Certified solutions of polynomials with uncertainties

David Daney, Jean Pierre Merlet, Odile Pourtallier Coprin team

INRIA Sophia Antipolis Méditerranée

December 5th, 2007

MACIS 07, Rocquencourt

$$\begin{array}{c|c} \mathbf{1} & \text{I. Introduction} \\ \hline \mathbf{Problem} \\ P(z) = \sum_{i=0}^{d} [a_i] z^i, \\ [a_i] = [\underline{a}_i, \overline{a}_i] \text{ real intervals.} \\ \hline \text{Find} \\ \\ \Omega_{\mathbb{R}} = \{z \in \mathbb{R}, \exists a_i \in [a_i], i = 0 \cdots d, \sum_{i=0}^{d} a_i z^i = 0\}, \\ \Omega_{\mathbb{C}} = \{z \in \mathbb{C}, \exists a_i \in [a_i], i = 0 \cdots d, \sum_{i=0}^{d} a_i z^i = 0\}. \end{array}$$

2 I. Introduction

Outline

- Motivation
- Interval analysis
- Edge theorem
- Exclusion tests and filtering procedures
- Perspectives

Certified solutions of polynomials with uncertainties

- **3 I**. Introduction
- Motivation

heta, X, Y, determined by solving some real polynomial of degree 6,

$$\sum_{i=0}^{6}a_{i}(l_{1},l_{2},l_{3},A_{1},A_{2},A_{3})\gamma^{i}=0,$$

$$\theta = f_{\theta}(\gamma), \quad X = f_X(l_1, l_2, l_3, \gamma), \quad Y = f_Y(l_1, l_2, l_3, \gamma)$$

Certified solutions of polynomials with uncertainties

4 I. Introduction

- Direct problem : $l_i \in [\underline{l}_i, \overline{l}_i]$, determine the workspace W_{l_1, l_2, l_3} of the robot ?
- Design problem : Determine intervals $[\underline{l}_i,\overline{l}_i]$ such that W_{l_1,l_2,l_3} contains a given workspace W_i

Solving the problem :

Ranges for l_i possibly large to be taken into account.

All possible uncertainties (hopefully small) to be taken into account

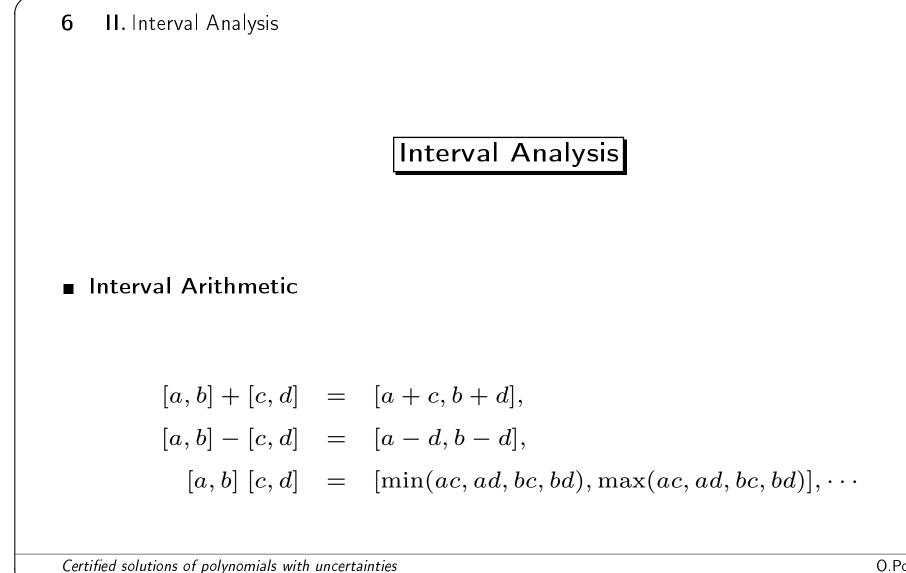
Certified solutions of polynomials with uncertainties

5 I. Introduction Certification :

For some applications (e.g. medical) there is a strong need of **certification**

\rightarrow Interval Analysis techniques

Certified solutions of polynomials with uncertainties



- 7 II. Interval Analysis
- Evaluation

$$f(x) = x^3 + x^2 + x, \quad \{f(x), x \in [X] = [-1, 1]\} = [-1, 3]$$

$$[X]^{3} + [X]^{2} + [X] = [-1, 1] + [0, 1] + [-1, 1] = [-2, 3]$$

Overestimation

$$[X]^{2}([X] + 1) + [X]) = [-1, 3]$$

Certified solutions of polynomials with uncertainties

8 II. Interval Analysis

Bisection Algorithm

- exclusion tests,
- Filtering procedures,
- Uniqueness tests.

Certified solutions of polynomials with uncertainties

- 9 II. Interval Analysis
- Filtering (2B) : Example

Solve $1 + x + x^2 + x^3 = 0$ in [-1, 1]

$$\begin{array}{rcl} x & = & -1 - x^2 - x^3 \\ [-1,1] & & -1 - [-1,1]^2 - [-1,1]^3 = [-3,0], \end{array}$$

Necessarily $x \in [-1, 0]$

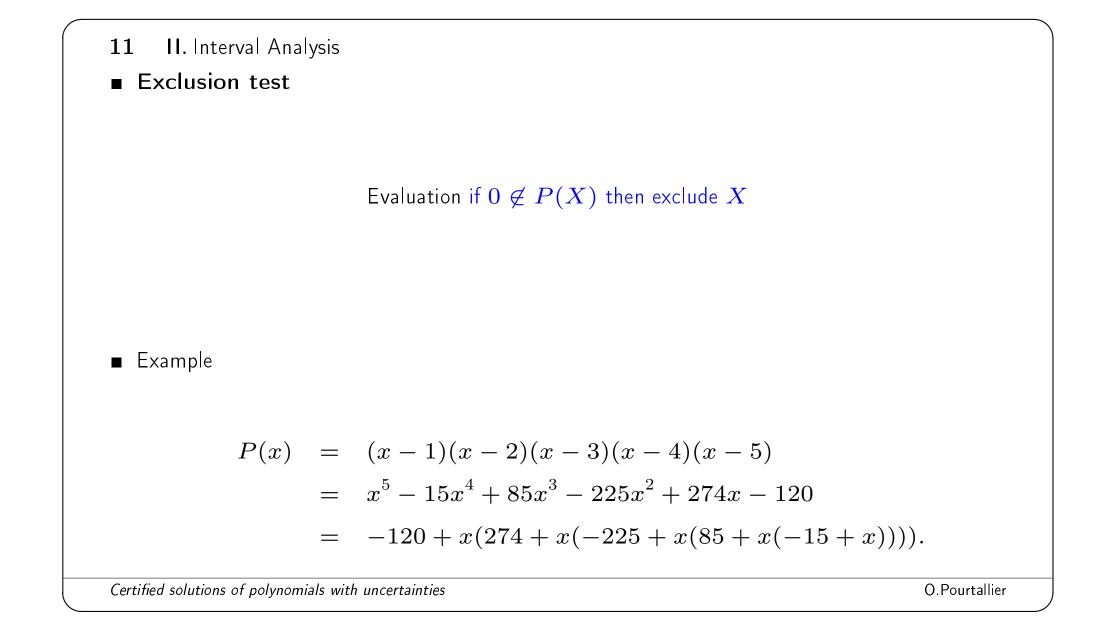
$$x = -x^{2}(x+1) - 1$$

-1,1] -[-1,1]²([-1,1]+1) - 1 = [-1,0],

Certified solutions of polynomials with uncertainties

10 II. Interval Analysis Necessarily x = -1 !

Certified solutions of polynomials with uncertainties



$$X = [4.9, 4.99]$$

$$(X^{5} - 15X^{4} + 85X^{3} - 225X^{2} + 274X - 120) = [-855.229710, 853.060670]$$

$$(-120 + x(274 + x(-225 + x(85 + x(-15 + x))))) = [-133.5775355, 132.1841260]$$
We cannot conclude
$$X = [4.99990, 4.99999]$$

$$(X^{5} - 15X^{4} + 85X^{3} - 225X^{2} + 274X - 120) = [-0.879868..0.877236]$$

$$(-120 + x(274 + x(-225 + x(85 + x(-15 + x))))) = [-0.1373968..0.1347577)]$$
We cannot conclude
$$We cannot conclude$$

13 II. Interval Analysis

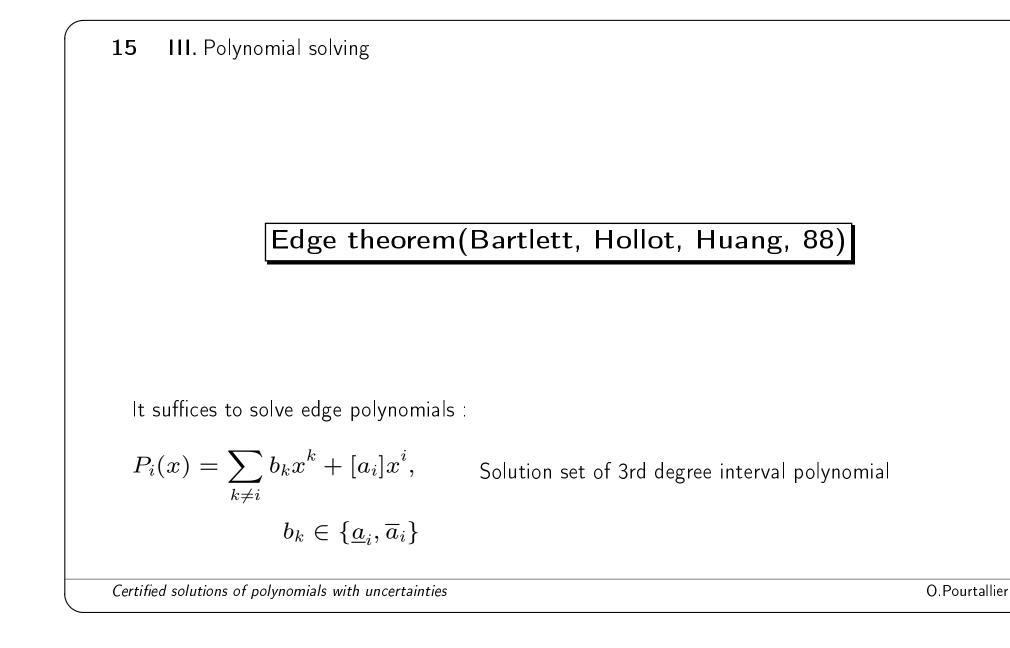
 \longrightarrow need to use adapted exclusion tests

Certified solutions of polynomials with uncertainties

use of polynomials with 1 interval coefficient

- If the number of interval coefficient is more than 1, the complex solution set has an non empty interior set.
- Exclusion test always fail in the interior of solution test (\rightarrow cut).
- $\blacksquare \longrightarrow$ Interior tests or Determine the boundary of solution set
 - \longrightarrow Edge theorem

Certified solutions of polynomials with uncertainties



- **16** III. Polynomial solving
- 1-D uncertainty. The solution is a 0-D space. no need to have interior test.
- $d.2^d$ polynomials with one interval coef to consider.
- The solutions of a part of the previous polynomials are in the interior of the solution set.
- How to select the polynomials whith solutions on the boundary of the solution set ?

- **17** III. Polynomial solving
- Edge theorem revised

Polar representation.

$$N = lcm(2, 3, \cdots, d) \quad I_k = [k\frac{2\pi}{N}, (k+1)\frac{2\pi}{N}]$$

We can determine 2(d+1) edge polynomials necessary to determine the solution set boundary in $\mathbb{R}^+ \times I_k$.

Certified solutions of polynomials with uncertainties

- -2(d+1) edge polynomials to consider in each angular sector,
- $-lcm(2,3,\cdots,d)$ angular sectors to consider....
- -2(d+1) is not the minimal number of polynomials to consider. We may improve further edge theorem.

Allows to solve only low degree uncertain polynomials.

Certified solutions of polynomials with uncertainties

19 III. Polynomial solving

Edge theorem for real solutions

Certified solutions of polynomials with uncertainties

20 III. Polynomial solving

$$x \ge 0, \quad P(x) = [P_{-}^{+}(x), P_{+}^{+}(x)]$$

 $x \le 0, \quad P(x) = [P_{-}^{-}(x), P_{+}^{-}(x)]$

$$P_{-}^{+}(x) = \underline{a}_{0} + \underline{a}_{1}x + \underline{a}_{2}x^{2} \cdots + \underline{a}_{d}x^{d},$$
$$P_{+}^{+}(x) = \overline{a}_{0} + \overline{a}_{1}x + \overline{a}_{2}x^{2} \cdots + \overline{a}_{d}x^{d},$$

$$P_{-}^{-}(x) = \underline{a}_{0} + \overline{a}_{1}x + \underline{a}_{2}x^{2} + \overline{a}_{3}x^{3} \cdots ,$$
$$P_{+}^{-}(x) = \overline{a}_{0} + \underline{a}_{1}x + \overline{a}_{2}x^{2} + \underline{a}_{3}x^{3} \cdots ,$$

Certified solutions of polynomials with uncertainties

```
21 III. Polynomial solving

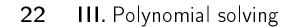
Problem to solve :
```

Certified real solutions of non interval polynomials :

- positive zeros of
$$P_{-}^{+}$$
 and P_{+}^{+}

```
- negative zeros of P_{-}^{-} and P_{+}^{-}.
```

Certified solutions of polynomials with uncertainties



Complex solutions for one interval coefficient polynomials

- Exclusion tests :
- Weyl exclusion test :

$$P(z) = \sum_{i=0}^{d} a_i z^i = \sum_{i=0}^{d} b_i (z - z_0)^i,$$

If $|b_0| > \sum_{i=1}^d |b_i| \delta^i$ then no solution in $B(z_0,\delta)$.

Certified solutions of polynomials with uncertainties

23 III. Polynomial solving

– Yakoubsohn test :

$$M_{z_0}(\delta) = |P(z_0)| - \sum_k \frac{|p^k(x)|}{k} \delta^k.$$

If $M_{z_0}(\delta)>0$, then no solution in $B(z_0,\delta)$.

Certified solutions of polynomials with uncertainties

24	III. Poly	nomial	solving
----	-----------	--------	---------

Real solutions for one interval coefficient polynomials

- Exclusion tests:
- Weyl
- Yakoubsohn
 - Filtering procedures
- 2-B,
- Interval Newton algorithm

Certified solutions of polynomials with uncertainties

- **25** III. Polynomial solving
- Uniqueness tests:
- based on Rouche theorem,
- Krawczyk operator,
- Kantorovitch theorem.

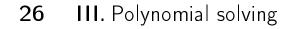
Deflation

Once a solution is known, division by $(z-z_0)$.

First numerical results

Find the 19 solutions of Wilkinson 19.

Certified solutions of polynomials with uncertainties



Perspectives

- There is probably a room for improving Edge theorem for complex solutions
- Implementation for complex solutions,
- Consider correlated Interval coefficients.

Certified solutions of polynomials with uncertainties