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Abstract We consider a model of an electricity market in which S suppliers offer
electricity: each supplier Si offers a maximum quantity qi at a fixed
price pi. The response of the market to these offers is the quantities
bought from the suppliers. The objective of the market is to satisfy its
demand at minimal price.

We investigate two cases. In the first case, each of the suppliers
strives to maximize its market share on the market; in the second case
each supplier strives to maximize its profit.

We show that in both cases some Nash equilibrium exists. Never-
theless a close analysis of the equilibrium for profit maximization shows
that it is not realistic. This raises the difficulty to predict the behavior
of a market where the suppliers are known to be mainly interested by
profit maximization.

1. Introduction
Since the deregulation process of electricity exchanges has been initi-

ated in European countries, many different market structures have ap-
peared (see e.g. Stoft (2002)). Among them are the so called day ahead
markets where suppliers face a decision process that relies on a central-
ized auction mechanism. It consists in submitting bids, more or less
complicated, depending on the design of the day ahead market (power
pools, power exchanges, . . . ). The problem is the determination of the
quantity and price that will win the process of selection on the market.
Our aim in this paper is to describe the behavior of the participants
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(suppliers) through a static game approach. We consider a market where
S suppliers are involved. Each supplier offers on the market a maximal
quantity of electricity, q, that it is ready to deliver at a fixed price p.
The response of the market to these offers is the quantities bought from
each supplier. The objective of the market is to satisfy its demand at
minimal price.

Closely related papers are Supatchiat, Zhang and Birge (2001) and
Madrigal and Quintana (2001). They also consider optimal bids on elec-
tricity markets. Nevertheless, in Supatchiat, Zhang and Birge (2001),
the authors take the quantity of electricity proposed on the market as
exogenous, whereas here we consider the quantity as part of the bid.
In Madrigal and Quintana (2001), the authors do not consider exactly
the same kind of market mechanism, in particular they consider open
bids and fix the market clearing price as the highest price among the
accepted bids. They consider fixed demand but also stochastic demand.

The paper is organized as follows. The model is described in Section 2,
together with the proposed solution concept. In Section 3 we consider
the case where the suppliers strive to maximize their market share, while
in Section 4 we analyze the case where the goal is profit maximization.
We conclude in Section 5 with some comparison remarks on the two
criteria used, and some possible directions for future work.

2. Problem statement

2.1 The agents and their choices
We consider a single market, that has an inelastic demand for d

units of electricity that is provided by S local suppliers called Sj , j =
1, 2, . . . ,S.

2.1.1 The suppliers. Each supplier Sj sends an offer to the
market that consists in a price function pj(·), that associates to any
quantity of electricity q, the unit price pj(q) at which it is ready to sell
this quantity.

We shall use the following special form of the price function:

Definition 7.1 For supplier Sj, a quantity-price strategy, referred to
as the pair (qj , pj), is a price function pj(·) defined by

pj(q) =
{

pj ≥ 0, for q ≤ qj ,
+∞, for q > qj .

(7.1)

qj is the maximal quantity Sj offers to sell at the finite price pj. For
higher quantities the price becomes infinity.
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Note that we use the same notation, (pj) for the price function and
for the fixed price. This should not cause any confusion.

2.1.2 The market. The market collects the offers made by
the suppliers, i.e., the price functions p1(·), p2(·), . . . , pS(·), and has to
choose the quantities qj to buy from each supplier Sj , j = 1, . . . ,S. The
unit price paid to Sj is pj(qj).

We suppose that an admissible choice of the market is such that the
demand is fully satisfied at finite price, i.e., such that,

S∑
j=1

qj = d, qj ≥ 0, and pj(qj) < +∞, ∀j. (7.2)

When the set of admissible choices is empty, i.e., when the demand
cannot be satisfied at finite cost (for example when the demand is too
large with respect to some finite production capacity), then the market
buys the maximal quantity of electricity it can at finite price, though
the full demand is not satisfied.

2.2 Evaluation functions and objective
2.2.1 The market. We suppose that the objective of the mar-
ket is to choose an admissible strategy (i.e., satisfying (7.2)), (q1, . . . , qS)
in response to the offers p1(·), . . . , pS(·) of the suppliers, so as to minimize
the total cost.

More precisely the market problem is:

min
{qj}j=1···S

ϕM (p1(·), . . . , pS(·), q1, . . . , qS), (7.3)

with

ϕM (p1(·), . . . , pS(·), q1, . . . , qS) def=
S∑

j=1

pj(qj)qj , (7.4)

subject to constraints (7.2).

2.2.2 The suppliers. The two criteria, profit and market
share, will be studied for the suppliers:

The profit — When the market buys quantities qj , j = 1, . . . ,S,
supplier Sj ’s profit to be maximized is

ϕSj (p1(·), . . . , pS(·), qj)
def= pj(qj)qj − Cj(qj), (7.5)

where Cj(·) is the production cost function.
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Assumption 7.1 We suppose that, for each supplier Sj, the production
cost Cj(·) is a piecewise C1 and convex function.

When Cj is not differentiable we define the marginal cost C ′(q) as
limε→0+

dCj

dq (q − ε).
Because of the assumption made on Cj, the marginal cost C ′

j is monotonic
and nondecreasing. In particular it can be a piecewise constant increas-
ing function.

A typical special case in electricity production is when the marginal
costs are piecewise constant. It corresponds to the fact that the
producers starts producing in its cheapest production facility. If
the market asks more electricity, the producers start up the one
but cheapest production facility, etc.

The market share — for supplier Sj , qj is the quantity bought
from him by the market, i.e., we define this criterion as

ϕSj (p1(·), . . . , pS(·), qj)
def= qj . (7.6)

For this criterion, it is necessary to introduce a price constraint.
As a matter of fact, the obvious, but unrealistic, solution without
price constraint would be to set the price to zero whatever the
quantity bought is.

We need a constraint such that, for example, the profit is non-
negative, or such that the unit price is always above the marginal
cost, C ′

j .

For the sake of generality we suppose the existence of a minimal
unit price function Lj for each supplier. Supplier Sj is not allowed
to sell the quantity q at a unit price lower than Lj(q).

A natural choice for Lj is C ′
j , which expresses the usual constraint

that the unit price is above the marginal cost.

2.3 Equilibria
From a game theoretical point of view, a two time step problem with

S + 1 players will be formulated. At a first time step the suppliers an-
nounce their offers (the price functions) to the market, and at the second
time step the market reacts to these offers by choosing the quantities qj

of electricity to buy from each supplier. Each player strives to optimize
(i.e., maximize for the suppliers, minimize for the market) his own cri-
terion function (ϕSj , j = 1, . . . ,S, ϕM ) by properly choosing his own
decision variable(s). The numerical outcome of each criterion function
will in general depend on all decision variables involved. In contrast to
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conventional optimization problems, in which there is only one decision
maker, and where the word “optimum” has an unambiguous meaning,
the notion of “optimality” in games is open to discussion and must be
defined properly. Various notions of “optimality” exist (see Başar and
Olsder (1999)).

Here the structure of the problem leads us to use a combined Nash
Stackelberg equilibrium. Please note that the “leaders”, i.e., suppliers,
choose and announce functions pj(·). In Başar and Olsder (1999) the
corresponding equilibrium is referred to as inverse Stackelberg.

More precisely, define {qj(p1(·), . . . , pS(·)), j = 1, . . . ,S}, the best re-
sponse of the market to the offers (p1(·), . . . , pS(·)) of the suppliers, i.e.,
a solution of the problem ((7.2)-(7.3)). The choices ({p∗j (·)}, {q∗j}, j =
1, . . . ,S) will be said optimal if the following holds true,

q∗j
def= q∗j (p

∗
1(·), . . . , p∗S(·)), (7.7)

For every supplier Sj , j = 1, . . . ,S and any admissible price function
p̃j(·) we have

ϕSj (p
∗
1(·), . . . , p∗S(·), q∗j ) ≥ ϕSj (p

∗
1(·), . . . , p̃j(·), . . . , p∗S(·), q̃j), (7.8)

where
q̃j

def= q∗j (p
∗
1(·), . . . , p̃j(·), . . . , p∗S(·)). (7.9)

The Nash equilibrium Equation (7.8) tells us that supplier Sj cannot
increase its outcome by deviating unilaterally from its equilibrium choice
(p∗j (·)). Note that in the second term of Equation (7.8), the action of
the market is given by (7.9): if Sj deviates from p∗j (·) by offering the
price function p̃j(·), the market reacts by buying from Sj the quantity
q̃j instead of q∗j .

Remark 7.1 As already noticed the minimization problem ((7.2)–(7.3))
defining the behavior of the market may not have any solution. In that
case the market reacts by buying the maximal quantity of electricity it
can at finite price.

At the other extreme, it may have infinitely many solutions (for ex-
ample when several suppliers use the same price function). In that case
q∗j (·) is not uniquely defined by Equation (7.7), nor consequently is the
Nash equilibrium defined by Equation (7.8).

We would need an additional rule that says how the market reacts
when its minimization problem has several (possibly infinitely many)
solutions. Such an additional rule could be, for example, that the mar-
ket first buys from supplier S1 then from supplier S2, etc. or that the
market prefers the offers with larger quantities, etc. Nevertheless, it is
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not necessary to make this additional rule explicit in this paper. So we
do assume that there is an additional rule, known by all the suppliers
that insures that the reaction of the market is unique.

3. Suppliers maximize market share
In this section we analyze the case where the suppliers strive to max-

imize their market shares by appropriately choosing the price functions
pj(·) at which they offer their electricity on the market. We restrict our
attention to price functions pj(·) given in Definition 7.1 and referred to
as the quantity-price pair (qj , pj).

For supplier Sj we denote Lj(·) its minimal unit price function that
we suppose nondecreasing with respect to the quantity sold. Classically
this minimal unit price function may represent the marginal production
cost.

Using a quantity-price pair (qj , pj) for each supplier, the market prob-
lem (7.3) can be written as

under

min
{qj ,j=1,...,S}

S∑
j=1

pjqj ,

0 ≤ qj ≤ qj ,
S∑

j=1

qj = d.

To define a unique reaction of the market we use Remark 7.1, when
Problem (7.9) does not have any solution (i.e., when

∑S
j=1 qj < d) or

at the other extreme when Problem (7.9) has possibly infinitely many
solutions.

Hence we can define the evaluation function of the suppliers by

JSj ((q1, p1), . . . , (qS , pS)) def= ϕSj (p1(·), . . . , pS(·), q∗j (p1(·), . . . , pS(·)),

where the price function pj(·) is the pair (qj , pj) and q∗j (p1(·), . . . , pS(·))
is the unique optimal reaction of the market.

Now the Nash Stackelberg solution can be simply expressed as a Nash
solution, i.e., find u∗ def= (u∗

1, . . . , u
∗
S), u∗

j
def= (q∗j , p

∗
j ), so that for any

supplier Sj and any pair ũj = (q̃j , p̃j) we have

JSj (u
∗) ≥ JSj (u

∗
−j , ũj), (7.10)

where (u∗
−j , ũj) denotes the vector (u∗

1, . . . , u
∗
j−1, ũj , u

∗
j+1, . . . , u

∗
S).
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Assumption 7.2 We suppose that there exist quantities Qj for j =
1, . . . ,S, such that

S∑
j=1

Qj ≥ d, (7.11)

and such that the minimal price functions Lj are defined for the set
[0, Qj ] to R

+, with finite values for any q in [0, Qj ]. The quantities Qj

represent the maximal quantities of electricity supplier Sj can offer to
the market. It may reflect maximal production capacity for producers
or more generally any other constraints such that transportation con-
straints.

Remark 7.2 The condition (7.11) insures that shortage can be avoided
even if this implies high, but finite, prices.

We consider successively in the next subsections the cases where the
minimal price functions Lj are continuous (Subsection 3.1) or discon-
tinuous (Subsection 3.2). This last case is the most important from the
application point of view, since we often take Lj = C ′

j which is not in
general continuous.

3.1 Continuous strictly increasing minimal price
We suppose the following assumption holds,

Assumption 7.3 For any supplier Sj, j ∈ {1, . . . ,S} the minimal price
function Lj is continuous and strictly increasing from [0, Qj ] to R

+.

Proposition 7.1

1. Suppose that Assumption 7.3 holds. Then any strategy profile u∗ =
(u∗

1, u
∗
2, . . . , u

∗
S) with u∗

j = (q∗j , p
∗) such that

Lj(q∗j ) = p∗, ∀j ∈ {1, . . . ,S} such that q∗j > 0
Lj(0) ≥ p∗, ∀j ∈ {1, . . . ,S} such that q∗j = 0∑

j∈{1,2···S} q∗j = d,
(7.12)

is a Nash equilibrium.

2. Suppose furthermore that Assumption 7.2 holds, then the equilib-
rium exists and is unique.

We omit the proof of this proposition which is in the same vein as the
proof of the following Proposition 7.2. Nevertheless it can be found in
Bossy et al. (2004).
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3.2 Discontinuous nondecreasing minimal price
We now address the problem where the minimal price functions Lj are

not necessarily continuous and not necessarily strictly increasing. Nev-
ertheless we assume that they are non decreasing. We set the following
assumption,

Assumption 7.4 We suppose that the minimal price functions Lj are
nondecreasing, piecewise continuous, and that lim

y→x−
Lj(y) = L(x) for

any x ≥ 0.

Replacing Assumption 7.3 by Assumption 7.4, there may not be any
strategy profile or at the other extreme there may be possibly infinitely
many strategy profiles that satisfy Equations (7.12). Proposition 7.1 fail
to characterize the Nash equilibria.

For any p ≥ 0, we define ρj(p), the maximal quantity supplier Sj can
offer at price p, i.e.,

ρj(p) =
{

max{q ≥ 0,Lj(q) ≤ p}, if j is such that Lj(0) ≤ p,
0, otherwise .

(7.13)

Hence ρj(p) is only determined by the structure of the minimal price
function Lj . In particular it is not dependent on any choice of the
suppliers.

As a consequence of Assumption 7.4, ρj(p) increases with p, and for
any p ≥ 0, limy→p+ ρj(y) = ρj(p).

Denote by O(·) the function from R
+ to R

+ defined by

O(p) =
S∑

j=1

ρj(p). (7.14)

O(p) is the maximal total offer that can be achieved at price p by the
suppliers respecting the price constraints. The function O is possibly
discontinuous, non decreasing (but not necessarily strictly increasing)
and satisfies limy→p+ O(y) = O(p). Assumption 7.2 implies that

O(sup
j
Lj(Qj)) ≥

S∑
j=1

ρj(Lj(Qj)) ≥
S∑

j=1

Qj ≥ d,

hence there exists a unique p∗ ≤ supj Lj(Qj) < +∞ such that

O(p∗) =
S∑

j=1

ρj(p∗) ≥ d,

∀ε > 0, O(p∗ − ε) < d.

(7.15)
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The price p∗ represents the minimal price at which the demand could
be fully satisfied taking into account the minimal price constraint.

Assumption 7.5 For p∗ defined by (7.15), one of the following two con-
dition holds:

1. We suppose that there exists a unique j̄ ∈ {1, . . . ,S} such that
L−1

j̄
(p∗) �= ∅, where L−1

j (p) def= {q ∈ [0, d], Lj(q) = p}. In particu-
lar, there exists a unique j̄ ∈ {1, . . . ,S} such that Lj̄(ρj̄(p∗)) = p∗,
and such that for j �= j̄, we have Lj(ρj(p∗)) < p∗.

2. At price p∗ the maximal total quantity suppliers are allowed to
propose is exactly d, i.e.,

∑S
j=1 ρj(p∗) = d.

Proposition 7.2 Suppose Assumptions 7.4 and 7.5 hold. Consider the
strategy profile u∗ = (u∗

1, . . . , u
∗
S), u∗

j = (q∗j , p
∗) such that,

p∗ is defined by Equation (7.15),

for j �= j̄, i.e. such that Lj(ρj(p∗)) < p∗ (see Assumption 7.5), we
have q∗j = ρj(p∗) and p∗j ∈ [Lj(q∗j ), p

∗[ ,

for j = j̄, i.e. such that Lj̄(ρj̄(p∗)) = p∗ (see Assumption 7.5), we
have q∗j ∈ [min((d −∑k �=j̄ q∗k) , ρj̄(p∗)) , ρj̄(p∗)], and p∗̄

j
∈ [p∗, p[,

where p is defined by

p
def= min{Lk(q∗+k ), k �= j̄} (7.16)

then, u∗ is a Nash equilibrium.

Remark 7.3 There exists an infinite number of strategy profiles that
satisfy the conditions of Proposition 7.2 (the prices p∗j are defined as
elements of some intervals). Nevertheless, we can observe that there is
no need for any coordination among the suppliers to get a Nash equilib-
rium. Each supplier can choose independently a strategy as described
in Proposition 7.2, the resulting strategy profile is a Nash equilibrium.
Note that this property does not hold in general for non-zero sum games
(see the classical “battle of the sexes” game Luce and Raifa (1957)). We
can also observe that for each supplier the outcome is the same whatever
the Nash equilibrium set. In that sense we can say that all these Nash
equilibria are equivalent.

A reasonable manner to select a particular Nash equilibrium is to sup-
pose that the suppliers may strive for the maximization of their profits as
an auxiliary criteria. More precisely, among the equilibria with market
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share maximization as criteria, they choose the equilibrium that brings
them the maximal income. Because the equilibria we have found are
independent, it is possible for each supplier to choose its preferred equi-
librium. More precisely, with this auxiliary criterion, the equilibrium
selected will be,

q∗j = ρj(p∗), p∗j = p∗ − ε, for j �= j̄ (i.e. such that Lj(ρj(p∗)) < p∗),
q∗̄
j

= ρj̄(p∗), p∗̄
j

= p− ε,

where ε can be defined as the smallest monetary unit.

Remark 7.4 Assumption 7.5 is necessary for the solution of the market
problem (7.9) to have a unique solution for the strategies described in
Proposition 7.2, which are consequently well defined.

If Assumption 7.5 does not hold, we would need to make the additional
decision rule of the market explicit (see Remark 7.1). This is shown in
the following example (Figure 7.1), with S = 2. The Nash equilibrium
may depend upon the additional decision rule of the market. In Fig-
ure 7.1, we have L1(ρ1(p∗)) = L2(ρ2(p∗)) = p∗ and ρ1(p∗) + ρ2(p∗) > d,
where p∗ is the price defined at (7.15). This means that Assumption 7.5
does not hold. Suppose the additional decision rule of the market

p*

dq1~ q1^
d−q2^ d−q2~

p2~

Figure 7.1. Example

is to give the preference to supplier S1, i.e., for a pair of strategies
((q1, p), (q2, p)) such that q1 + q2 > d the market reacts by buying the
respective quantities q1 and d − q1 respectively to supplier S1 and to
supplier S2. The Nash equilibria for market share maximization are,

u∗
1 = (q∗1 ∈ [d− q̃2, q̂1], p∗), u∗

2 = (q̃2, p
∗
2 ∈ [p̃2, p

∗[),

where q̂i = ρi(p∗), q̃i = ρi(p∗ − ε), and p̃2 = L2(q̃2).
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Suppose now the additional decision rule of the market is a preference
for supplier S2. The previous pair of strategies is not a Nash equilibrium
any more. Indeed, supplier S2 can increase its offer, at price p∗, to the
quantity q̂2. The equilibrium in that case is

u∗
1 = (q∗1 ∈ [d− q̂2, q̂1], p∗), u∗

2 = (q̂2, p
∗).

Remark 7.5 In Proposition 7.2 we see that at equilibrium, the maximal
price p̄ that can be proposed is given by (7.16). A sufficient condition
for that price to be finite is that for any j ∈ {1, 2, . . . ,S} we have,∑

k �=j

Qk > d. (7.17)

Equation (7.17) means that with the withdrawal of an individual sup-
plier, the demand can still be satisfied. This will insure that none of the
suppliers can create a fictive shortage and then increase unlimitedly the
price of electricity.

Proof of Proposition 7.2. We have to prove that for supplier Sj

there is no profitable deviation of strategy, i.e. for any uj �= u∗
j , we have

JPj (u
∗
−j , u

∗
j ) ≥ JPj (u

∗
−j , uj).

Suppose first that j �∈ S(p∗) so that Lj(ρj(p∗)) < p∗. Since for the
proposed Nash strategy u∗

j = (q∗j , p
∗
j ), we have p∗j < p∗, the total

quantity proposed by Sj is bought by the market (qj = q∗j ). Hence
Jj(u∗) = q∗j .

– If the deviation uj = (qj , pj) is such that qj ≤ q∗j , then clearly
JPj (u

∗) = q∗j ≥ qj ≥ JPj (u
∗
−j , uj), whatever the price pj is.

– If the deviation uj = (qj , pj) is such that qj > ρj(p∗) then
necessarily, by the minimal price constraint, Assumption 7.5
and the definition of q∗j = ρj(p∗), we have

pj ≥ Lj(qj) ≥ Lj(q∗ +
j ) > sup

k �=j
p∗k.

Hence now supplier Sj is the supplier with the highest price.
Consequently the market first buys from the other suppliers
and satisfies the demand, when necessary, with the electricity
produced by supplier Sj (instead of the supplier Sj̄). Hence
the market share of Sj cannot increase with this deviation.

Suppose now that j = j̄, i.e., we have, Lj̄(ρj̄(p∗)) = p∗.
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– If the first item of Assumption 7.5 holds, then at the proposed
Nash equilibrium, supplier Sj̄ is the supplier that meets the
demand since it proposes the highest price.
Hence if supplier Sj̄ wants to increases its market share, it
has to sell a quantity q̃j̄ ≥ d−∑k �=j̄ q∗k. But we have,

Lj̄(q̃j̄) ≥ Lj̄(d−
∑
k �=j̄

q∗k) = p∗ > max
k �=j̄

p∗k.

This proves that the quantity q̃j̄ cannot be offered at a price
such that the market would buy it.

– If the second item of Assumption 7.5 holds, then the propo-
sition states that the quantity proposed, and bought by the
market is ρj̄ . An increase in the quantity proposed would im-
ply a higher price, which would not imply a higher quantity
proposed by the market since now the supplier would have
the highest price.

�

Now we suppose that Assumption 7.5 does not hold. So for the
price p∗ defined by (7.15) we have more than one supplier Sj such that
Lj(ρj(p∗)) = p∗.

As shown in the example of Remark 7.4 (see Figure 7.1), the Nash
equilibria may depend upon the reaction of the market when two sup-
pliers, Si and Sj , have the same price pi = pj = p∗. It is clear that for
a supplier Sj in such a way that Lj(ρj(p∗)) = p∗, two possibilities may
occur at equilibrium. Either, for some supplier Sj that fixes its price to
pj = p∗, the market reacts in such a way that qj < ρj(p∗ − ε), in which
case at equilibrium we will have p∗j = p∗ − ε, or the market reacts such
that qj ≥ ρj(p∗ − ε), and in that case we will have p∗j = p∗.

Although the existence of Nash equilibria seems clear for any possible
reaction of the market, we restrict our attention to the case where the
market reacts by choosing quantities (qj)j=1,...S that are monotonically
nondecreasing with respect to the quantity qj proposed by each supplier
Sj . More precisely we have the following assumption,

Assumption 7.6 Let u = (u1, . . . ,uS) be a strategy profile of the sup-
pliers with ui = (qi, p) for i ∈ {1, . . . , k}. Suppose the market has to use
its additional rule to decide how to share the quantity d̃ ≤ d among sup-
pliers S1 to Sk (the quantity d− d̃ has already been bought from suppliers
with a price lower than p).

Let i ∈ {1, . . . , k}, we define the function that associates qi to any
qi ≥ 0, where qi is the i-th component of the reaction (q1, . . . , qS) of the
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market to the strategy profile (u−i, (qi, p)). We suppose that this function
is not decreasing with respect to the quantity qi.

The meaning of this assumption is that the market does not penalize
an “over-offer” of a supplier. For fixed strategies u−i of all the suppliers
but Si, if supplier Si, such that pi = p increases its quantity qi, then
the quantity bought by the market from Si cannot decrease. It can
increase or stay constant. In particular, it encompasses the case where
the market has a preference order between the suppliers (for example, it
first buys from supplier Sj1 , then supplier Sj2 etc), or when the market
buys some fixed proportion from each supplier. It does not encompass
the case where the market prefers the smallest offer.

Proposition 7.3 Suppose Assumption 7.5 does not hold while Assump-
tion 7.6 does. Let the strategy profile ((q∗1, p∗1), . . . , (q∗S , p∗S)) be defined
by

– If Sj is such that Lj(ρj(p∗)) < p∗ then

p∗j = p∗ − ε, q∗j = ρj(p∗ − ε).

– If Sj is such that Lj(ρj(p∗)) = p∗, then either

p∗j = p∗, q∗j = ρj(p∗), (7.18)

when the reaction of the market is such that

qj ≥ ρj(p∗ − ε), ∀ε > 0,

or
p∗j = p∗ − ε, q∗j = ρj(p∗ − ε). (7.19)

when the new reaction of the market, for a deviation pj = p∗ would
be such that qj < ρj(p∗ − ε).

This strategy profile is a Nash equilibrium.

Proof. The proof follows directly from the discussion made before the
proposition, and from the proof of Proposition 7.2. �

Example. We consider a market with 5 suppliers and a demand d equal
to 10. We suppose that the minimal price functions Lj of suppliers are
increasing staircase functions, given in the following table (the notation
(]a, b]; c) indicates that the value of the function in the interval ]a, b] is c),
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supplier 1 ([0, 1]; 10), (]1, 3]; 15), (]3, 4]; 25), (]4, 10]; 50)
supplier 2 ([0, 5]; 20), (]5, 6]; 23), (]6, 7]; 40), (]7, 10]; 70)
supplier 3 ([0, 2]; 15), (]2, 6]; 25), (]6, 7]; 30), (]7, 10]; 50)
supplier 4 ([0, 1]; 10), (]1, 4]; 15), (]4, 5]; 20), (]5, 10]; 50)
supplier 5 ([0, 4]; 30), (]4, 8]; 90), (]8, 10]; 100)

We display in the following table the values for ρj(p) and O(p) respec-
tively defined by equations (7.13) and (7.14).

p ρ1(p) ρ2(p) ρ3(p) ρ4(p) ρ5(p) O(p)
p ∈ [0, 10[ 0 0 0 0 0 0
p ∈ [10, 15[ 1 0 0 1 0 2
p ∈ [15, 20[ 3 0 2 4 0 9
p ∈ [20, 23[ 3 5 2 5 0 15

The previous table shows that for a price p in [15, 20[, only suppliers
S1, S3 and S4 can bring some positive quantity of electricity. The total
maximal quantity that can be provided is 9 which is strictly lower than
the demand d = 10. For a price in [20, 23[, we see that supplier S2

can also bring some positive quantity of electricity, the total maximal
quantity is then 15 which is higher than the demand. Then we conclude
that the price p∗ defined by Equation (7.15) is p∗ = 20. Moreover,
L2(ρ2(p∗)) = L4(ρ4(p∗)) = p∗ which means that Assumption 7.5 is not
satisfied. Notice that for supplier S5, we have L5(0) = 30 > p∗. Supplier
S5 will not be able to sell anything to the market, hence, whatever its bid
is, we have q5 = 0. We suppose that Assumption 7.6 holds. According
to Proposition 7.3, we have the following equilibria.

u∗
1 =(3, p∗1∈ [15, 20[), u∗

3 =(2, p∗3∈ [15, 20[) and u∗
5 =(p∗, q∗), p∗≥L5(q)

to which the market reacts by buying the respective quantities q1(u∗) =
3, q3(u∗) = 2 and q5(u∗) = 0. The quantity 5 remains to be shared
between S2 and S4 according to the additional rule of the market. For
example, suppose that the market prefers S2 to all other suppliers. Then

u∗
2 = (q∗2 ∈ [1, 5], p∗2 = 20) and u∗

4 = (4, p∗4 ∈ [15, 20[).

to which the market reacts by buying q2(u∗) = 1 and q4(u∗) = 4. If now
the market prefers S4 to any other, then

u∗
2 = (q∗2 ∈ [1, 5], p∗2 = 20) and u∗

4 = (5, p∗4 = 20).

to which the market reacts by buying q2(u∗) = 0 and q4(u∗) = 5.
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4. Suppliers maximize profit
In this section, the objective of the suppliers is to maximize their

profit, i.e. for a strategy profile u = (u1, . . . , uS), uj = (qj , pj), their
evaluation functions are

JSj (u) = pjqj − Cj(qj), (7.20)

where Cj(·) denotes supplier Sj ’s production cost function, and qj is
the optimal reaction of the market, i.e. the solution of Problem (7.9)
together with an additional decision rule, known by all the suppliers, in
case of nonunique solutions (see Remark 7.1). As before, we do not need
to make this rule explicit.

In contrast to the market share maximization, we do not need a min-
imal price functions Lj . Nevertheless we need a maximal unit price
pmax under which the suppliers are allowed to sell their electricity. This
maximal price can either be finite and fixed by the market or be infinite.

From all the assumptions previously made, we only retain in this
section Assumption 7.1.

Lemma 7.1 We define, for any finite price p ≥ 0, Q̂j(p) as the set of
quantities that maximizes the quantity qp− Cj(q), i.e.,

Q̂j(p) def= arg max
q∈[0,d]

qp− Cj(q),

and for infinite price,

Q̂j(+∞) = min(Qj , d),

where Qj is the maximal production capacity of Sj.
We have for finite p,

Q̂j(p) = {0} if C ′(0) > p,

Q̂j(p) = {d} if C ′(d) < p,

Q̂j(p) = {q, C ′
j(q

−) ≤ p ≤ C ′
j(q

+)}, otherwise.
(7.21)

Proof. We prove the last equality of (7.21). For any q ∈ Q̂j(p), we have
for any ε > 0,

pq − Cj(q) ≥ p(q + ε)− Cj(q + ε),

from which we deduce that

Cj(q + ε)− Cj(q)
ε

≥ p,
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and letting ε tends to zero, it follows that C ′
j(q

+) ≥ p. The other equality
is obtained with negative ε.

The first two equalities of (7.21) follow directly from the fact that C ′
is supposed to be non decreasing. �

Note that if C ′(·) is a continuous and non decreasing function, then
(7.21) is equivalent to the classical first order condition for the evaluation
function of the supplier.

Lemma 7.2 The function p → max
q∈[0,d]

(qp− Ci(q)) is continuous and

strictly increasing.

Proof. We recognize the Legendre-Fenchel transform of the convex
function Cj . The continuity follows from classical properties of this
transform.

The function is strictly increasing, since for p > p′, if we denote by q̃
a quantity in arg maxq∈[0,d](qp′ − Ci(q)), we have

max
q∈[0,d]

(qp− Ci(q)) ≥ q̃p− Ci(q̃)

> q̃p′ − Ci(q̃)= max
q∈[0,d]

(qp′ − Ci(q)).

�

We now restrict our attention to the two suppliers’ case, i.e. S = 2.
Our aim is to determine the Nash equilibrium if such an equilibrium

exists. Hence we need to find a pair ((q∗1, p∗1), (q∗2, p∗2)) such that (q∗1, p∗1)
is the best strategy of supplier S1 if supplier S2 chooses (q∗2, p∗2), and con-
versely, (q∗2, p∗2) is the best strategy of supplier S2 if supplier S1 chooses
(q∗1, p∗1). Equivalently we need to find a pair ((q∗1, p∗1), (q∗2, p∗2)) such that
there is no profitable deviation for any supplier Si, i = 1, 2.

Let us determine the conditions which a pair ((q∗1, p∗1), (q∗2, p∗2)) must
satisfy in order to be a Nash equilibrium, i.e., no profitable deviation
exists for any supplier. We will successively examine the case where we
have an excess demand (q∗1 + q∗2 ≤ d) and the case where we have an
excess supply (q∗1 + q∗2 > d).

Excess demand: q∗1 + q∗2 ≤ d. In that case the market buys all the
quantities proposed by the suppliers, i.e., q∗i = q∗i , i = 1, 2.

1. Suppose that for at least one supplier, say supplier S1, we have
p∗1 < pmax. Then supplier S1 can increase its profit by increasing
its price to pmax. Since q∗1 + q∗2 ≤ d the reaction of the market to
the new pair of strategies ((q∗1, pmax), (q∗2, p∗2)) is still q∗1, q∗2. Hence
the new profit of S1 is now q∗1pmax − C1(q∗1) > q∗1p∗1 − C1(q∗1).
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We have exhibited a profitable deviation, (q∗1, pmax) for supplier
S1. This proves that a pair of strategies such that q∗1 +q∗2 ≤ d with
at least one price p∗i < pmax cannot be a Nash equilibrium.

2. Suppose that p∗1 = p∗2 = pmax, and that there exists at least one
supplier, say supplier S1, such that q∗1 = q∗1 �∈ Q̂1(pmax), i.e., such
that the reaction of the market does not maximize S1’s profit (see
Lemma 7.1). Consequently, the profit for S1, associated with the
pair ((q∗1, pmax), (q∗2, pmax)) is such that

q∗1pmax − C1(q∗1) < max
q∈[0,d]

(qpmax − C1(q)).

Since

lim
ε→0+

max
q∈[0,d]

(q(pmax − ε)− C1(q)) = max
q∈[0,d]

(qpmax − C1(q)),

there exists some ε̄ > 0 such that

max
q∈[0,d]

(q(pmax − ε̄)− C1(q)) > q∗1pmax − C1(q∗1).

This proves that any deviation (q̂1, pmax − ε̄) of supplier S1, such
that q̂1 ∈ Q̂1(pmax − ε̄), is profitable for S1.

Hence, a pair of strategies such that q∗1 + q∗2 ≤ d, p∗1 = p∗2 = p∗, to
which the market reacts with, for at least one supplier, a quantity
q∗i �∈ Q̂i(pmax) cannot be a Nash equilibrium.

3. Suppose that p∗1 = p∗2 = pmax, q∗1 = q∗1 ∈ Q̂1(pmax) and q∗2 = q∗2 ∈
Q̂2(pmax) (i.e., the market reacts optimally for both suppliers).

In that case the pair ((q∗1, p∗1), (q∗2, p∗2)) is a Nash equilibrium. As a
matter of fact no deviation by changing the quantity can be prof-
itable: since q∗i is optimal for pmax, the price cannot be increased,
and a decrease of the profit will follow from a decrease of the price
of one supplier (Lemma 7.2).

Excess supply: q∗1 + q∗2 > d. Two possibilities occur depending on
whether the prices pj , j = 1, 2 differ or not.

1. The prices are different, i.e., p∗1 < p∗2 for example.

In that case the market first buys from the supplier with lower
price (hence q∗1 = inf(q∗1, d)), and then completes its demand to
the supplier with highest price, S2 (hence q∗2 = d− q∗1).
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For ε̄ > 0 such that p∗1 + ε̄ < p∗2, we have

q∗1p
∗
1 − C1(q∗1) ≤ max

q∈[0,d]
{qp∗1 − C1(q)} < max

q∈[0,d]
{q(p∗1 + ε̄)− C1(q)}.

Hence supplier S1 is better off increasing its price to p∗1 + ε̄ and
proposing quantity q̂1 ∈ Q̂1(p∗1 + ε̄). As a matter of fact, since
p∗1 + ε̄ < p∗2, the reaction of the market will be q1 = q̂1.

So a pair of strategies with p1 �= p2 cannot be a Nash equilibrium.

2. The prices are equal, i.e., p∗1 = p∗2
def= p∗.

Now the market faces an optimization problem (7.9) with several
solutions. Hence it has to use its additional rule in order to deter-
mine the quantities q∗1, q∗2 to buy from each supplier in response to
their offers q∗1, q∗2.

If this response is not optimal for any supplier, i.e., q∗1 �∈ Q̂1(p∗)
and q∗2 �∈ Q̂2(p∗), the same line of reasoning as in Item 2 of the
excess demand case proves that the pair ((q∗1, p∗1), (q∗2, p∗2)) cannot
be a Nash equilibrium.

Suppose that the reaction of the market is optimal for both sup-
pliers, i.e., q∗1 ∈ Q̂1(p∗) and q∗2 ∈ Q̂2(p∗). A necessary condition for
a supplier, say S1, to increase its profit is to increase its price and
consequently to complete the offer of the other supplier S2. We
have two possibilities,

(a) If for at least one supplier, say supplier S1, we have,

(d− q∗2)pmax − C1(d− q∗2) > max
q∈[0,d]

{qp∗ − C1(q)},

then supplier S1 is better off increasing its price to pmax and
completing the market to sell the quantity d− q∗2.

(b) Conversely, if none of the suppliers can increase its profit by
“completing the offer of the other”, i.e., if

(d− q∗2)pmax − C1(d− q∗2) ≤ max
q∈[0,d]

{qp∗ − C1(q)}, (7.22)

(d− q∗1)pmax − C2(d− q∗1) ≤ max
q∈[0,d]

{qp∗ − C2(q)}, (7.23)

then the pair ((q∗1, p∗1), (q∗2, p∗2)) is a Nash equilibrium.
As a matter of fact, for one supplier, say S1, changing only
the quantity is not profitable since q∗1 ∈ Q̂1, decreasing the



7 Electricity Prices in a Game Theory Context 153

price is not profitable because of Lemma 7.2. Inequality (7.22)
prevents S1 from increasing its price.

Remark 7.6 Note that a sufficient condition for Inequality (7.22) and
(7.23) to be true, is that both suppliers choose q∗j = d, j = 1, 2.

With this choice each supplier prevents the other supplier from com-
pleting its demand with maximal price. This can be interpreted as a
wish for the suppliers to obtain a Nash equilibrium. Nevertheless, to
do that, the suppliers have to propose to the market a quantity d at
price p∗ which may be very risky and hence may not be credible. As a
matter of fact, suppose S1 chooses the strategy q1 = d, p1 = p∗ < pmax.
If for some reason supplier S2 proposes a quantity q2 at a price p2 > p1,
then S1 has to provide the market with the quantity d at price p1 since
q1 = d, which may be disastrous for S1.

Note also that if pmax is not very high compared with p∗ the inequali-
ties (7.22) and (7.23) will not be satisfied. Hence these inequalities could
be used for the market to choose a maximal price pmax such that the
equilibrium may be possible.

The previous discussion shows that in case of excess supply, the only
possibility to have a Nash equilibrium, is that both suppliers propose
the same price p∗ and quantities q∗1, q∗2, such that, together with an
additional rule, the market can choose optimal quantities q∗1, q∗2 that
satisfy its demand and such that q∗j ∈ Q̂j(p∗).

This is clearly not possible for any price p∗. If the price p∗ is too
small, then the optimal quantity the suppliers can bring to the market
is small, and for any q ∈ Q̂1(p∗) + Q̂2(p∗), we have q < d. If the price p∗
is too high, then the optimal quantity the suppliers are willing to bring
to the market are large, and for any q ∈ Q̂1(p) + Q̂2(p), we have q > d.
The following Lemma characterizes the possible values of p∗ for which
it is possible to find q1 and q2 that satisfy q1 ∈ Q̂1(p∗), q2 ∈ Q̂2(p∗) and
q1 + q2 = d.

Let us first define the function C′j from [0, d] to the set of intervals of
R

+ as
C′j(q) = [C ′

j(q
−), C ′

j(q
+)],

for q smaller than the maximal production quantity Qj , and Cj(q) = ∅
for q > Qj . Clearly C′j(q) = {C ′

j(q)} except when C ′
j has a discontinuity

in q. We now can state the lemma.

Lemma 7.3 It is possible to find q1, q2 such that q1 + q2 = d, q1 ∈ Q̂1(p)
and q2 ∈ Q̂2(p) if and only if

p ∈ I,
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where,
I def=

⋃
q∈[0,d]

(C′1(q) ∩ C′2(d− q)),

or, equivalently, when Q1 + Q2 ≥ d, I def= [I−, I+], where

I− def= min{p, max(q ∈ Q̂1(p)) + max(q ∈ Q̂2(p)) ≥ d},
I+ def= max{p, min(q ∈ Q̂1(p)) + min(q ∈ Q̂2(p)) ≤ d},

and I = ∅ when Q1 + Q2 < d.

Proof. If p ∈ I, then there exists q ∈ [0, d] such that p ∈ C′1(q) and
p ∈ C′2(d − q). We take q1 = q, q2 = d − q and conclude by applying
Lemma 7.1.

Conversely, if p �∈ I, then it is not possible to find q1, q2 such that
q1 + q2 = d, and such that p ∈ C′1(q1) ∩ C′2(q2) i.e., such that according
to Lemma 7.1 q1 ∈ Q̂1(p) and q2 ∈ Q̂2(p).

Straightforwardly, if I− ≤ p ≤ I+, then there exists q1 ∈ Q̂1(p) and
q2 ∈ Q̂2(p) such that q1 + q2 = d. �

We sum up the previous analysis by the following proposition.

Proposition 7.4 In a market with maximal price pmax with two sup-
pliers, each having to propose quantity and price to the market, and each
one wanting to maximize its profit, we have the following Nash equilib-
rium:

1. If pmax < min{p ∈ I}-Excess demand case, any strategy profile
((q∗1, pmax), (q∗2, pmax)), with q∗1 ∈ Q̂1(pmax) and q∗2 ∈ Q̂2(pmax) is a
Nash equilibrium. In that case we have q∗1 + q∗2 < d.

2. If pmax = min{p ∈ I}, any pair ((q∗1, pmax), (q∗2, pmax)) where q∗1 ∈
Q̂1(pmax) and q∗2 ∈ Q̂2(pmax) is a Nash equilibrium. In that case
we may have q∗1 + q∗2 ≥ d or q∗1 + q∗2 < d.

3. If pmax > min{p ∈ I}- Excess supply case, any pair
((q∗1, p∗), (q∗2, p∗)), such that p∗ ∈ I, p∗ ≤ pmax and which induces
a reaction (q1, q2), q1 ≥ q∗1, q2 ≥ q∗2, such that

(a) q1 + q2 = d,

(b) q1 ∈ Q̂1(p∗), q2 ∈ Q̂2(p∗),
(c)

(d− q∗2)pmax − C1(d− q∗2) ≤ q1p
∗ − C1(q1),

d− q∗1)pmax − C2(d− q∗1) ≤ q2p
∗ − C2(q2),

is a Nash equilibrium.
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We now want to generalize the previous result to a market with S ≥ 2
suppliers.

Let ((q∗1, p∗1), . . . , (q∗S , p∗S)) be a strategy profile, and let (q1, . . . , qS) be
the induced reaction of the market. This strategy profile is a Nash equi-
librium, if for any two suppliers, Si, Sj , the pair of strategies ((q∗i , p

∗
i ),

(q∗j , p
∗
j )) is a Nash equilibrium for a market with two suppliers (with

evaluation function defined by Equation (7.20)) and demand d̃ = d −∑
k �∈{i,j} qk.
Hence using the above Proposition 7.4, we know that necessarily at

equilibrium the prices proposed by the suppliers are equal, and the quan-
tities q∗i induce a reaction of the market such that qi ∈ Q̂i(p∗).

Let us first extend the previous definition of the set I by I = ∅ if∑S
j=1 Qj < d, and otherwise,

I def= [I−, I+],
where
I− = min{p,

∑S
j=1 max(q ∈ Q̂j(p)) ≥ d},

I+ = max{p,
∑S

j=1 min(q ∈ Q̂j(p)) ≤ d}.
(7.24)

We have the following

Theorem 7.1 Suppose we have S suppliers on a market with maximal
price pmax and demand d.

1. If pmax < min{p ∈ I}-Excess demand case, any strategy profile
((q∗1, pmax), . . . , (q∗S , pmax)), with q∗j ∈ Q̂j(pmax), j = 1, . . . ,S, is a
Nash equilibrium. In that case we have

∑S
j=1 q∗j < d.

2. If pmax =min{p∈I}, any strategy profile ((q∗1,pmax),. . ., (q∗S ,pmax))
where q∗j ∈ Q̂j(pmax), j = 1, . . . ,S is a Nash equilibrium. In that
case we may have

∑S
j=1 q∗j ≥ d or

∑S
j=1 qj < d.

3. If pmax > min{p ∈ I}- Excess supply case, any strategy profile
((q∗1, p∗), . . . , (q∗S , p∗)), such that p∗ ∈ I, p∗ ≤ pmax and which
induces a reaction (q1, . . . , qS), qj ≥ q∗j , j = 1, . . . ,S, such that

(a)
∑S

j=1 qj = d,

(b) qj ∈ Q̂j(p∗), j = 1, . . . ,S,
(c) for any j = 1, . . . ,S

(d−
∑
k �=j

q∗k)pmax − Cj(d−
∑
k �=j

q∗k) ≤ qjp
∗ − Cj(qj), (7.25)

is a Nash equilibrium.
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The previous results show that a Nash equilibrium always exists for
the case where the profit is used by the suppliers as an evaluation func-
tion. For convenience we have supposed the existence of a maximal price
pmax. On real markets we observe that, usually this maximal price is
infinity, since most markets do not impose a maximal price on electric-
ity. Hence the interesting case is the case where pmax > min{p ∈ I}.
The case with pmax ≤ min{p ∈ I}, can be interpreted as a monopolistic
situation. The demand is so large compared with the maximal price that
each supplier can behave as if it is alone on the market.

When pmax is large enough, Proposition 7.4 and Theorem 7.1 exhibit
some conditions for a strategy profile to be a Nash equilibrium. We can
make several remarks.

Remark 7.7 Note that conditions (7.25) are satisfied for q∗j = d. Hence
we can conclude that, provided that the market reacts in such a way that
qj ∈ Q̂j , the strategy profile ((d, p∗), . . . , (d, p∗)) is a Nash equilibrium.
Nevertheless, this equilibrium is not realistic. As a matter of fact, to
implement this equilibrium, the suppliers have to propose to the market
a quantity that is higher than the optimal quantity, and which possibly
may lead to a negative profit (when pmax is very large). The second
aspect that may appear unrealistic is the fact that the suppliers give
up their power of decision. As a matter of fact, they announce high
quantities, so that (7.25) is satisfied, and let the market choose the
appropriate qj .

Example. We consider the market, with demand d = 10 and maximal
price pmax = +∞, with the five suppliers already described page 147. In
order to be able to compare the equilibria for both criteria, market share
and profit, we suppose that the marginal cost is equal to the minimal
price function displayed in the table page 148, i.e., C ′

j = Lj .

The following table displays the quantities o(p) def=
∑5

j=1 min{q ∈
Q̂j(p)} and O(p) def=

∑5
j=1 max{q ∈ Q̂j(p)}.

p ∈ [0, 10[ = 10 ∈]10, 15[ = 15 ∈]15, 20[ = 20 ∈]20, 23[
o(p) 0 0 2 2 9 9 15
O(p) 0 2 2 9 9 15 15

From the above table we deduce that I = {20}, hence the only
possible equilibrium price is p∗ = 20. As a matter of fact, we have
O(20) = 15 > 10 = d, and for any p < 20, O(p) < 10 = d, and
o(20) = 9 < 10 = d, and for any p > 20, o(p) > 10 = d. Hence
p∗ = 20 ∈ I as defined by Equation (7.24).
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Now concerning the quantities, the equilibrium depend upon the ad-
ditional rule of the market. We suppose that the market chooses qi ∈
Q̂i, ∀i ∈ {1, . . . , 5}, and then to give preference to S1, then to S2, etc.

The equilibrium is q∗1 ≥ 3, q∗2 ≥ 0, q∗3 ≥ 2, q∗4 ≥ 4, q∗2 ≥
0, q∗5 ≥ 0.

The fact that the market wants to choose quantities qi ∈ Q̂i(20) im-
plies that q1 ∈ Q̂1(20) = 3, q2 ∈ Q̂2(20) = [0, 5], q3 ∈ Q̂3(20) =
2, q4 ∈ Q̂4(20) = [4, 5], q5 = 0, and the preference for S2 compared
to S5 implies that q1 = 3, q2 = 1, q3 = 2, q4 = 4, q5 = 0.

If the preference would have been S5 then S4 then S3 etc. the equi-
librium would have been the same, but we would have had

q1 = 3, q2 = 0, q3 = 2, q4 = 5, q5 = 0.

5. Conclusion
We have shown in the previous sections that for both criteria, market

share and profit maximization, it is possible to find a Nash equilibrium
for a number S of suppliers. It is noticeable that for both cases the
equilibrium price involved is the same (i.e., p∗ given by Equation (7.14)
for market share maximization and p∗ ∈ I defined by Equation (7.24)
for profit maximization), only the quantities proposed by the suppliers
differ.

Nevertheless as already discussed in Remark 7.7, for profit maximiza-
tion, the equilibrium strategies involved are not realistic in the inter-
esting cases (pmax large). This may suggest that on these unregulated
markets where suppliers are interested in instantaneous profit maximiza-
tion, an equilibrium never occurs. Prices may becomes arbitrarily high
and anticipation of the market behavior, and particularly market price,
basically impossible. An extended discussion on this topic can be found
in Bossy et al. (2004).

This paper contains some modeling aspects that could be considered
in more detail in future works. A first extension would be to consider
more general suppliers. As a matter of fact, in the current paper, the
evaluation functions chosen are more suitable for providers. Indeed, for
profit maximization, we assumed that we had a production cost only for
that part of electricity which is actually sold. This would fit the case
where suppliers are producers. They produce only the electricity sold.
The evaluation function chosen does not fit the case of traders who may
have already bought some electricity and try to sell at best price the
maximal electricity they have. The extension of our results in that case
should not be difficult.
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We supposed that every supplier perfectly knows the evaluation func-
tion of the other suppliers, and in particular their marginal costs. In
general this is not true. Hence some imperfect information version of
the model should probably be investigated.

An other extension worthwhile would be to consider the multi market
case, since the suppliers have the possibility to sell their electricity on
several markets. This aspect has been briefly discussed in Bossy et al.
(2004). It leads to a much more complex model, which in particular
involves a two level game where at both levels the agents strive to set a
Nash equilibrium.

Acknowledgments. This work was partially performed while Geert
Jan Olsder was on leave at CNRS/i3s/UNSA, Sophia Antipolis, France
during the academic year 02/03.

References
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