Software Components Motivation A First Look at Mefresa Directions/Hopes

Formal Reasoning on
Component-Based Reconfigurable Applications

Nuno Gaspar Eric Madelaine Ludovic Henrio

Oasis Project Team
INRIA Sophia Antipolis - Méditerranée

40" Symposium on Principles of Programming Languages - POPL'2013,
January 25%, 2013, Rome, Italy

rd

informatics #” mathematics
2 —

Software Components Motivation A First Look at Mefresa Directions/Hopes

Outline

@ Software Components
@ The GCM Component Model

© Motivation
© A First Look at Mefresa

@ Directions/Hopes

Software Components Motivation A First Look at Mefresa Directions/Hopes

Component-Based Engineering

@ Software as building blocks that when put together form the
intended functionality

@ Core Elements

o Component: Some entity, generally a piece of software code

o Interface: Access point to/from components

e Binding: Connection established between components, through
their interfaces®

@ Several components models proposed

e CCM, CCA, SCA, Fractal, GCM (Grid Component Model), ...
e Each with its intricacy
@ hierarchical/flat, distribution, reconfiguration, ...

1And this is the fundamental difference between Object-oriented
programming and Component-based programming

Software Components Motivation A First Look at Mefresa

Research Interests @ OASIS

Our work lies around the GCM Component Model

@ Registered as a standard at the European Telecommunications
Standards Institute (ETSI)

Directions/Hopes

@ A reference publication: F. Baude et. al. GCM: a grid extension
to Fractal for autonomous distributed components. Annals of
Telecommunications, 64(1), 5-24, 2009 [3]

@ And its behavioural model: T. Barros et. al. Behavioural models
for distributed Fractal components. Annals of
Telecommunications, 64(1-2), jan 2009 2]

Software Components Motivation A First Look at Mefresa Directions/Hopes

Research Interests @ OASIS
Our work lies around the GCM Component Model

@ Complete Software Life Cycle

@ VerCors - A Specification & Verification Platform for GCM

Applications
o GCM/ProActive - A Java Library

ProAcrive ﬁ’

Parallel Suite

Motivation A First Look at Mefresa Directions/Hopes
Research Interests @ OASIS

Our work lies around the GCM Component Model

@ Research Projects & Industrial Partners

o Spinnaker, PLAY, CompatibleOne, ...
o Tagsys, Renault, Orange, ...

Software Components A First Look at Mefresa

Approach to Verification

Directions/Hopes

@ Typically, our projects requires us to build some GCM application

@ For which we prove the intended properties via the CADP
Model-Checker

o See for instance [1, 4, 6]
@ Often, we need Distributed Space-State Generation...

o Tackle the need for huge space-state generation by
@ abstraction

@ compositional and contextual reduction
@ distributed generation

Software Components A First Look at Mefresa Directions/Hopes
Approach to Verification

@ Often, we need Distributed Space-State Generation...
o Still, we face the common space-state explosion phenomena

@ Specifying — (distributed) Space-state Generation —
System Product — Model-Checking

o Not that simple in practice...
o Need access to a Grid/Cloud environment

@ Better be friendly to the SysAdmin too :-)
@ Space-state generation takes time (upto several days)
e Specification is rarely right at first shot
o Constrained by the use of finite domains

Software Components Motivation Directions/Hopes
.
Mefresa in a Nutshell

@ A Mechanized Framework for Reasoning on Software Architectures
@ Gives a Formal Semantics to the GCM Component Model

@ Developed with the Coq Proof Assistant

.‘).

http://www-sop.inria.fr/members/Nuno.Gaspar/Mefresa.php

http://www-sop.inria.fr/members/Nuno.Gaspar/Mefresa.php

Software Components Motivation Directions/Hopes
Mefresa in a Nutshell - Aims 1/3

@ A Mechanized Framework for Reasoning on Software Architectures
@ Gives a Formal Semantics to the GCM Component Model

@ Developed with the Coq Proof Assistant

Three types of aims

1 Disambiguate the informal Specification
o Allows us to prove properties expected to hold

e e.g. "... ensure that primitive bindings cannot cross component
boundaries except through interfaces.”

Within our Framework, it boiled down to:

Theorem cross_binding_cannot_happen:
forall b system,
well_formed system —>
system_binding b system —>
cross_binding b system —>
False.
Proof.

Software Components Motivation Directions/Hopes
Mefresa in a Nutshell - Aims 2/3

@ A Mechanized Framework for Reasoning on Software Architectures
@ Gives a Formal Semantics to the GCM Component Model

@ Developed with the Coq Proof Assistant

Three types of aims

1

2 Proof of general algorithms manipulating GCM Applications

e e.g. L. Henrio, M. Rivera. Stopping safely hierarchical distributed
components: application to GCM, ACM CBHPC 08 (see [7])

Software Components Motivation Directions/Hopes
Mefresa in a Nutshell - Aims 3/3

@ A Mechanized Framework for Reasoning on Software Architectures
@ Gives a Formal Semantics to the GCM Component Model
@ Developed with the Coq Proof Assistant

Three types of aims

1

3 Proving that some GCM application meets the specification
o Purely structural concerns:
@ Reconfiguration X leads us to a well formed state
e Functional concerns: encode a model-checker inside Coq (see [8])
@ Scalability may be an issue here...
o Take Model-Checking results as assumptions

Software Components Motivation Directions/Hopes
Mefresa in a Nutshell - Approach 1/4
Approach

@ Encoding of main GCM elements

Inductive component : Type :=
| Component : ident —> type —>
path —> controlLevel —>
list component —> list interface —>
list binding —> component.

implicitly models the GCM Hierarchical structure

and in the same spirit for Interface and Binding..

Software Components Motivation Directions/Hopes
Mefresa in a Nutshell - Approach 2/4
Approach

@ A simple operation language

op = mk_component component
| mk_interface interface
| mk_binding binding
| rm_component component
| rm_binding binding
| op; op
| done

Design (and reconfiguration) of software architectures seen as transitions:
—: (operation x state) — (operation x state) — Prop

e.g. (op,s) — (op’,s’)

Software Components Motivation A First Look at Mefresa Directions/Hopes

Mefresa in a Nutshell - Approach 2/4
Approach
°
@ A simple operation language
o To which we attach a proof rule to each constructor:

¢ = Component id t p cl subComps interfaces bindings
valid_path p s

well _formed _components subComps
well_formed _interfaces interfaces
Vid',id" € (get_scope p s) — (id # id’)

(make_component c,s) — (done, (add_component s c))

and in the same spirit for the remaining constructors...

Software Components Motivation A First Look at Mefresa Directions/Hopes

Mefresa in a Nutshell - Approach 3/4
Approach

@ A proof of correction for our semantic rules

for all operations starting in a well formed state, upon
completion, we end up in a well formed state

Theorem validity:
forall op s s',
well_formed s —>
op / s ——> Done / s’ —>
well_formed s’

by other words, using our semantic rules ensure that you produce
GCM architectures that meet the specification

Software Components Motivation Directions/Hopes
Mefresa in a Nutshell - Approach 4/4

Approach
o
o
°

@ Co-Induction to model communication between components

o Infinite traces

Software Components Motivation A First Look at Mefresa Directions/Hopes

Final Remarks
We Have
@ A Semantics for the GCM Component Model Mechanized in Coq

@ Our operation language proved correct w.r.t to the specification

o Building & Reconfiguration of GCM architectures
correct-by-construction

@ Preliminary experiments regarding proved reconfiguration scripts
& communication modelling via co-inductive predicates

We Want

@ We aim at providing an unified framework for reasoning on
structural concerns, functional concerns and their interaction

@ Seamless integration with VerCors [4]

o At the 3 types of aims discussed before

@ Understand fully to what extend our Verification methodology (with
Model Checking) can benefit from Mefresa

Thank you for listening!

email me your thoughts at

(fun x y = x . y Qinria.fr) Nuno Gaspar

Formal Reasoning on ,Component-Based Reconfigurable Applications

9/9

Software Components Motivation A First Look at Mefresa Directions/Hopes

Raba Ameur-boulifa, Ludovic Henrio, and Eric
Madelaine.

Behavioural models for group communications.

In In in proceedings of the International Workshop on Component
and Service Interoperability, WICS10, Malaga, 2010.

Tomas Barros, Rabéa Ameur-Boulifa, Antonio Cansado,
Ludovic Henrio, and Eric Madelaine.

Behavioural models for distributed fractal components.

Annales des Télécommunications, 64(1-2):25-43, 2009.

Francoise Baude, Denis Caromel, Cédric Dalmasso,
Marco Danelutto, Vladimir Getov, Ludovic Henrio, and
Christian Pérez.

Gem: a grid extension to fractal for autonomous distributed
components.

Annales des Télécommunications, 64(1-2):5-24, 2009.

Raba Ameur Boulifa, Raluca Halalai, Ludovic Henrio,
and Eric Madelaine.

Software Components Motivation A First Look at Mefresa Directions/Hopes

Verifying safety of fault-tolerant distributed components.

In International Symposium on Formal Aspects of Component
Software (FACS 2011), Lecture Notes in Computer Science, Oslo,
2011. Springer.

Eric Bruneton, Thierry Coupaye, and Jean-Bernard
Stefani.
The fractal component model, 2004.

Antonio Cansado and Eric Madelaine.

Formal methods for components and objects.

chapter Specification and Verification for Grid Component-Based
Applications: From Models to Tools, pages 180-203.
Springer-Verlag, Berlin, Heidelberg, 20009.

Ludovic Henrio and Marcela Rivera.
Stopping safely hierarchical distributed components: application to
gcm.

York, NY, USA, 2008. ACM.

Christoph Sprenger.
A verified model checker for the modal -calculus in coq.
In In TACAS, volume 1384 of LNCS. Springer Verlag, 1998.

Formal Reasoning on ,Component-Based Reconfigurable Applications

9/9

	Software Components
	The GCM Component Model

	Motivation
	A First Look at Mefresa
	Directions/Hopes

