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Mixed Equilibrium (ME) for
Multiclass Routing Games

Thomas Boulogne, Eitan Altman, Senior Member, IEEE, Hisao Kameda, Member, IEEE, and Odile Pourtallier

Abstract—We consider a network shared by noncooperative
two types of users, group users and individual users. Each user of
the first type has a significant impact on the load of the network,
whereas a user of the second type does not. Both group users as
well as individual users choose their routes so as to minimize their
costs. We further consider the case that the users may have side
constraints. We study the concept of mixed equilibrium (mixing
of Nash equilibrium and Wardrop equilibrium). We establish its
existence and some conditions for its uniqueness. Then, we apply
the mixed equilibrium to a parallel links network and to a case of
load balancing.

Index Terms—Game theory, mixed equilibrium, Nash equilib-
rium, networks, routing, side constraints, Wardrop equilibrium.

I. INTRODUCTION

WE CONSIDER in this paper the problem of optimal
routing in networks. The entity that is routed is called

a job. There are infinitely many jobs to ship from a source
to a destination (sources, so as destinations, may be different
according to the jobs). The decision maker is called a user,
there exist two types of users, group users and individual users.
A group user has a large amount of jobs to ship, while an
individual user has only one job to ship. Each user has its own
source(s) and destination(s), its own link costs functions, and
its own optimization criterion. We further consider allow for
side constraints, and even more generally, we consider a setting
in which the space of decisions of users is not orthogonal (see
[21] for a similar setting in the case of group equilibrium only).

We group the individual users into classes, and we call also a
group user a class. Then there are several classes of jobs. Each
class corresponds to a large number of single jobs. In each class
the routes to be taken by the jobs of that class are determined
either by a decision maker that centralizes all decisions for that
class, or they are done individually by each individual user. We
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call the first type of per-class decision making a class-central-
ized optimization, and the second approach a class-individual
optimization.

When all classes use a class-individual optimization approach
then the natural optimization concept is the Wardrop equilib-
rium [22]. This concept was very much studied (e.g., [3]–[5],
[8], [20], and the references therein). Most of the work with this
optimization approach has been done in the framework of road
traffic. However, this concept has been also useful in the area
of distributed computing [13], [14], and in telecommunication
networks [6]. In the context of road traffic, an individual user (a
“job” in our terminology) may correspond to a single driver, and
the class may correspond to all the drivers of a given type of ve-
hicle that have a given source and destination. In the context of
distributed computing, a user may correspond to a single job that
is sent to be processed at some computer in a computer-network.
Finally, in the context of telecommunications, a single user may
correspond to a single packet in networks in which the delay
of each packet is minimized [6]. A generalized version of the
Wardrop equilibrium which involves side constraints has been
studied in [18] and the references therein.

When all classes use a class-centralized optimization ap-
proach then the optimization concept is the Nash equilibrium.
There has been much recent interest in this framework in recent
years [1]–[3], [10], [16], [17], [19]. In the context of road
traffic, a class, or a group user, may correspond to a transporta-
tion company, or to a bus company; in both examples we may
assume that the route of each vehicle is indeed determined by
the company and not by the individual driver.

The concept of mixed equilibrium (ME) has been introduced
by Harker [7] (and further applied in [23] to a dynamic equi-
librium and in [11] to a specific load balancing problem with a
completely symmetrical network). Harker has established the
existence of the ME, characterized it through variational in-
equalities, and gave conditions for its uniqueness.

The first part of this paper consists of the mathematical
model and the definition of mixed equilibria (Section II), then
Sections III–IV establish the existence of equilibria under
different approaches and assumptions, and Sections V and
VI derive uniqueness conditions under conditions related to
strict monotonicity. This part of our paper extends Harker’s
model [7] in several directions. i) A general cost function is
considered, rather than the separable cost function given as the
sum of link costs in [7]. This allows one to model routing games
in which the performance measures are rejection probabilities
of calls or loss probabilities of packets. Our general cost allows
in particular different users to have different costs for the same
links or the same paths, which allows to model priorities.
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In some cases we explicitly introduce the term of per-user
“service-rate” for this purpose. ii) We obtain existence and
some uniqueness results for the case where the decisions of
group users are constrained. This allows one to model side con-
straints, and to consider multiobjective problems faced by the
users. For example, a group user might wish to find a strategy
that minimizes its delay, and at the same time constraining its
average loss probability to be below some bound.

In the second part of this paper, we obtain new sets of con-
ditions for the uniqueness of the mixed equilibrium for the case
where conditions of the type of strict monotonicity (such as
those that are used in [7]) do not apply. Some of the new condi-
tions are obtained by making further assumptions on the struc-
ture of possible equilibria (Section VII) and others are obtained
for specific topologies (Section VIII): the parallel link topology
and load balancing models.

II. M IXED EQUILIBRIUM (ME): MODEL AND ASSUMPTIONS

We consider a general network. We denote the set of
nodes, and the set of unidirectional links.1 The
unit entity that is routed through the network is called ajob.

Each job has an origin-destination (O-D) pair as well as a
service rate vector, . We denote the origin, or the source by

and the destination by is an
-vector ( is the number of elements of the set, i.e.,

). The interpretation of can be the speed at which jobis
processed in linkand we assume that .

Each user has a certain amount of jobs to route from a
source to a destination , we call this amount the flow demand
of the user for the O-D pair and we denote it by .

The network is used by two types of users.
The first type of users, referred to asgroup usershave to route

a large amount of jobs. The choices made by each of these users
have a significant impact on the load of the network, and then
on the delays that any other user can expect. We denote by
the set of group users. Each user is characterized by

• one service rate vector ;
• a setof O-D pairs ;
• a vector of demands denotes

the rate of jobs of this class that have to be shipped from
to .

(Note that having several sources and destinations allows in par-
ticular to handle multicast applications, in which several desti-
nations are associated with a single source).

The second type of users, referred asindividual users, have a
single job to route through the network from a given source to a
given destination, with a given service rate. There are infinitely
many individual users and the routing choice of a single indi-
vidual user has a negligible impact on the load of the system. In-
dividual users can be classified according to the pair source-des-
tination and the service rate associated to their jobs. We denote

1A bidirectional link may be transformed into a network of unidirectional
ones where some are of null cost (Appendix B), then the results presented in
this paper are also valid in networks with both unidirectional and bidirectional
links unless the assumptions impose that the links’ cost functions are strictly
increasing.

the set of classes of individual users. Each classof the
second type is characterized by

• one O-D pair ;
• one service rate vector ;
• one flow demand (the “number” of users belonging to

class ).

Note that since all jobs of classhave the same service rate
vector, we shall use to denote the service rate vector of any
one of the jobs that belong to class.

Note also that the elements of the setor of the set can
be considered as a class of jobs characterized by a set of pair(s)
of source and destination and a service rate. Nevertheless the
routing decision of all the jobs of is taken by a single
decision maker, while the routing decision of any single job of

is taken by the individual user who is paired with it.
We denote by the set of all possible classes of jobs,

, and assume that is finite.
A path from to is a sequence of directed

links that goes from to . For we denote by the set
of possible paths for class, by the set of possible paths
for class which go from to , and by

the set of all possible paths .
In this paper, we try to work as much as possible on paths

(i.e., the decision is what fraction of traffic of each class has
to be routed over each path; this is in contrast to the more re-
strictive models such as [19] in which the routing decisions are
how much jobs to route to each outgoing link of each node; this
second type of models implicitly assumes that all sequences of
directed links that lead from a source to a destination are ad-
missible paths). Nevertheless, it will be necessary, sometimes,
to work on link models, i.e., at each node we shall allow each
class to route all the flow that it sends through that node to any
of the out-going links of that node. Therefore, we introduce two
notations for the flows, one in term of paths and one in term of
links.

Each decision maker (a class within or an individual user
belonging to some class in ) has to choose a (set of) path(s)
to route its job(s). For and ), we
denote by the amount of jobs sent through path

link by class . Note again that the meaning of is
slightly different according to whetherbelongs to the set or

. If , then is the amount of jobs of user sent
through , if represents the amount of individual
users of class that choose path to ship their unique job.

Depending on the context, we will denote by, the strategy
of class , either the vector of path flows, or
the vector of link flows, where is
the number of paths (resp. links) in the set .

Let be the flow configuration, i.e., is the vector
, where , and be the set of possible

(the “total” strategy set).
It will sometimes be necessary to distinguish in a routing pro-

file of the part due to the group users, and the part due to the

classes of individual users. We will then write , where

corresponds to the choice of the
group users, and corresponds
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to the choice of the classes of individual users, where
and . We assume that , and that
both and are convex and compact. Note that, as in
[21], we do not assume that has a product form, and thus
the policy used by some classes may restrict the policies used
by other class. This is a general way of introducing constraints
over the policies.

Notations:
Total load on link , where

where
if
otherwise.

Utilization vector which is induced by
.

Total vector of flow demand, .
Let “ ” be the inner product and .

Cost Functions:

• (or , depending on the context) is
the cost function of class .

• (or , depending on the context)
is the cost function of path for each individual user of
class .

The aim of each user is to minimize its cost (according to
the constraint set), i.e., for , and for

.

Let be the set of paths for class which have a
flow strictly positive when the strategy of class is

and let be the flow
configuration where class uses strategy and class
uses strategy .

Definition: is an ME if

s.t.

(Nash equilibrium condition), and

(Wardrop equilibrium condition)

Remark: Wardrop equilibrium condition is equivalent to

(1)

and , where .

III. EXISTENCE OFME THROUGHVARIATIONAL INEQUALITIES

In this section, we present a simple variational inequality
method to establish the existence of ME in the case of no
extra constraints under general conditions on the cost functions
for both types of classes. (An introduction to variational
inequality methods may be found in [15]). More precisely, Let

and
define the (total) strategy set as follows:

Assumptions:

• is convex in and
continuously differentiable w.r.t. .

• is contin-
uous.

For every we denote the derivative of with respect
to , i.e., .

Let us now reformulate the mixed equilibrium conditions.
is a ME if and only if satisfies

— , such that
and

(2)

and2

— and

(3)

where .
Denote by the -dimensional vector

, by the -dimensional vector
, by the -dimensional

vector , by the -dimen-

sional vector , and by the incidence matrix

(see Appendix A).
Then, we have the following.
Lemma III.1: Assume – . is a ME if and only

if satisfies

(4)

(5)

Proof: We have just to note that the conditions (5) are
equivalent to .

Lemma III.2: Assume – . is a ME if and only if

(6)

Proof: Similar to the proof of [3, Lemma 3.2], ((6) holds
if and only if is solution of the linear program ,
s.t. ).

Theorem III.3: Assume – . Then, there exists a mixed
equilibrium.

2Equation (2) are Kuhn–Tucker conditions where� is the Lagrange mul-
tiplier associated to the constraint� = x .
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Proof: is a nonempty, bounded, convex set,
is a continuous mapping on , then there exists a

solution to (6) (see [15, Ch. 1, Th. 3.1].

IV. EXISTENCE OFME: A FIXED POINT APPROACH

In this section we relax the assumptions on the cost functions
of the group users but restrict the cost functions of the individual
users. With these new assumptions we obtain the existence of
the ME (in a setting that allows one to include extra constraints)
using the following approach. It is well known that one may
compute the Wardrop equilibrium by transforming the problem
into an equivalent optimization problem (as if there were only
one decision maker) by transforming the costs in the network,
see [20] and the references therein. In our setting of ME we
shall thus i) transform in a similar way the optimization problem
faced by all individual users into an optimization problem of a
new equivalent single group user by transforming the cost in a
similar way as is done for the Wardrop equilibrium. ii) Then,
we will be faced with a game problem of group users only, for
which we shall use Rosen’s existence theorem [21].

Let be the cost function of the link ,
this function is used only for the individual users. For any indi-
vidual user , we defined the cost function of path
as follows:

Assumptions:

• is a nonempty, convex, and compact subset of
.

•
.

• is a continuous function of
and is convex in .

• is continuous and increasing in.
• for every system flow configuration, if not all

costs of group users are finite then at least one class,
with infinite cost can change its own flow configuration to
make its cost finite, and similarly, an individual user has
always a path of finite cost that it can use.

These assumptions will be imposed in the rest of the paper. They
imply that the policies of the group users may be constrained,
since we do not assume that is an orthogonal set. Thus, the
choice of policies by some group users may restrict the set of
policies available to other group users.

Define where by

where

if
otherwise.

Observe that is convex in ( is increasing) and continuous
in and .

Introduce the convex minimization program

with respect to (7)

Lemma IV.1: Either the convex program (7) has an op-
timal solution which satisfies (1) where or

.
Proof: We have . Define

the Lagrangian function

where .
Since we minimize a continuous and convex function on a

convex, compact set, therefore either there exists an optimal so-
lution or .

Next, we show that an optimal solution satisfies (1).is an op-
timal solution, if and only if satisfies the following necessary
and sufficient Kuhn–Tucker conditions: for any

(which depends on), such that

(8)

(9)

then and the result follows.
Notation: In order to simplify the reading, let

.
We now apply the existence theorem in [21, Th. 1] to the

convex game (in the sense of [21]) with players: the
original group users as well as the additional one who mini-
mizes with respect to .

Therefore, under assumptions , there exists a mixed
equilibrium.

Remark: If we wish to include constraints that involve also
the individual users, such as add constraints on the links capaci-
ties (which then involves constraints on all users) then the condi-
tion of Wardrop equilibrium (all the paths used are of same cost)
may not hold anymore. Nevertheless, Larsson and Patriksson in
[18] show that the program with respect to the new
strategy set leads to another kind of equilibrium (which they
call generalized Wardrop equilibrium. In this case, we can also
apply our Lemma IV.1 [21, Th. 1] to obtain the existence of a
“generalized mixed equilibrium.”

V. UNIQUENESS OFME: ROSEN’S TYPE CONDITION

Definition: Let be a vector, then
is diagonally strictly increasing (DSI) for

and for some if for any and we have

or equivalently

where (10)

The notion of DSI comes from the diagonal strict convexity
(DSC) of [21] In fact, Rosen introduces the DSC for a
maximization problem, when we talk about a minimization
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problem we have to reverse the inequality in order to ob-
tain convexity. The DSC is a condition on the derivatives

, that we cannot apply in our case to the cost func-
tions of individual users, that’s why we introduce the DSI.
Note that DSI is equivalent to

DSC.
In the previous section we considered general convex, com-

pact sets . In this section, we need that be orthogonal,
then we restrict to sets that can be described as follows. Let

, where for any is a
bounded, closed and convex set defined by the following:

• , where
, is a convex

function of , continuously differentiable, and (for
) is a constant;

• .
Then, is an orthogonal constraint set, which is convex.

Remark: may represent (for ) the positivity con-
straints, the flow conservation constraints and some “extra” con-
straints. For positivity and demand constraints are ex-
plicitly described.

We introduce the following assumptions.
Assumptions:

• There exists an interior point in the set of constraints
which are not linear.

• Wherever finite, is continuously differentiable in
(which imposes that is continuous in ).

• depends on only through and .
Notations:

.

Let be the function from to , de-
fined by where

and , and where
.

With some abuse of notation, we shall write for

and

That depends on only through follows from and
that depends on only through follows from the fact that

depends on only through . Let

where and , and let

Note again that for .
Theorem V.1:If is DSI for some , then all

mixed equilibria have the same utilization on links, and more-
over, is unique.

Proof: Let and be two ME Then, we have for
and for , by the necessity of the Kuhn–Tucker
conditions

and such that (11)

(12)

(13)

and according to our Lemma IV.1, we have that

for (14)

which can be restated as

and such that (15)

(16)

(17)

where . Note that
depends on .

We multiply (13) [resp. (17)] by
for and by for ,

and sum on. This gives

(18)

where

(19)

(20)

(21)

where

and

Since is convex in , therefore

and

Moreover . Hence
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The last inequality is due to (12) and (16). By (11), we have
. By (15) and (16), we also have that . Since

therefore, Further

Then

Hence, and it follows from (10) that
if . However, this contradicts (18). Therefore,

, i.e., and .

A. Sufficient Condition for DSI

Let be the set of which correspond to a . Let
the matrix be the Jacobian of

for fixed . That is the th column of is
, where is de-

fined by (10). Then the condition given in [21, Th. 6] holds for
our definition of DSI.

Theorem V.2:A sufficient condition that be diago-
nally strictly increasing for and fixed is that the
symmetric matrix be positive definite for

.
The corollary of this theorem given in [19, Cor. 3.1] holds as

well. Define

where for and .
Corollary V.3: Assume that for some positive , the

symmetric matrix is positive–definite for
every possible and . Then all mixed equilibria have
the same utilization on links and moreover is unique.

Proof: It may easily be seen that, up to reindexing of rows
and columns, equals , and the
required conclusion follows from Theorem V.2 and V.1.

Example: Linear Costs:To illustrate Theorem V.1, we con-
sider the following cost structure, for which uniqueness has al-
ready been obtained in [7] using an alternative approach. Define
the cost functions as follows:

• , where and ;
• ;
• .

Indeed, in such a case, we have

where denotes the -dimensional vector with entries
all 1 and is the diagonal matrix with 1 everywhere on its
diagonal, except at position where it is a 0.
For any is a symmetric positive–definite matrix.

Note that this network is a special case of equal service rates.
One may easily find examples of networks with linear costs but
different service rates where one cannot satisfy the hypothesis
of Corollary V.3. In the next section we deal with such cases and
we obtain a result on uniqueness for the links utilization.

VI. UNIQUENESS OFME: LINEAR COSTS

We next obtain uniqueness of the utilization of some of the
links in general networks with linear costs allowing for pri-
oritizations through different service rates (thus extending the
uniqueness results of [7]).

Assumptions:

• We define the cost function of user as follows:

• is linear and increasing.
We make the following assumption on the links.

• The set is composed of two disjoint sets of links

i) , for which are strictly increasing;
ii) , for which are constant (independent

of ).
Remark: The ’s are the same for all users (group and indi-

vidual users). We have

where

Lemmma VI.1:Assume and . For arbitrary and
, if are finite or are finite, then

if such that

(22)

Proof: Assume that such that . Then
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where

where , since is
linear and increasing (assumption ), and

Moreover, we know that . Then

The last inequality is due to the existence of a link such
that . Therefore, we have (22).

Theorem VI.2:Assume – and . Then, all mixed equi-
libria have the same utilization on links .

Proof: Let be two mixed equilibria. Then, according
to Lemma III.2, we have

and

Then, we obtain that

We can apply Lemma VI.1, since he assumptions imposed
are as follows.

— – , then is finite for all .
— – , then is finite if is a mixed equilib-

rium, due to . It implies that .

VII. U NIQUENESS OFME: POSITIVE FLOWS

The first theorem of this section shows under quite general
conditions that if the global load on some links are the same
under two equilibria, then also the flows of each user on these
links are the same for the group users. Under more restrictive
conditions, the second theorem in the section then, which ex-
tends [19, Th. 3.3], establishes conditions for the uniqueness of
the global load at equilibrium.

Assumptions:

• The set is composed of two disjoint sets of links

i) , for which are strictly increasing;
ii) , for which are constant (indepen-

dent of ).
• All the individual users are grouped in a unique class,

denoted , then we have .
• The service rate can be represented as , and

is finite for all , and .
• At each node, each class may reroute all the flow that

it sends through that node to any of the out-going links of
that node.

• .
• the cost function on link for user satisfies

• is continuous and increasing and is continu-
ously differentiable wherever finite.

• is the amount of traffic of classthat enters the
network at node , if this quantity is negative this
means that traffic of classleaves node at an amount of

. We assume that .
Note that in this section, the cost functions on links for the

group users, , may be different of those used by individual
users, ; while in the previous section we required that both
types of users have the same ones, i.e., .

For each node, we denote by the set of its in-going
links, and by the set of its out-going links. For each node

we have the following demand-conservation constraint

In order to minimize cost functions, we introduce the
Lagrangian function

where is the vector of Lagrange mul-
tipliers for class . Then for to be a mixed equilibrium the fol-
lowing conditions on group users are necessary for any
there exists such that for any

(23)

We have

With , (23) can be rewritten as

(24)

Remark: For is strictly increasing in both
of its arguments.
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Definition: is the set of links such that for any
.

Theorem VIII.1: Assume and – . If for all links
we have then .
Proof: Suppose that there exists a link and a group

user such that . We construct a directed network
, whose set of nodes is identical to the one of our

original network, i.e., and the set of links is con-
structed as follows:

• for each link such that we have a
link

which we assign a flow value
;

• for each link such that we have
a link , which we assign a flow value

.
In other words, we redirect links according to the relation be-
tween and . Remark that and
since for the link . Then, obviously, the values
constitute a positive, directed flow in the network. Since at each
node we must have

this flow has no sources (it is a circulation). Then there exists a
cycle of links in such that for all and such
that .
Consider now a link . Therefore either

or . Then in the first case, we have

(25)

if , where the first equality and the last inequality follow
from Kuhn–Tucker conditions and the first inequality follows
from the hypothesis and the fact that .
Furthermore, if then

(26)

In the second case, we have

if (27)

if (28)

Note that the results of (25) and (27) are in fact identical as
well as those of (26) and (28).
Denote (for all ). From (25)–(28), we
conclude that for a link which comes from a
link in the original network

implies that

and for a link which comes from a link
in the original network

implies that

This means that along the cyclewe would have a monoton-
ically increasing sequence of ’s where a step is with a strict
increase (due to the existence of the link), then ,
which is a contradiction.

We conclude that .
Theorem VII.2: Assume all users have the same source and

destination. Assume and . Let and be two mixed
equilibria. Assume that and

. Then, and moreover
. Then, the assumption cannot be

satisfied.
Proof: Denote (where is defined in
) and

are finite (due to our assumption ). Let
be the vector of Lagrange multipliers associated to .
Since , we have

Equation (24) implies that

(29)

with equality for . A similar relation holds for .
We obtain

(30)

The first inequality follows from the monotonicity and the con-
vexity of for . The second inequality holds in
fact for each pair (and not just for the sum). Indeed, for

this relation holds with equality due
to (29). This is also the case for ,
since in that case . Consider next the case

. Then, we have
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A symmetric argument establishes the case
. We finally establish the last equality

in (30)

Since for all (resp. is increasing (resp. strictly
increasing), we conclude from (30) that for all links in

. The first part of the theorem is established.
From Theorem VII.1, we conclude that

. Thus, the theorem is established.
Remark: The above Theorem extends [19, Th. 3.3]. The

latter first establishes, under a more restrictive setting, the
uniqueness of global link flows. Then it proceeds to conclude
the uniqueness of the actual flows by hinting at an argument
different than Theorem VII.1, taken from the proof of [19, Th.
2.1], which deals with the case of parallel links. We have not
been able to reconstruct that argument, as it uses the fact that
the sum of link flows of each user between two nodes does not
depend on the equilibrium; this indeed is trivially true in the
case of a parallel link topology, but one still needs to show that
this extends to general topology. Our Theorem VII.1, of course,
implies this.

VIII. U NIQUENESS OFME FOR SPECIFICTOPOLOGIES

We establish below the uniqueness of ME in networks with
specific topologies: a network of parallel links, and two load
balancing models from [10]. The uniqueness of the Nash equi-
librium for these models in the equal service rate case
has been established in [19, Th. 2.1], [10, Th. 5.1], and [9]. For
the load balancing networks, uniqueness and characterization

of the ME has been derived in [11] for the case of a completely
symmetric network. We now introduce the following.

Assumptions:

• is a continuous
function, convex in .

• Wherever finite, is continuously differentiable in
. We denote .

• depends of two arguments and and is
strictly increasing in both of them.

A. Parallel Links

In a network with parallel links, all the users have the same
origin and the same destination, and moreover each link is a
path and vice-versa. Then we have

. Even for such a simple network, and even if we took
equal service rates, the conditions in Harker [7] or the DSI con-
dition are typically not satisfied. Indeed, it is shown in [19] that
these type of conditions do not hold in the special case of two
links, two group users (with no individual users), and link costs
that are of the type of an M/M/1 queue, except for very low
traffic demands.

Lemma VIII.1: In a network of parallel links where the cost
function of each user satisfies – and – ,
all mixed equilibria have the same utilization on links and
moreover is unique.

Proof: We recall that and . Let
and be two mixed equilibria. Then and satisfy the

following conditions: for

(31)

(32)

such that

(33)

(34)

where is the
vector of Lagrange multipliers associated to .

The first step is to establish that . To this end,
we use the relations of the proof of [19, Th. 2.1], i.e, we prove
that for each and , the following relations hold:

implies that (35)

implies that (36)

We shall only prove (35), since (36) is symmetric. Assume that
and for some and some . Note

that (35) holds trivially if . Otherwise, if , then
(33)–(34) together with our assumption imply that

(37)

where the last inequality follows from the monotonicity of
in its second argument. Now, since is nondecreasing in its
first argument, this implies that , and (35) is established.
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Furthermore, we have and

(or equivalently

implies that (38)

(or equivalently

implies that (39)

Actually, suppose Hence, by (31)–(32), we obtain

(or

which is a contradiction with our assumption on. Therefore
anda fortiori , (39) is symmetric.

Let and or
. Assume that is not empty.

Since , therefore (36) and (39) imply that
for any

Since (35) and (38) imply that for and ,
therefore

This inequality contradicts our nonemptiness assumption on,
and then . By symmetry it follows that the set

is also empty. Thus, it has been established that

(40)

i.e., all mixed equilibria have the same utilization of links.
So it is now sufficient to establish that in order to

prove the theorem. Equation (35) may be strengthened as fol-
lows:

implies that either

or (41)

Indeed, if then the implication is trivial. Otherwise, if
, it follows that:

so that as required. Assume that for some
. Since , then such that

and (41) implies that

which contradicts the demand constraint for user. Hence,
does not hold for any user , we obtain by a symmetric

Fig. 1. Two processors and two unidirectional links between them.

Fig. 2. The corresponding network.

argument that does not hold as well. Finally, we have
for . Combined with (40), this implies by (35)
and (36) that for all and the lemma is
proved.

B. Load Balancing With Unidirectional Links

We consider a model consisting of two processors,and ,
and a two-way communication lines,and , between them
(see Fig. 1); the two processors can be seen as two links,and ,
between two different sources,and , and a unique destination
(see Fig. 2).

This network can be reformulated in a network of parallel
links ([9]), then we can apply Lemma VIII.1 and obtain the same
uniqueness than previously for this model of load balancing.
This result can be extended to a model ofprocessors with a
two-way communication lines between each couple of proces-
sors (there are exactly lines).

C. Load Balancing With a Communication Bus

We now consider a model made up of two processors,and ,
and a communication bus,, between them (see Fig. 3); the two
processors can be seen as two links,and , between two dif-
ferent sources, and , and a unique destination,(see Fig. 4).

Since a bidirectional link can be transformed in a network of
unidirectional links (Appendix B) mixed equilibria in networks
with unidirectional and bidirectional links exist.

Notation: We denote for by the part of class
whose origin is , i.e., and by the initial flow

demand of userat node . In this model, there exist four paths,
.
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Fig. 3. Two processors and a communication bus.

Fig. 4. The corresponding network.

Each class is faced with the minimization program

s.t.

Note that we allow , if the class has only one
O-D pair, then .

For , we have and
.

We define for

We have for

(42)

and

(43)

where for

and

Then, for to be a mixed equilibrium, we have the following
necessary Kuhn–Tucker conditions. There existssuch that

(44)

where if and if .
Lemma VIII.2: Assume that the service rate of each user does

not depend on the links. Then, in a network with two proces-
sors and a communication bus between them and where the cost
function of each user satisfies – and – , all
mixed equilibria have the same utilization on links.

Proof: See Appendix C

IX. CONCLUSION

We have focused in this paper the ME concept introduced
in [7] and studied it under more general assumptions on the
costs and for more general setting of optimization (which allows
one to use constraints). ME involves groups that contain a con-
tinuum of users, where some of the groups have a single decision
maker for the whole group and others have a decision maker per
user. We further established uniqueness of the mixed equilib-
rium by either restricting to specific topologies or making some
extra assumptions on the equilibrium flows.

A future research direction would be to add also extra
constraints on the individual users (see [18]). We have not
included these constraints here (except for a Remark in the end
of Section IV) since in their presence, the Wardrop principles
need not hold anymore. For example, consider a network of two
parallel links having both load independent costs, and in which
there is a capacity constraint on a link with the lowest cost. If
the latter link cannot accommodate all the flow then we would
expect the outcome of individual optimization to yield the full
utilization of that link and partial utilization of the other one.
Hence, the costs of different links (paths) that carry positive
flow are not the same, thus violating Wardrop principle.

APPENDIX

A. Constraints in General Networks

In a general network, the configuration flows which are fea-
sible are the which satisfy

where

In order to simplify the reading, let , shown in the
equation at the bottom of the next page, whose element is

, where and

and

if and
otherwise.
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...
...

. . .
...

...
...

. . .
...

whose element is , where
and and

if
otherwise.

and

Remark: Here, for all is expressed in term of paths, i.e.,
.

B. Relation Between a Bidirectional Link and a Network of
Unidirectional Ones

A bidirectional link may always be expressed as an equivalent
network of unidirectional ones. Indeed, consider a bidirectional
link between nodesand , where the cost function of this link
is , and where is the aggregate flow through link. Then
we can transform this link in the network of unidirectional links

in Fig. 5 with the cost functions:
and .

These two subnetworks are not equivalent, since in the second
one a user can go from to (of from to ) with the cost

which is not possible in the first one. Neverthelesss, they
become equivalent if we add a constraint in the second network
excluding cycles. This does not affect the equilibrium, since at
equilibrium the paths and will not be used
(as long as costs are nonnegative, of course).

C. Proof of Lemma VIII.2

Let and be two mixed equilibria.
Assume that . Let such that (which
is equivalent to ). Let be the source asso-
ciated with , i.e., , where is the
unique destination. We recall that each class has only
one O-D pair, then in this model, either or ;

Fig. 5. The corresponding network.

define if and if
.

First step: We first prove that for all
or (45)

It is trivial if , then we assume that , we
are faced with the two following cases.

1)
Then either and or and

.
The first implication is trivial, so we have only to check
the second implication.
Let then we have

Therefore, since is strictly increasing in , we have
and finally .

2)
Then either and or and

.
As above we have only to check the second implication,
the first one being trivial ( is the same as

). Let then we have

which implies, since , that which con-
tradicts our assumption , unless we have equality
for and for . Then (45) is established.

Second step:We next prove a statement in the spirit of the first
step, but for

or equivalently (46)

...
...

.. .
...

...
...

. . .
...
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First remark that the equivalence follows from the constraint on
the sum of the flows. (46) holds trivially if , and so we
have to check only the case . To do so, fix some ,
and consider the following two subcases. Assume that

a) . Hence

The first and last equalities follow from the definition of
. The other equality as well as the first inequality

follow from the Kuhn Tucker conditions, whereas the
last inequality follows from the monotonicity assumption

. Using again , this time for the first argument,
we conclude from the fact
that (46) holds. Thus, we try the follwoing instead of a).

b) . (46) holds trivially if . So
it remains to check the case . Recall that

. We
then have for

Here, the first inequality and the equality follow from the
Kuhn Tucker conditions, whereas the last inequality fol-
lows from . Using again , we conclude that (46)
holds in case b) as well.

Then, (46) is established.
Third Step: We shall next prove that our two mixed equilibria
have the same utilization of links.

I) If there exists some such that and

, it has already been proved [see case 2)] in
the first step of the proof of our Lemma).

II) If there exists some such that and

, then and (This is the first
case of the first step of the proof of the Lemma). It then
remains to show that .

Suppose that , thus there exists such
that . i) If , then ,

which implies, due to (46), that and .
We obtain

where the strict inequality follows from and the equality
and the others inequality follow from the Kuhn–Tucker condi-
tions. Using again , we conclude that , which
is a contradiction, then . ii) If , then we shall
show that this implies that
there exists such that and

(47)

Indeed, if and , we have
but since , then

— either there exists such that ,
which implies , and hence (47) is estab-
lished;

— or there exists such that

. In this case (46) implies that or

equivalently . Then there must exist at
least one other class such that (so that

).
Then we can conclude from i) that there exists such

that and . If , we are
faced with the second case of the first step and we have seen
that . Then assume that , therefore,

and we have

where the first equality is due to , the second one to
and the last inequality to and our first assumption

. Hence, , which is a contradiction.

III) If , then according to (46), we
conclude that

(48)

Combining this with , we obtain that

However, since for and
(note that if and

, then ) which

is equivalent to and
by our assumption on . It follows that:

(49)

Yet this, combined with (48), implies that and then
(since ).

Suppose now that then due to (46) and our assumption
, it follows that such that

, i.e., . If , then we have

where the first and third inequalities are due to the strict in-
crease in each argument of the’s and the equalities to

and (42). However, this is impossible. If ,
then we have

where the first equality is due to , the first inequality
to and and the last inequality to . This
implies that and this is a contradiction.

Then and finally . Hence, the
lemma is established.
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