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Mixed Equilibrium (ME) for
Multiclass Routing Games

Thomas Boulogne, Eitan Altmasenior Member, IEEFHisao KamedaMember, IEEEand Odile Pourtallier

Abstract—We consider a network shared by noncooperative call the first type of per-class decision making a class-central-
two types of users, group users and individual users. Each user of jzed optimization, and the second approach a class-individual
the first type has a significant impact on the load of the network, optimization.

whereas a user of the second type does not. Both group users as When all classes use a class-individual optimization aporoach
well as individual users choose their routes so as to minimize their u individual optimizatl pPp

costs. We further consider the case that the users may have sidethen the natural optimization concept is the Wardrop equilib-
constraints. We study the concept of mixed equilibrium (mixing rium [22]. This concept was very much studied (e.g., [3]-[5],
of Nash equilibrium and Wardrop equilibrium). We establish its  [8], [20], and the references therein). Most of the work with this
existence and some conditions for its uniqueness. Then, we applyqstimization approach has been done in the framework of road
the mixed equilibrium to a parallel links network and to a case of . - )
load balancing. traff!c. However, this _concept has been_also useful in 'Fhe area
of distributed computing [13], [14], and in telecommunication
networks [6]. In the context of road traffic, an individual user (a
“job” in our terminology) may correspond to a single driver, and
the class may correspond to all the drivers of a given type of ve-
|. INTRODUCTION hicle that have a given source and destination. In the context of
E CONSIDER in this paper the problem of Optimapistributed computing,ausermaycorresppnd to asingle job that
routing in networks. The entity that is routed is calle _sentto be processed at some computer in a computer-network.

a job. There are infinitely many jobs to ship from a sourc inally, in the context of telecommunications, a single user may

to a destination (sources, so as destinations, may be differé Erespond to a singlg packet in networks.in WhiCh.the delay
according to the jobs). The decision maker is called a usg each packet is minimized [6]. A generalized version of the

there exist two types of users, group users and individual use\{,\éardrop equilibrium which involves side constraints has been

A group user has a large amount of jobs to ship, while aﬁJiUd'ed in [18] and the references thereln_. L
individual user has only one job to ship. Each user has its ownWhen all cIasse; use a class—cent_rallzed optlmlzqt}or} ap-
source(s) and destination(s), its own link costs functions, a anCh then the optimization .concep'g IS the Nash equ[llbrlum.
its own optimization criterion. We further consider allow for ere has been much recent interest in this framework in recent
side constraints, and even more generally, we consideraset%ﬁ%fs [113], [10], [16], [17], [19]. In the context of road
in which the space of decisions of users is not orthogonal (s afhic, a class, or a group user, may.ctorrespond to a transporta-
[21] for a similar setting in the case of group equilibrium onIy)t.Ion company, or to a bus company; in _bqth examples We may
We group the individual users into classes, and we call als@aume that the route of ea(_:h yghlcle |s_|ndeed determined by
group user a class. Then there are several classes of jobs. I'—fg ompany and ngt by the'|.r1d!V|duaI driver. .
class corresponds to a large number of single jobs. In each clas he concept of mixed eq“"'bT'“m_ (ME) has been mt_roduced
the routes to be taken by the jobs of that class are determirs d. arker [7] (and further ap_phed in [23] t9 a dynamic equi-
either by a decision maker that centralizes all decisions for tH lum and in [11] to a specific load balancing problem with a

class, or they are done individually by each individual user. V\%)mpletely symmetrical network). ngker has estth;hed .the
existence of the ME, characterized it through variational in-

equalities, and gave conditions for its uniqueness.
The first part of this paper consists of the mathematical
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In some cases we explicitly introduce the term of per-us&y the set of classes of individual users. Each clas$ the
“service-rate” for this purpose. ii) We obtain existence anskecond type is characterized by

some uniqueness results for the case where the decisions of one 0-D pair(si, d);

group users are constrained. This allows one to model side con-, i i (i .

straints, and to consider multiobjective problems faced by the , 822 nglgsr;i[relgfgﬁg “nu(rf”nbi))(leer"’cc')f users belonging to
users. For example, a group user might wish to find a strategy classi).

that minimizes its delay, and at the same time constraining I.\tlsote that since all jobs of classhave the same service rate

average loss probability to be below some bound. ; .
In the second part of this paper, we obtain new sets of Co\ﬁqctor, we shall usg*® to denote the service rate vector of any
ditions for the uniqueness of the mixed equilibrium for the cas®® of the jobs that belong to class
Note also that the elements of the #étor of the sefV can

where conditions of the type of strict monotonicity (such as . . . .
those that are used in [7]) do not apply. Some of the new cor?hﬁ considered as a class of jobs characterized by a set of pair(s)

tions are obtained by making further assumptions on the Str&g_s_ourc(;a a_n(_j desftml?tlr(]) n _art;d gfserxlfcg ratke. Ng verth_elelss the
ture of possible equilibria (Section VII) and others are obtainﬁ?u“ng ecision of all the Jobs af € V' Is taken Dy a single

for specific topologies (Section VIII): the parallel link topology: ecisiqn maker, While.the' r'outing decision_ of any sin.gle'job of
and load balancing models. 1 € W is taken by the individual user who is paired with it.

We denote byZ the set of all possible classes of jolis—=
N UW, and assume thdt is finite.

A pathp from s € M tod € M is a sequence of directed
We consider a general network. We dengt¢ the set of |inks that goes froms to d. Fori € 7 we denote byP’ the set
nodes, andC ¢ M x M the set of unidirectional links.The of possible paths for clags by P(iu - the set of possible paths

unit entity that is routed through the network is callgdla for classi which go fromu to v, P . Ulue)e ¢ ’p(lu »y» and by
Each jobj has an origin-destination (O-D) pair as well as & e set of all possible pati = Uieﬂj’i_ ’

service rate vectoy,’. We denote the origin, or the source by

s(j) and the destination by(;); ¥ = (u,1=1,...,L)is an

L-vector ( is the number of elements of the s&ti.e., L =

#L). The interpretation of;] can be the speed at which jglis

Il. MIXED EQUILIBRIUM (ME): MODEL AND ASSUMPTIONS

In this paper, we try to work as much as possible on paths
(i.e., the decision is what fraction of traffic of each class has
to be routed over each path; this is in contrast to the more re-
-~ ) ] strictive models such as [19] in which the routing decisions are
processed in linkand we assume thaf > 0, Vi € Z, vl € L. how much jobs to route to each outgoing link of each node; this

Each ”SGZ“L has a certain alrlnﬁgnt of ]obshtoﬂroutgz fromdgecond type of models implicitly assumes that all sequences of
sources to a destination’, we call this amount the flow demandyicacteq links that lead from a source to a destination are ad-

of the usen for the O-D pair(s, d) and we denote it by)?s,d)' missible paths). Nevertheless, it will be necessary, sometimes,

The petwork is used by two types of users. to work on link models, i.e., at each node we shall allow each
The firsttype of_users, referre_d togmup usersiave o route a4 16 route all the flow that it sends through that node to any
alarge amount of jobs. The choices made by each of these Ut 'the out-going links of that node. Therefore, we introduce two

have a significant impact on the load of the network, and thepyaiqns for the flows, one in term of paths and one in term of
on the delays that any other user can expect. We denaté bylinks

the set of group users. Each user A is characterized by Each decision maker (a class withif or an individual user

* one service rate veictqu' = (Bices belonging to some class i) has to choose a (set of) path(s)

* asetof O-D pairsD . . . to route its job(s). Foi € Z andp € P’ (resp. [ € L), we
* avector of demands’ = (¢{, ;))(s,)epis ¢{,,q) d8NOtES denote byzi | (vesp. zi) the amount of jobs sent through path

(») l
the rate of jobs of this class that have to be shipped fromresp. link ) by class.. Note again that the meaning:of , is
D

stod. slightly different according to whethébelongs to the seY or

(Note that having several sources and destinations allows in pay- |f ; € A, thenz? , is the amount of jobs of usére A sent
ticular to handle multicast applications, in which several desﬂiroughp if i € Vv(p)xi represents the amount of individual

nations are associated with a single source). users of class € W that choose pathto ship their unique job.
The second type of users, referredradividual usershave a Depending on the context, we will denote By the strategy

single job to route through the network from a given source tof |ass;. either the vectofzi, ., ...,a% ) of path flows, or
given destination, with a given service rate. There are infinite ¥e vect(’)r(xi )7 of “(é)k’ rovjvs(I\;\;%erePi (res L), is
many individual users and the routing choice of a single in ke number ;L)’f'bé.EhSL(l’eSp links) in t'he it (resp C;j'
vidual user has a negligible impact on the load of the system. In- . . . e

Let x be the flow configuration, i.e.x? is the vector

cpwd_ual users can bg classified accprdmg to thg palrsource—d sl—7 . 21), wherel = #1, andX be the set of possible
tination and the service rate associated to their jobs. We dentjje’ °, R

e “total” strategy set).
It will sometimes be necessary to distinguish in a routing pro-

file x of X the part due to the group users, and the/eart due to the
1A bidirectional link may be transformed into a network of unidirectional T . . X

ones where some are of null cost (Appendix B), then the results presente@@Sses of individual users. We will then write= KV where

this paper are also valid in networks with both unidirectional and bidirectional .7 , 1 N A .

links unless the assumptions impose that the links’ cost functions are strictff ) (z%,...,27) €X COfresPQndS to the choice of the
increasing. group users, ant)T = (21, ..., 2") € A corresponds
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to the choice of the classes of individual users, whére: #N° n =3, #P, w =, #P n+w =3, #P" and
andW = #W. We assume that = A" x A, and that define the (total) strategy sét as follows:

both A" and X*¥ are convex and compact. Note that, as in

[21], we do not assume that"" has a product form, and thus ‘ ‘

the policy used by some classes may restrict the policies uskd= { xR | Vi € Z,¥(u,v) € D*,¥p € P,

by other class. This is a general way of introducing constraints

over the policies.

Notations: i >0 Y
Pl Total load on linkl, p, = >°, .7 pi, where o) = Z Tp) = V)
pEPElMU)
;1 : Assumptions:
Pr= 7 Z Bip(y) e (A1) Vi € N, Ji(x) : X — [0,00) is convex inz’ and
- pEP _ continuously differentiable w.r.rz:ép), Vp € P
=2 wheres,, = { 1 iflep, * (A2)¥i e W.Yp e PP Fj, (x) : X — [0,00) is contin-
1 0 otherwise. UOUS.
For everyi € N we denote the derivative of (x) with respect
p Utilization vector which is induced by, p” = tox, K{,(x),i.e. K, (x) = (8/.8a:§p))Ji(>lc).. N
(p1,--->PL)- Let us now reformulate the mixed equilibrium conditions.
P Total vector of flow demandp = (¢i)iez. x € &X' is a ME if and only ifx satisfies
Let“." be the.inner product an®; := (8/dz"). — Jda=ax),a= (aéuﬂ;))ie./\/,(u,'v)eDfv such that'i
Cost Functions: N, ¥(u,v) € D" andVp € P,
o J': X — [0,00) (0r [0, cc], depending on the context) is
the cost function of classe . _ K{ (%) — af,, ) 2 0; (K (n (%) — ozéu’,”)) i =0 (2)
© By X — [0, 00) (or [0, o], depending on the context)
is tf‘le cost function of patp for each individual user of anc ‘
classi € W. — VieWandvp e P’

The aim of each user is to minimize its cost (according to i i ( i Z) i
) X 4 — At > — =0.
the constraint set), i.e., far € A, min,:cy: J'(x), and for Fop(x) = A" 20 (I, (x) — A" )2y =0 ®3)

i€ W?ininpepi Fpy (x). . ) whereA’ = A*(x) := min,cp: F(ip) (x).
flow strictly positive when the strategy of clagsis z* ( Kip)(x))ie Npepis by F(x) the w-dimensional vector

i* i =i i ( :
(vp € PT(x), 2, > 0) and let(x™",y") be the flow gy _ (Fly (X))iew.pepi» by T(x) the (n + w)-dimensional

configuration where class(j # i) uses strategy’ and classg K(x) ‘ _
uses strategy’. vector?'(x) = ( F(x) ), by Athe (32, #D" + W)-dimen-
Definition: x € & is an ME if ) o L :
sional vector4 = ((Ai) ), and byA the incidence matrix
iCW
. ‘ o ‘ o (see Appendix A). -
VieN, Vy'st(x"y)ed, J(x)<J(x"y") Then, we have the following.
(Nash equilibrium condition), and Lemma lll.1: AssumeAdl-A2. x € X is a ME if and only
Vie W, VpeP, Vp e PU(x), F(x) < Fly(x) Fxsatsfies
(Wardrop equilibrium condition) T(x)—AA>0 (I'(x)—AA)-x=0 (4)
ATx =0, x>0 (5)

Remark: Wardrop equilibrium condition is equivalent to
Proof: We have just to note that the conditions (5) are
] ] ] N equivalenttax € X'. O
Fi(x)—A">0 (F(Zp)(x) - AZ) z,y=0 (1)  Lemmalil.2: Assumedl-A2.x € X is a ME if and only if

Vi € Wandvp € Pi, whered’ = Al(x) := minyep: Fl (). Ix) (y—-x)20 vyed. )

Proof: Similar to the proof of [3, Lemma 3.2], ((6) holds
if and only if x is solution of the linear programin, 7(x) -y,
st.ATy =@,y > 0). O
In this section, we present a simple variational inequality Theorem I11.3: AssumeA1-A2. Then, there exists a mixed
method to establish the existence of ME in the case of reuilibrium.
extra constraints under general conditions on the cost functionzs _ N o
for both types of classes. (An introduction to variationa| Equation (2) are Kuhn—Tucker conditions wherg ,, is the Lagrange mul-

) . . ) l iated to th traipt, ., = .
inequality methods may be found in [15]). More precisely, " er associated to the constraint, ., = 3. a2

I1l. EXISTENCE OFME THROUGH VARIATIONAL INEQUALITIES

perl

(u,v)



906 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 6, JUNE 2002

Proof: X C R" is a nonempty, bounded, convex sBt; Observe thaff is convex int (f; is increasing) and continuous
X — R"™ is a continuous mapping of’, then there exists a in s andt.
solution to (6) (see [15, Ch. 1, Th. 3.1]. O Introduce the convex minimization program
o F i w
IV. EXISTENCE OFME: A FIXED POINT APPROACH min f(s, t) with respect t¢ € X @)

In this section we relax the assumptions on the cost functionsLemma 1V.1: Either the convex program (7) has an op-
of the group users but restrict the cost functions of the individuiinal solution which satisfies (1) where = (s,t)* or
users. With these new assumptions we obtain the existenc&bfe A", f(s,t) = +00. ‘ )
the ME (in a setting that allows one to include extra constraints) Proof: We havel? (s, t) = (9/9t(,,)(® f(s, t)). Define
using the following approach. It is well known that one mashe Lagrangian function
compute the Wardrop equilibrium by transforming the problem 1 W
into an equivalent optimization problem (as if there were only At o) = (Au(t,a0), o Aw(t, @)
one decision maker) by transforming the costs in the ”et‘NOWhere\ﬁ €W Ai(t,af) = <I>f(s,t) T ai(¢ — Epepf 4

. . ).
see [20] and the references therein. In our setting of ME Wegince we minimize a continuous and convex funé]ffon on a

shall thus i) transform in a similar way the optimization problerg, ey compact set, therefore either there exists an optimal so-
faced by all individual users into an optimization problem of fution orvt € AW f(s t) = +oo
Jt) = +oo.

new equivalent single group user by transforming the cost in Next, we show that an optimal solution satisfies £i3.an op-

similar way as is done for the Wardrop equilibrium. ii) Theny 4| soution, if and only ift satisfies the following necessary
we will be faced with a game problem of group users only, fQf, gyfficient Kuhn—Tucker conditions: for ang W Ja‘e

which we shall use Rosen’s existence theorem [21]. R (which depends o), such that
Let f; be the cost function of the link f; : (0, 00) — (0, 0],
this function is used only for the individual users. For any indi- V:®f(s,t)—a'(1,...,1)Y >0 (8)
vidual useri € W, we defined the cost function of pathc 7* (V0 f(s,t) —a'(1,...,.)")TF =0 9)
as follows:
‘ s 1 thena’ = A’ and the result follows. O
i ip . . . . .
Fy(x) = Z — filp) = Z — filpr)- Notation: In order to simplify the reading, lef;(p) =
iz M tcp 11 (1/ i) fulpr).-

We now apply the existence theorem in [21, Th. 1] to the

Assur/nptlon_s: convex game (in the sense of [21]) witiV + 1) players: the
* (A1) X'is a nonempty, convex, and compact subset giqina| v group users as well as the additional one who mini-

R™. o mizesf(xV,x") with respect tax’¥ € A".

s (A2 X = XV e R"[Vi e W,Vp € PP, > Theréfore,un<)jerassumptio,|21$1—A’5,there exists a mixed
Ovzper Ty = ¢'}. equilibrium.

« (A'3) J'(x) : & — [0, 00] is a continuous function at Remark: If we wish to include constraints that involve also
and is convex inz*. the individual users, such as add constraints on the links capaci-

* (A’4) fiis continuous and increasing . ties (which then involves constraints on all users) then the condi-

* (A’5) for every system flow configuratiow, if not all  tion of Wardrop equilibrium (all the paths used are of same cost)
costs of group users are finite then atleastone classY”  may not hold anymore. Nevertheless, Larsson and Patriksson in
with infinite cost can change its own flow configuration tq18] show that the programuin f(z*¥) with respect to the new
make its cost finite, and similarly, an individual user hastrategy set leads to another kind of equilibrium (which they
always a path of finite cost that it can use. call generalized Wardrop equilibriunin this case, we can also

These assumptions will be imposed in the rest of the paper. Thaply our Lemma IV.1 [21, Th. 1] to obtain the existence of a
imply that the policies of the group users may be constrainegeneralized mixed equilibrium.”

since we do not assume thit¥ is an orthogonal set. Thus, the

choice of policies by some group users may restrict the set of V. UNIQUENESS OFME: ROSEN S TYPE CONDITION

policies available to other group users.

Define f(s, t) wheres € AV, t € X by Definition: Let T(x) € R" be a vector, thew(x,r) =

> rT(x) is diagonally strictly increasing (DSI) for € X

i o and for some: > 0 if for any x andx € X' (x # x) we have
f(s,t) = — lZ/O fi(7) dT] " ‘ o ‘
et > onl(e =& IR - TH®)) > 0,
where =1

or equivalently (x — x) - y(x,7) + (x — %) - y(x,7) < 0,
N NtW T 1 2 n
B 1 i 1 i wherey” (x,7) = (1" (x), 2 T°(x),...,r,T"(x)). (10)
pL= Z i Z bipsiyy | + Z i Z bipti)
i=1 " \pcp i=N+1 7 \pcpi The notion of DSI comes from the diagonal strict convexity

5 — 1 iflep, (DSC) of [21] In fact, Rosen introduces the DSC for a
» =)0 otherwise. maximization problem, when we talk about a minimization
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problem we have to reverse the inequality in order to ob- o -g'(z)=0 (o =(al,...,al)T) (12)
tain convexity. The DSC is a condition on the derivatives ‘ ¢ o

(V,T;), that we cannot apply in our case to the cost func- ViJ'(x) +Za}%g}(ﬂ) =0 (13)
tions of individual users, that's why we introduce the DSI. j=1

Note thato(x,r) = Y., rV,T%(x) DSI is equivalent to . _
s(x,7) = Y1, :Ti(x) DSC. andVi € W according to our Lemma IV.1, we have that
In the previous section we considered general convex, com- ) ) N
pact setst?. In this section, we need that be orthogonal, forp e 7* (F(Zp)(x) - AZ) Ty =0 (14)
then we restrict to sets that can be described as follows. Let
X = X' x X2 x - x X! where for anyi € Z, X% isa Which can be restated as
bounded, closed and convex set defined by the following:

e Vi€ N, X = {af|gi(z') < 0}, WheregiT(a:i) _ >0, g¢'(z*)<0 and 33> 0suchthat (15)

(gl(a? ),...,gci(x )),gj(a? ), 1 =1...,¢,IS aconvex Bzt =0 </3z — (/3(11)7”'7/321”_)) ) (16)
function ofz*, continuously differentiable, andg (for ¢ € ‘ ‘ ‘
N) is a constant; ‘ ‘ ‘ Fi(x) -3 — A,....,D)T =0 (17)
SViEW Xl={af] —al) <07 cpial, = o). . ‘ ‘
Then, &' is an orthogonal constraint set, which is convex. ~ where F* (x) = (F{,(x),... ,F(Zpi)(x)). Note that

Remark: g' may represent (foi € N) the positivity con- g = (8¢,i € W) depends orx.
straints, the flow conservation constraints and some “extra” con-We multiply (13) [resp. (17)] by;(i* — )7 (vesp. ryy (i —
straints. For € W positivity and demand constraints are exz*)T) for x and byr;(z* — #°)7 (resp. rw(z* — 39)7T) for %,

plicitly described. and sum orni. This gives
We introduce the following assumptions.
Assumptions: dy +dw + 60+ =0 (18)
 (B1) There exists an interior point in the set of constraints
which are not linear. where
* (B2) Wherever finite,J? is continuously differentiable in PR [P
z! (which imposes thaf is continuous inz?). dy =Y ri((F - &) -T'(X) + @ - ) -T'(x)) (19)
* (B3) J* depends o only throughz* andp. ieN
Notations: , dy=rw > (x’(p) - az’(p)) (F(”p) () — F), (5())
(VI (x) = (V1J1(X),VQJQ(X),W,VNJA x)fF(x) = iEW pep
(Jalon), falp2)s- o Folpr)).T = (7)), (20)
p— o, . p— . / & .
Let y be the function fromX to AN x RE, de- b = Z i, dw = Z rwhBi + Z wCi (21)
fined by y(x) = y = (@&'Y...,s", ™7, where N e e

Vi € Ny = z'andy™ = (y1",...,y")T, and where \nere

Vie L,y =p) = EzEW(‘/E;/N;)
With some abuse of notation, we shall write for= y(x)

J'(y)=T(yx)=7T(x) and f(y)=fy(x)=fx). i=1

4 - Vigl (&
ThatJ* depends o only throughy (x) follows from (33) and L g{Ex )i o
that f depends o only throughy (x) follows from the fact that Bi=p"-(@@" —a")-p (@ -z
f depends orx only throughp. Let and
PCNUW peF

whereVi € N'T(y) = Ji(y) and?™(y) = f(y), and let SinceVi € N, Vj € {1,...,c;} ¢} is convex iz, therefore
Yy, r) = (nTHy), raT?(y), ..., rn TN (y), v TV (y)). (& —7) - Vigh(z') < gi(#) — gi(a)
Note again that fof € {1,..., N} U {W}, Ti(x) = T(y). and o o o o

Theorem V.1:1f o(y,r) is DSI for somer > 0, then all (@' —1") - Vigi(3") < g;(3") — g5(3").
mixed equilibriax have the same utilization on links, and more- ‘
over,x"V is unique. Moreovervi € N, Vj € {1,...,¢;} o > 0. Hence

Proof: Letx andx be two ME Then, we have far = x
and forx = %, Vi € NV, by the necessity of the Kuhn—Tucker T i il i i
conditions Bi < Z [ (g5(@) — g3(&)) + &5 (g5(2") — g5(3))]
J=1

g'(z") <0 and o’ > 0such that (12) < (@ - g'@) +a - g'(@h)).
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The last inequality is due to (12) and (16). By (11), we hawsherel denotes thé N + 1)-dimensional vector with entries

B; £ 0. By (15) and (16), we also have th&f < 0. Since all 1 and@ is the diagonal matrix with 1 everywhere on its
diagonal, except at positidiV + 1, N + 1) where itis a 0.
Yie W, Z iy = Z Ty =¢ Foranyl € £,T'(y;, 1) is a symmetric positive—definite matrix.

Note that this network is a special case of equal service rates.
One may easily find examples of networks with linear costs but
therefore,C; = 0. Further different service rates where one cannot satisfy the hypothesis
of Corollary V.3. In the next section we deal with such cases and

_ we obtain a result on uniqueness for the links utilization.
dy=rw > > > (ﬂ?(p) 3?(p)) bip Z(fl(pl) fulon)) a
€W pCPiICL

pCP? pCP?

VI. UNIQUENESS OFME: LINEAR COSTS
—hvaflpl — filp) (@" —w") -

s We next obtain uniqueness of the utilization of some of the

links in general networks with linear costs allowing for pri-
Then oritizations through different service rates (thus extending the
uniqueness results of [7]).
dv+dw = (F-3)-7F:7) +(F -3)-F,7) Assumptions:
* (C1) We define the cost function of usee N as follows:
Hence,6» < 0, 6, < 0 and it follows from (10) thatiy +

dy < 0ify # y’ However this contradicts (18). Therefore,

y=v.ie.x¥ =xVandvie £ p =p. O J(x) = Z%mzélﬁu—;ﬁ(m)-
pcP lel

A. Sufficient Condition for DSI

Let Y be the set ofy which correspond to & € X. Let * (€2) fils Iinear and increaeing. _
the (N + 1) x (N + 1) matrix I'(y, r) be the Jacobian of We make the following assumption on the links.

v(y,r)) for fixed » > 0. That is thejth column ofl'(y, r) is * (D) The setL is composed of two disjoint sets of links
(Ov(y,r)/0v"), 5 € {1,..., N} U {W}, wherey(y, ) is de- i) £z, for which f;(p;) are strictly increasing;

fined by (10). Then the condition given in [21, Th. 6] holds for i) Le,forwhichf,(p;) = f; are constant (independent
our definition of DSI. of p1).

Theorem V.2:A sufficient condition thatz(y, ) be diago-
nally strictly increasing foyr € Y and fixedr > 0 is that the
symmetric matri{l'(y,r) + I'(y,r)] be positive definite for

Remark: The f;'s are the same for all users (group and indi-
vidual users). We have

ye i
The corollary of this theorem given in [19, Cor. 3.1] holds as K(z )( X) = L(X)
well. Define 9z,
. 37? 3fl(ﬁl)>
o => bip— ”: < L2 ) where
Fl(ylﬂ’) _ {ma ﬂ} IeL Nz Ip
Y )i, Nyupvy K(x)
T(x) = Flx) )

where fori € N, T} = (9J}/3y}) andT}¥ = f,.

Corollary V.3: Assume that for some positivec RV 11, the
symmetric matriXT'y(y;,7)+ L7 (i, 7)) is positive—definite for
every possible; and! € £. Then all mixed equilibriax have
the same utilization on links and moreowe! is unique.

Proof: It may easily be seen that, up to reindexing of rows(x — %) - [T(x) — T(x)] > 0 if 3l € L1 such thap; # fpi.
and columnsI'(y,r) equalsdiag{T';(y;,7),l € L}, and the (22)
required conclusion follows from Theorem V.2 and V.1. O

Example: Linear Costs:To illustrate Theorem V.1, we con-
sider the following cost structure, for which uniqueness has al-
ready been obtained in [7] using an alternative approach. Define

Lemmma VI.1:AssumeC1, C2 andD. For arbitraryx andx
(x # %), if T(x) are finite orT(x) are finite, then

Proof: Assume thalll € £z such thalp; # g;. Then

the cost functions as follows: (x —x)-[T(x) — T(x)]
e Vie Ll fi(z) = pixi + q, Wherepl > 0andg > 0, ‘ ‘ ‘ ‘
Vie N, Vi€ L Ji(xhm) = af - filwn); 3 (x;p) - gz;p)) (Kgp) (x) — Kgp)(sc))
*YeeW, Vpe PiF Z ( ) Ele fl(azl) iCN pepi

Indeed, in such a case, We have [

Z Z (%) - %)) (F(ZP) (x) — F(Zp)(i))]

iy, 1) =(1-1" + Q)p IEW pCP
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whereVi € N Assumptions:
Z (xzp) B %) (K(ip) (x) — K(ip)(i)) . (D’.) The setl |s'composed of tV\{O dIS.jOInt se.ts of links
; i) Lz, for whichh;(p;) are strictly increasing;
pCP

i) L, for which h(p;) = h; are constant (indepen-

- Z Z (”f(p) x(p)) X 5lp i dent of p;).

pcpricL ‘ * (£1) Allthe individual users are grouped in a unique class,
< | )+$_§3fl(Pl) B f(~)+ﬁafz(p~z) denotedV, then we have = {1,..., N} U {W}.
n pe 9p wo pe 9 * (£2) The service ratg; can be represented a§:;, and
Z — ) (ilod) = Filp) 0 < ptisfinite forall € 7, andl € L.
N — pl o wo * (£3) Ateach node, each class may reroute all the flow that
it sends through that node to any of the out-going links of
- Z ) V1 that node. o
e  (E4) JH(x) = Yyep i ).

whereV f; := (3fi(p1)/0p1) = (fi1(p1)/dp1) > 0, sincef; is * (£5) J} the cost function on link for user: satisfies
linear and increasing (assumpti@@®)), andv: € W o zt 4
Iy (x5 m) = u—éhl(pl) = piha(p1).
l

zt s —at ) (F(x) = F (% ‘
p%; ( ®) (p)) ( (p)( ) (p)( )) * (£6) hy is continuous and increasing awg is continu-
ously differentiable wherever finite.

=> > (wép) - %)) x (Sl—g(fz(pz) = fulow) * (E7) ¢, is the amount of traffic of classthat enters the
pEPIEL H network at node; € M, if this quantity is negative this

— Z _ Pz (fi(p)) — Fulp)). means that traffic of cIasisIeayes node at an amount of
ez |#,,|. We assume that, . ,, ¢}, = 0.

. Note that in this section, the cost functions on links for the
Moreover, we know thatl € Lc, fi(pr) — fi(p) = 0. Then group usersh;, may be different of those used by individual
(x — %) - [I(x) — T(X)] users, f;; while in the previous section we required that both

. types of users have the same ones, he= f;.
= 2_ Uilo)) = 1o o = i) For each node, we denote byin(v) the set of its in-going

tetr links, and byOut(v) the set of its out-going links. For each node
+ Z Z - Pz sz > 0. v we have the following demand-conservation constraint
iEN leL i i i
_ e _ Y ow= Y ai+
The last inequality is due to the existence of a link £7 such 1O (n) Ien(n)
thatp, # pr. Therefore, we have (22). i D_ In order to minimize cost functions, we introduce the
. Theorem VI.2: AssumeC1-C3 andD. Then, all mixed equi- Lagrangian function
libria have the same utilization on linkss L.
Proof: Letx, x be two mixed equilibria. Then, accordlng Zplhl )
to Lemma I11.2, we have e
T(X)-(x—%)>0, and T(x)-(X—%)>0. _ Z o Z zi— Z zi— ¢
Then, we obtain that ‘ o veM o [ieoutty)  ieln(y)
o . ~ wherea’ = (af, ab, ..., a4,)T is the vector of Lagrange mul-
x-%)-(T(x) -Tx) <0 tipliers for class. Then forx to be a mixed equilibrium the fol-
We can apply Lemma V1.1, since he assumptions ,mposgyvmg conditions on group users are necessary foriaay\V’
are as follows. there existsy’ = o/ () such that for any € £
—  Al-=A42, thenT'(x) is finite for allx € X. aN(X{Y ) >0 <3A7(X1a )) =0
—  A'1-A'5, thenT'(x) is finite if x is a mixed equilib- dzy T~ dz; !
rium, due to(A’5). It implies thatvl € L1 p; = fi. 220 Y aj= Y zi+¢l (23)
U {COut(v) {CIn(v)
We have
VII. UNIQUENESS OFME: POSITIVE FLOWS o 3p§hl(pz) 1 7 0hi(pr)
i . _ . K} (z},p1) = ———2% = h
The first theorem of this section shows under quite general (i, 1) ol 1 < s +hulp )>

conditions that if the global load on some links are the samgith | = (u,v), (23) can be rewritten as
under two equilibria, then also the flows of each user on these i i i .
: L K (z},p1) — o, + o, > 0;
links are the same for the group users. Under more restrictive P ; i
conditions, the second theorem in the section then, which ex- (Kz (xlv Pl) oyt O‘v) z; = 0. (24)
tends [19, Th. 3.3], establishes conditions for the uniqueness oRemark: Forl € Lz, K} (z%, p;) is strictly increasing in both
the global load at equilibrium. of its arguments.
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Definition: Lo(x) is the set of linkd such that for any € and for alink!’ = (u,v) € £’ which comes from a link € L.
Z,z¢ > 0. in the original network
Theorem VIII.1: AssumeD’ and£3-£7. If for all links [ €
L1 we havep; = gy thenVl € Lz, Vi € N, zi = 7.
Proof: Suppose that there exists a link £7 and a group
user: € A such thatcZ > x;. We construct a directed network
G'(M', L"), whose set of nodes is identical to the one of our This means that along the cyelewe would have a monoton-

original network, i.e. M’ = M and the set of linkg’ is con-  ically increasing sequence 6f's where a step is with a strict
structed as follows: increase (due to the existence of the lipkthenéw,, > dcvy,

« for each linkl = (u,v) € £ such thatii > « we have a Which is a contradiction. - L
link We conclude thatl € L7, Vi € Nz} = . O
Theorem VII.2: Assume all users have the same source and
destination. Assum®’ and£1—£7. Letx andfc be two mixed
equilibria. Assume thati € Z, VI ¢ Lo(x) 2; = 0 andVi €
I,V & Lo(x), T} = 0. Then,Vl € L7, pp = p; and moreover
l € L1, Vi € N, 2} = &;. Then, the assumption cannot be

In other words, we redirect links according to the relation bgatlsﬂed

zp > 0implies thatba,, > 6.

I = (u,v) € L which we assign a flow valuge; =
5:; — aﬁ > 0;

« for each linkl = (u,v) € £ such thaté{ < =} we have
alink?’ = (v,u) € L', which we assign a flow value
Ty = a:l —x; > 0.

tweenj andz{. Remark that/l' € £, zy > 0 and’ # Proof: Denotea, = > ;.\ a'a;, (wherea' is defined in
, : (£2)) and
since for the linkZ, 2 Z; > ;. Then, obviously, the values;
constitute a positive, directed flow in the network. Since at each Ohu( 1)
nodew € M’ we must have Silpr) = m o5 + Nhi(pr)-
1

> ai- Z T =@y = Z Ty — Z 7 Si(py) are finite (due to our assumptigmd’s)). Let a (resp.a)
leOut(w) leTn(w) 1€Out(w) t€(w) be the vector of Lagrange multipliers associates {oesp.x).

Sincep}” > 0, we have
this flow has no sources (it is a circulation). Then there exists a

cycleC of links in G’ such thats;; > 0 for all I’ € C and such Ol
— - ON
that! € C. _ _ ‘ Si(p) > Z <p; al Pt + hl(pl)> .
Consider now a link’ = (u,v) € C. Therefore eithet?,, > PN Pl
x!,orxi, > &' . Theninthe first case, we have

) ) ) Equation (24) implies that
&Z - Oé - KIZJ,’I/‘ (‘%31,'1;?5’11#/‘) > Kuz ( wy apzu) Oé - Oé

(25) 1

[

Suu(pub) 2 Gy — Qi (29)

if I € L1, where the first equality and the last inequality follow

from Kuhn—Tucker conditions and the first inequality followsyjth equality for(u, v) € £o(x). A similar relation holds fo.
from the hypothesig,, > i, and the fact thaf., = pus-  \We obtain

Furthermore, iff € L then

w wuv ’l;L’U? wv ] ] (u b)gﬁ
= Klz“ ( 31,1” p'uuu) z 043,, - Oé?, (26) 3 )
S Z N'wv(pu'v - pub)((au - au)
In the second case, we have (uv)eL
—(a, — &) = 0. (30)
O‘? Kzz u ( f;'u,’ pwu) > Kzz w (N? ws Pos u)
2 & —d&l, iflels (27) The first inequality follows from the monotonicity and the con-

vexity of hi(p;) for I € Lz. The second inequality holds in

V- ol = K (2 poa) = KLy (80, puu . )
G T Y vl Tour Pou) v (x“”p ) fact for each pain, v (and not just for the sum). Indeed, for

> Gy, — Gy, (1€ Le. (28) (u,v) € Lo(x) N Lo(%) this relation holds with equality due
to (29). This is also the case fou,v) € Lo(x) U Lo(X),
Note that the results of (25) and (27) are in fact identical @ce in that cas@,, = pu, = 0. Consider next the case
well as those of (26) and (28). (u,v) € Lo(x), (u,v) € Lo(X). Then, we have

Denotedc,, = &', — af, (for all w € M). From (25)—(28), we

conclude that for a link’ = (u,v) € £ which comes from a B B

link I € £z in the original network (Puv = puw)(Suv(puv) = S’“’j(p“’”))
= p'u,'n(S'u,'n(puw) - S’u,’l;(p'uun))

zp > 0implies thatbe,, > da, < g pun (00, — &) — (Q, — Gi)).
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A symmetric argument establishes the cag&ewv) ¢ ofthe ME has been derived in [11] for the case of a completely
Lo(x), (u,v) € Lo(x). We finally establish the last equality symmetric network. We now introduce the following.

in (30) Assumptions:
s (F1) Ji : [0,00)% — [0,00], Ji(xl, pr) is @ continuous
o Ml — &) — (v — function, convex inzj.
(u%:cﬁ pro(pus = Pruo)(@t = Bu) = {0 = ) * (F2) Wherever finiteJ} is continuously differentiable in
N N x}. We denotek; = 9.J; /9.
=D (ar=a) > (ore = roitms * (F3) K} depends of two arguments and p; and is
rem sCM(r)CL strictly increasing in both of them.
- Z (o — ) Z (Psr = Por)or .
oM SCM,(s.7)CL A. Parallel Links
In a network with parallel links, all the users have the same
= Z (ap — &) Z (p1 — Po) origin and the same destination, and moreover each link is a
reM 1€0ut(r) path and vice-versa. Then we halfg, (x) = > ic, fi(p) =
fi(p). Even for such a simple network, and even if we took
_ Z (pr — P equal service rates, the conditions in Harker [7] or the DSI con-
len(r) dition are typically not satisfied. Indeed, it is shown in [19] that
these type of conditions do not hold in the special case of two
_ 1 ~ i i links, two group users (with no individual users), and link costs
=2 at D (o —dn) | D (ai— @) that are of the t f
ppet == leomtr) _ ype of an M/M/1 queue, except for very low
traffic demands.
P Lemma VIII.1: In a network of parallel links where the cost
- Z (i — xl))] function of each user satisfigsd’1)—(.A’'5) and (F1)—~(F3),
t€ln(r) all mixed equilibriax have the same utilization on links and
1 ‘ ‘ moreoverx™ is unique. o ‘ o
= Z o Z (o — @) Z Ty — Z ] Proof: We recall Fhato; = (gz}’/.u}’) andg; = (5?/#}’)- Let
icT rCM 1COut(r) 1CIn(r) x andx € A" be two mixed equilibria. Thesr andx satisfy the
following conditions: fori € W, VI € L
- I — I =0 ‘ ‘ ‘ o
(lCOzu;(r) IC%%T) ))] filo) = A" 20 (fi(m) — A") 27 = (1)

0
_ - _ iy -4 z0 (figy-A)i=0 (32
Since for alll € £ (resp.€ £1), S; is increasing (resp. strictly
increasing), we conclude from (30) that= p; for all links in 5 a, @ such thatti e N, Vi € L
L7. The first part of the theorem is established.

From Theorem VII.1, we conclude th&f ¢ L, Vi € i Y . i AR
Nz = &t Thus, the theorem is established. O Kli (xf’ pf) a7 =0 (Ki (ajf’ el) a7) xf =0 (33
Remark: The above Theorem extends [19, Th. 3.3]. The (@, p1) =& 2 0;  (Kj(&7,p)—a')d; =0 (34)
latter first establishes, under a more restrictive setting, the L AT . 1 AT
uniqueness of global link flows. Then it proceeds to concludéerea = (a,...,a™)" (resp. @ = (&',...,a")") is the

the uniqueness of the actual flows by hinting at an argumeffctor of Lagrange mulltipliers associatedd@esp. x).

different than Theorem VII.1, taken from the proof of [19, Th. Thefirststepis to establish that= i, ¥l € £. To this end,
2.1], which deals with the case of parallel links. We have nd{€ use the relations of the proof of [19, Th. 2.1], i.e, we prove
been able to reconstruct that argument, as it uses the fact that for eactl € £ and: € A, the following relations hold:

the sum of link flows of each user between two nodes does not

depend on the equilibrium; this indeed is trivially true in the {&" < o', pr 2 pu} implies thats; < a7 (35)
case of a parallel link topology, but one still needs to show that {& > o', pr < pi} implies thatz} > 2. (36)

this extends to general topology. Our Theorem VII.1, of course,

implies this. We shall only prove (35), since (36) is symmetric. Assume that

& < o andp; > p; for somel € £ and some € N. Note
that (35) holds trivially ifZ{ = 0. Otherwise, ifz{ > 0, then
(33)—(34) together with our assumption imply that

We establish below the uniqueness of ME in networks with ‘ ‘ o o
specific topologies: a network of parallel links, and two load K; (%}, 01) = &' < o < (K{ (27, ) < (Ki (2}, 51) (37)
balancing models from [10]. The uniqueness of the Nash equi-
librium (W = ) for these models in the equal service rate casenere the last inequality follows from the monotonicity /gf
has been established in [19, Th. 2.1], [10, Th. 5.1], and [9]. For its second argument. Now, siné& is nondecreasing in its
the load balancing networks, uniqueness and characterizatiiost argument, this implies that < z;, and (35) is established.

VIII. U NIQUENESS OFME FOR SPECIFIC TOPOLOGIES
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Furthermore, we havee £ andi € W @/N
{A" < A% p; > pi} (or equivalently \_/@
{A' < A", pr 2 p}) implies thati{ =0 (38) / ¢ \
{A" > A' p; < pi} (or equivalently

{A" > A", j; < pi}) implies thatz} = 0. (39)
Fig. 1. Two processors and two unidirectional links between them.

Actually, supposeé > 0 Hence, by (31)—(32), we obtain
d
filer) = f}z < AZ: < filpy) (or fi(p1)
= A" < A" < filpr))

which is a contradiction with our assumption ¢in Therefore a b
z; = 0 anda fortiori z; < zj, (39) is symmetric.
Let £, = {l: py > i} andZ, = {i: & > o’ or A > A%},
Lo=L— Ly ={l: py < pi}. Assume that; is not empty.
Since} ", @i = 3,2} = ¢, therefore (36) and (39) imply that
foranyi € 7,

DoEH=¢ =D EH<H =Y ai=) 4

ICL 1CLs 1CLs ICLy / ¢ \
Since (35) and (38) imply that! < z% for[ € £; andi ¢ Z,,

therefore

LTSI I ED I I T R

iz, Tiam T gZEm = argument tha&’ > o' does not hold as well. Finally, we have
fori € N, &* = «*. Combined with (40), this implies by (35)
This inequality contradicts our nonemptiness assumptiofyon and (36) thatri = =i forall I € £, i € A and the lemma is
and then’; = . By symmetry it follows that the sdf: g, < proved. O
pi} is also empty. Thus, it has been established that

Fig. 2. The corresponding network.

B. Load Balancing With Unidirectional Links

pr=p, VleL (40) We consider a model consisting of two processarandb,
and a two-way communication lines,and ¢/, between them
i.e., all mixed equilibria have the same utilization of links. (See F|g ]_), the two processors can be seen as two tirgesld,

So it is now sufficient to establish thaf = «' in order to  petween two different sourcesandv, and a unique destination
prove the theorem. Equation (35) may be strengthened as {@ke Fig. 2).

lows: This network can be reformulated in a network of parallel
‘ ‘ links ([9]), then we can apply Lemma VIII.1 and obtain the same
{&" < o, pp = pi} implies that either uniqueness than previously for this model of load balancing.

F<al or F=2zl=0. (41) This result can be extended to a modehoprocessors with a

two-way communication lines between each couple of proces-

Indeed, ifzi = 0 then the implication is trivial. Otherwise, if SOrs (there are exactB(n — 1)* lines).

Zi > 0, it follows that:
l C. Load Balancing With a Communication Bus

Ki (@1, p1) = &' < o' < K{ (a1, p1) We now consider a model made up of two processoasdb,
and a communication bus, between them (see Fig. 3); the two
SO0 that§:§ < a:§ as required. Assume thaf < o' for some processors can be seen as two linkandb, between two dif-
i € N.Since}",. . @i = ¢; > 0, thendl € £ such that; > 0 ferent sources; andv, and a unique destinatiod (see Fig. 4).

and (41) implies that Since a bidirectional link can be transformed in a network of
unidirectional links (Appendix B) mixed equilibria in networks
Z x> Z F=¢ with unidirectional and bidirectional links exist.
et lec Notation: We denote forv = u,v by 4,, the part of class

i whose origin isw, i.e.,s(4,,) = w and by¢, the initial flow
which contradicts the demand constraint for usétencei’ < demand of userat nodew. In this model, there exist four paths,
«' does not hold for any usére A/, we obtain by a symmetric P = {(a), (ca), (b), (cb)}.
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O——0
/ \

Fig. 3. Two processors and a communication bus.

d

/

Fig. 4. The corresponding network.

\

Each class € A/ is faced with the minimization program

Z J(P) (x(P)’p) s.t.

peEP?

min J
oy t Ty = Py Ty 20 Ty 20
Ty T Tea) = o Ty 20 T(ea) 2 0-

Note that we allowpi, = 0, if the classi € A" has only one
O-D pair thenvi ¢ N, Pt = P.
For! = a,b, we haveJ(l)(a:(l),p) = Ji(a(y, o) and

J(cl)(x(cl)7p) =Ji (x(cl)7pl) +J; (x(cl)vpc)
We define forp € P

i ) =)

Oz,
We have forl = a,b
Ky (i, 0) = Ki (s, 1) (42)
and
Ko (‘/L'ZCI)?p) = Kj (‘/L'ZCI)?pl) + K ($2cl)7p6) (43)

where forp = [, dl

aJ;‘ (xép),pl)
Oz,

7

K; (ﬂﬁép),pz) =

and

913

o AJxt .\, p )
7 7 o (Cl)’ ¢
Kc (-/L'(cl)7 pc) — ax(d)

Then, forx to be a mixed equilibrium, we have the following
necessary Kuhn—Tucker conditions. There existsuch that
Vie N

K(ip) (a:ép),p) — 0 20

(£l (w-p) =) lyy =0
wherep = a,ca if w=wandp = b, ch if w = v.
Lemma VIIl.2: Assume that the service rate of each user does
not depend on the links. Then, in a network with two proces-
sors and a communication bus between them and where the cost
function of each user satisfiésl’1)—(A’5) and(F1)—(F3), all

mixed equilibriax have the same utilization on links.
Proof: See Appendix C

(44)

IX. CONCLUSION

We have focused in this paper the ME concept introduced
in [7] and studied it under more general assumptions on the
costs and for more general setting of optimization (which allows
one to use constraints). ME involves groups that contain a con-
tinuum of users, where some of the groups have a single decision
maker for the whole group and others have a decision maker per
user. We further established uniqueness of the mixed equilib-
rium by either restricting to specific topologies or making some
extra assumptions on the equilibrium flows.

A future research direction would be to add also extra
constraints on the individual users (see [18]). We have not
included these constraints here (except for a Remark in the end
of Section IV) since in their presence, the Wardrop principles
need not hold anymore. For example, consider a network of two
parallel links having both load independent costs, and in which
there is a capacity constraint on a link with the lowest cost. If
the latter link cannot accommodate all the flow then we would
expect the outcome of individual optimization to yield the full
utilization of that link and partial utilization of the other one.
Hence, the costs of different links (paths) that carry positive
flow are not the same, thus violating Wardrop principle.

APPENDIX

A. Constraints in General Networks

In a general network, the configuration flows which are fea-
sible are thex which satisfy
<N
x|

In order to simplify the reading, lef: = #D?, shown in the
equation at the bottom of the next page, whose eleifign} is
T, wherei,j € Nyde DV pe P g=k+ 3, _% P*and
r=d+3Y’_1d° and

ATx=¢ & x>0 wherex=<

ij 1 ifi=4j and €4,
T = .
dc — 1 0 otherwise.
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11 12 1w
91 91 91

P ok g 11 12
: : u v
9})11 9})21 9})"1"
6= 621 622 R
9%1 9%2 .. Q%VV
: 14 15
Oty ONR_, e ORY
9}/‘)&' 9}?»«3 e 9}?»«3‘ g
whose elementq, ) is 6,’, wherei,j € W, k € P, q =
k+ 3"t P*andr = jand J
k =)0 otherwise. Fig. 5. The corresponding network.
and S i T i i .
T 0 debflnea:(a) =z, = 0if 5(i) = vanday,) = a7, =0if
A= 0 o) s(i) = u.
R c H for alli o | di ¢ naths. i First step: We first prove that for alf € W
emark: Here, for alli z* is expressed in term of paths, i.e., Flyy = @y OF i = pu. (45)

Vi e NUW ' = (afy),- 7)) Itis trivial if s(¢) = v(k), then we assume thati) = (1), we

are faced with the two following cases.

1) AP > A

S _ _ Then eitherxél) =0 anda?él) > a:él) or a:él) > 0 and
Abidirectional link may always be expressed as an equivalent o= pi.

network of unidirectional ones. Indeed, consider a bidirectional  The first implication is trivial, so we have only to check
Iink‘l between nodes andwv, where the cost function of this link the second implication.

is f{ (x;), and where; is the aggregate flow through lidkThen Letzi, > 0 then we have

we can transform this link in the network of unidirectional links i A i~ ~; i i i
(11,12,13,14,15) in Fig. 5 with the cost functionsf, (x11) = fr(llé(rzlzo:efls(iﬁlga‘zi :;1 S%riél _inltj(rgggn_ ifl (pl\f\/.e have
Folwn) = fis(z) = fis(wis) = 0 and fis(wis) = fi(wis)- e S ST g1

These two subnetworks are not equivalent, since in the secondz) ’}{i » illi ypu=pu.

one a uset can go fromu to u (of from v to v) with the cost Then eitheti’ .. — 0 andi. > i or i . > 0 and
f"(z13) whichis not possible in the first one. Neverthelesss, they .~ (k) — o ="0 (ck)

become equivalent if we add a constraint in the second network ,pAls_alfclJ've we have onlv to check the second implication
excluding cycles. This does not affect the equilibrium, since at the first one being tl’ivi):’;ﬂi‘i < 4 isthe safne as ’
equilibrium the pathgl1,13,14) and(12, 13, I5) will not be used ~i ; - (ck) = “(ck)

(as long as costs are nonnegative, of course). T = x(l))“Letx(cl) - 0 then we have

Figy (%) = filpr) + fe(pe)

B. Relation Between a Bidirectional Link and a Network of
Unidirectional Ones

C. Proof of Lemma VIII.2 —Ad<Ai< F(iCk)(x) = Filpr) + [i(pe)

Letx andx € X be two mixed equilibria. which implies, sincep,, > pi, thatp. > 5. which con-
Assume thap. > p.. Letk € {a, b} such thap; > px (which tradicts our assumptiof. > p., unless we have equality
is equivalent top; < p;,1 # k). Letv(I’) be the source asso- for ¢ and fork. Then (45) is established.

ciated withl’, i.e.,l’ = (v(I'),d), I’ € {l,k}, whered is the Second stepWe next prove a statement in the spirit of the first
unique destination. We recall that each class W has only step, but fori € N:

: PR e N ~i i ; i i
one O-D pair, then in this model, eithefi) = u or s(¢) = v; Ty 2 gy or equivalentlyzt .y < z{ .- (46)
11 11 11 12 N
SO | N SO
721 722 o Togr 721 e TodN
A T T TR
= 21 27 21 22 2N
Ti1 Ti2 Tia Tii TN
N1 1 1 72 NN
Tepv—n1 Tpv—n2 7 T(ev—nar T(pv-n1r T TpN—1)av

TpNy TpNo T TpNat TpN1 T TpNgy



BOULOGNEet al: MIXED EQUILIBRIUM FOR MULTICLASS ROUTING GAMES 915

First remark that the equivalence follows from the constraint onIndeed, ifiop € W ands(io) = v(k), we havei’éil) > a:zgl)
the sum of the flows. (46) holds trivially itél) = 0, and so we but sinceg; = p, then

have to check only the cas¢,, > 0. To do so, fix some € — either there existg € W such that%{ck) > x{ck),
and consider the following two subcases. Assume that which impliess(j) = »(I), and hence (47) is estab-
a) ;) > aj . Hence lished;

— or there existg € A/ such thatr (k) +37(k) > x(ck) +
K (e ) (k) In this case (46) implies thﬁ(k) > a:(k) or
O @) equwalentlyx( n < xé 0 Then there must exist at
=Kj (a:él), pl) > K] (a:él), ﬁl) ) least one other classsuch thati’» > z% (so that
The first and last equalities follow from the definition of Pe > pe)-
Ki,. The other equality as well as the first inequality Then we can conclude from l) that there exigtss WV such
follow from the Kuhn Tucker conditions, whereas théhats(ii) = v(1) andx“k) > Tl If A < A, we are
last inequality follows from the monotonicity assumptiorfaced with the second case of he first step and we have seen
(F3). Using again( #3), this time for the first argument, thatj. = p.. Then assume that® > A, therefore,a:(l)
we conclude from the fack’} (a:(l),pl) > Kj (a:(l),pl) 0 (zi > &%) and we have

>
o0 0]
that 46 holds Thus, we try the foIIwom mstead of a io io io
49 Y J S min Fir () = Fij(x) = Fij (%) < Fy () < Fiy ()

K, (55@)7?’) =K (5’@)7@) > Gy 2 ay)

b) %(z) < ay- (46) holds trivially if & Tigy = 0.S0  perio
it remams to check the cag;-a% B > () Recall that where the first equality |sduehql > 0,the secondone {§y =
Ki(zi,.p) = Ki(x,, pe) + Ki(zi_,,p). We e andthe lastinequality tp, = px and our first assumption
thgn)hag/ce)fon eN e (c ) Pc > pe. Hence,a:((,k) = 0, which is a contradiction.
K! (x(ck),pc) + K} (xéck),pk) > alg) 2 dlg ) If Vi € W,a(, > =, then according to (46), we
o o conclude that ‘
= Ké (‘Tzck)vpc) + KIZ@ (‘Tzck)t pk) Zpkv(l) S sz’/(U' (48)
i ~1 i [~ 1€ 1€
2> K, (?(ck?mc) +.Kk (x(ck),pk)-. Combining this withp, > px, we obtain that
Here, the first inequality and the equality follow from the Sier pr® > Yicr P,

Kuhn Tucker conditions, whereas the last inequality fOHowever since foi € N UW, &
lows from(F3). Using agair{¥3), we conclude that (46) -
holds in case b) as well.

W T Ty = ¢ and
)+x(c,) = ¢ vy (note that ifi € W ands(i) = v(l)
(resp. s(i) = l/(k)) then(j)Z Ly = = 0 (resp. ¢V(l) = 0)) which

Then, (46) is established. is equivalenttgsy,  +7;"” = (¢ /u') andp, © + " =
Third Step: We shall next prove that our two mixed equilibria#,(x)/#") by our assumption ODZ |t follows that:
have the same utilization of links. Z p (k) < Z P Pu(k) (49)

)] If there exists somé < W such thata?éck) > 0 and
A" < A, it has already been proved [see case 2)] I}get this, comblned W|th (48), |mpI|es that. < p. and then

the first step of the proof of our Lemma). pe = pe (sincex) = o + 2, ).
) If there exists someé € W such thata:‘l) >~ 0 and Suppose now thﬁl < o then due to (46) and our assumption

A > Al thengy, = pr andj, = p (This is the first Vi € W, x(l) > x(l), it follows that3: € 7 such thatﬂ( y <
case of the first step of the proof of the Lemma). It thefi(ery: €& > (- If ¢ € A, then we have

remains to show that, = p.. . Kk (w(k),pk) < Kk (w(k),pk)
Suppose thag. > p., thus there existéqy € N U W such » Sl VT
th;tti;:@ > alv”o i)dlf 1o E(jl\g)th:nizzok) —t—jéf}o >da:zfck) + a:zf:l), = Gy, < K (x(cl)7 Pl) + K. (x(cl)vpc)
which implies, due to that’® o > xzf:l) an xa) > 55'?;“). < Ki(+ LK (2
We obtain l ( (cl)vpl) c ( (cl)?ﬁc)
Ky ( zk)’pk) = aupy < KO (ngz)apc) + K ()0 o) = a0y < K (xzk)vpk)
io { ~io = io { ~in = where the first and third inequalities are due to the strict in-
<K (x(cl)’ pc) 1 (x(cl)’ pl) crease in each argument of thés and the equalities @Ek) >
_ dffo(k) < Kio (a;a)’ ﬁk) O,xzcl) > 0 and (42). However, this is impossible.ilfe W,

where the strict inequality follows frofiF3) and the equality then we have

and the others inequality follow from the Kuhn—Tucker condi- F(cl)( x) < F(cl)( x) = min F(Zp)( x) < F(Zk)( x) < F(Zk)()

tions. Using agair{.F3), we conclude that% < &, which \where the first equallty is due te],,, > 0, the first inequality

is a contradiction, thep. = p.. ii) If i € then we shall t 5, < p, andj. = p. and the last inequality t, > px. This

show that this implies that ‘ ‘ implies thatq:(k) =0 and this is a contradiction.

there exists; € W such thats(iy) = (1) andz ;) > (- Thenvi € 7 &, écl) and finally 5; = p;. Hence, the
47) lemmais established. O
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