∈E
αψt .

Corollary 8 :
Proof :

Let ψ∗ be an optimal strategy lying in E, accordingly to the proposition 7 it is equalizing, and
the rabbit’s cost only depends on time :

VT−1 = αψ
∗

T−1

Vt = αψ
∗

t + (1− αψ
∗

t )Vt+1

V1 = V2

ψ∗ must maximize J(φ∗, ψ) = V1 in order to be optimal, and that is to maximize αψ
∗

t at each
time step. (The function x :→ x+ (1− x)a is increasing as soon as a ≤ 1).

Finally we have to find a hunter’s strategy, ψ∗, lying in E satisfying :

(αψ
∗

t )t = (αmax,t)t,

where
αmax,t = max

ψ∈E
αψt .

♢♢
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Let us state a last property before presenting the final algorithm.
Proposition 9 :

Let ψ be a hunter’s strategy lying in E, and (αψt )t be the sequence such that :

αψt = Rψt (y
t)(yt + u),∀yt,∀u ∈ U. (13)

Then
we can find a strategy, ψ′ such that:

(αψ
′

t )t = (αψt )t,

and
∀u ∈ U :
ψ′
t(y

t, yt + u) = ζt(u) , ζt(u) ∈ Σm ,
and
∀z ∈ V ′(yt−1, yt) :
ψ′
t(y

t, z) = ηt , ηt ∈ Σm .

Proof :
At time 1, for each strategy lying in E we have, accordingly to (4) :

R2(y
2)(y2 + u) = ψ1(y

1,∞)(y2 + u) = α2 ,

for each y2 ∈ y1 + U and for each u ∈ U then :

ψ1(y
1,∞)(v) =

1

m
, ∀v ∈ V (y1) .

and

αψ2 = αmax,t =
1

m
,

then

ψ1(y
1) = (

1

m
, . . . ,

1

m
) ,

and then each strategy of E satisfies the proposition at time 1.
Let us suppose the proposition true up to time t − 1, Let us prove it at time t. According to

(13),

αψt = Rt(y
t, z)(yt + u)

=

∑
j∈zz),j ̸=yt

Rψt−1(y
t−1)(j)ψt−1(y

t−1, j)(yt + u)∑
j∈zz),j ̸=yt

Rψt−1(y
t−1)(j)

=

∑
j∈zz),j ̸=yt

Rψt−1(y
t−1)(j)ψt−1(y

t−1, j)(yt + u)

1−Rψt−1(y
t−1)(yt)

and ψ lying in E :

αψt =

(αψt−1

∑
j∈yt−1+U,j ̸=yt

ψt−1(y
t−1, j)(yt + u)) + (

∑
j∈V ′(yt−2,yt−1)

Rψt−1(y
t−1)(j)ψt−1(y

t−1, j)(yt + u) )

1− αψt−1

.
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Let us note :
a =

∑
j∈yt−1+U,j ̸=yt

ψt−1(y
t−1, j)(yt + u)

and ζ(yt + u) such that :∑
j∈V ′(yt−2,yt−1)

Rψt−1(y
t−1)(j)ζ(yt + u) =

∑
j∈V ′(yt−2,yt−1)

Rψt−1(y
t−1)(j)ψt−1(y

t−1, j)(yt + u) ,

that is to say, using the fact that :∑
j∈V ′(yt−2,yt−1)

Rψt−1(y
t−1)(j) = 1− nαψt−1 ,

(1− nαψt−1)ζ(yt + u) =
∑

j∈V ′(yt−2,yt−1)

Rψt−1(y
t−1)(j)ψt−1(y

t−1, j)(yt + u) . (14)

According to a classical property, it is obvious that ζ(yt + u) lies in [0, 1]. Thus we have :

αψt =
αψt−1a+ (1− nαψt−1)ζ(yt + u)

1− αψt−1

.

Making the sum of the equality (14) on each yt + u, or similarly on each z ∈ V (yt−1), we obtain :∑
z∈zz

(1− nαψt−1)ζ(z) =
∑
z∈zz

∑
j∈V ′(yt−2,yt−1)

Rψt−1(y
t−1)(j)ψt−1(y

t−1, j)(z)

(1− nαψt−1)
∑
z∈zz

)ζ(z) =
∑

j∈V ′(yt−2,yt−1)

Rψt−1(y
t−1)(j)

∑
z∈zz

ψt−1(y
t−1, j)(z) ,

(1− nαψt−1)
∑
z∈zz

ζ(z) = 1− nαψt−1

and then ∑
z∈zz)

ζ(z) = 1 ,

we note
ψ′
t(y

t, yt + u)(v) = ψt(y
t, yt + u)(v) ,

and
ψ′
t(y

t, z)(yt + u) = ζ(yt + u) , ∀z ∈ V ′(yt−1, yt−2) ,

and finally we have αψ
′

t+1 = αψt+1.

♢♢

Corollary :
There exists a hunter’s strategy lying in E that satisfies :

(αψt )t = (αmax,t)t ,
ψt(y

t, yt + u) = ηt(u) , ηt(u) ∈ Σm
ψt(y

t, z) = ζt , ζt ∈ Σm , for each z ∈ V ′(yt−1, yt)

(15)

This last statement allows us to present an algorithm that computes the hunter’s optimal
strategies in E, which is overall optimal under our conjecture.
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Algorithm :
• At time 1 :

ψ1(y
1,∞) = (

1

m
, . . . ,

1

m
) .

• At time t :
Let us note :

ψt(y
t, yt + u)(yt + v̄) = ζt(u)(v̄)

et
ψt(y

t, z)(yt + v̄) = ηt(v̄) .

We must solve the following linear programming problem in order to find ηt(v̄) and ζt(u)(v̄) :

max
ζ,η

αψt+1

under

αψt
∑
u∈U

ζt(u)(v̄) + (1− nαψt )ηt(v̄)

1− αψt
= αψt+1 ,

ζt(u) ∈ Σm , ηt ∈ Σm .
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