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Population Protocol (PP)

Network of mobile agents

Constant memory (e.g. no ids)

Protocol = set of transition rules for 2 meeting agents.
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Communication Graph

node = agent

edge (u,v) = possible meeting of u and v

connected

Population Protocol

family of communication graphs F
state space Q, input space I

finite set of rules : (p, i)(q, j)→ p′,q′
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Example : state space {◦,•}, input space {⊥}

••→ ◦•

(γ1,α1)︸ ︷︷ ︸
configuration, input
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Example : state space {◦,•}, input space {⊥}

••→ ◦•

(γ1,α1)
edge e1−−−−→ (γ2,α2)
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Example : state space {◦,•}, input space {⊥}

••→ ◦•

(γ1,α1)
e1−→ (γ2,α2)

e2−→ (γ3,α3)

4/19



SSLE in PP
over Arbitrary

Graphs

Basics

SSLE

Oracle Ω?

Results

Conclusion

Basics

Example : state space {◦,•}, input space {⊥}

••→ ◦•

(γ1,α1)
e1−→ (γ2,α2)

e2−→ (γ3,α3)→ . . .
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Definition (Global Fairness)

If (γ,α) occurs infinitely often and (γ,α)→ γ′ then γ′ occurs
infinitely often.

Mobility of the agents is non-deterministic.

As commonly in PP, we consider only globally fair executions.
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SSLE

Basic Idea :

Each agent is leader or non-leader

Eventually, unique and static leader agent

Agents are NOT required to :

Know when the leader is elected (no termination)

Know who the leader is (no id)

Self-stabilization

Arbitrary initial configuration

Convergence after a finite period of time
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On complete graphs, let’s try ••→ •◦
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Previous protocol is not self-stabilizing

Need to create leaders (e.g. ◦◦→ •◦)
Need to stop creating leaders
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(Angluin et al., 2005).

SSLE impossible on complete graphs.

Fischer and Jiang (distributed) oracle Ω?

For each agent x , output Ω?x as input to x

Constantly observe the leader bit in the configurations

Forever 0 leader⇒ eventually output 0 in some agent

Forever at least 1 leader⇒ eventually output 1 in every agent

N.B. : The observed bit is not necessarily interpreted as “leader”.

9/19



SSLE in PP
over Arbitrary

Graphs

Basics

SSLE

Oracle Ω?

Results

Conclusion

Oracle Ω?

Main ideas for using Ω? to solve SSLE :

Leader detector.

Create leader at x iff Ω?x = 0.

Each leader tries to “kill” other leaders ...

... without killing himself.
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Some previous results for SSLE :

(Fischer, Jiang) solution, oracle Ω?, over complete graphs

(Fischer, Jiang) solution, oracle Ω?, over all rings

(Angluin et al.) For each k , solution, no oracle, over rings of
size 6∈ kZ
(Caneda, Potop-Butucaru) impossibility of silent
self-stabilizing leader election even with the help of Ω?

(Cai, Izumi, Wada) solution, no oracle, over a complete graph
of size n using state space of size n
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Our results :

Leader election over arbitrary graphs without oracles, with
uniform initialization (non self-stabilizing)

family {Ω?[k ,d ]}k ,d∈N that generalizes Fischer and Jiang’s
oracle Ω?.

a self-stabilizing protocol over arbitrary graphs using
Ω?[2,1] = 2 instances of Ω?.

Ω? cannot be implemented using SSLE over arbitrary graphs.
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Protocol A , each agent

is either non-leader, white leader (◦), black leader (•)
holds either no token, white token (�), black token (�)

Ω?[2,1] = two instances of Ω?

leader detector, Ω?l , observes the presence of leaders

token detector, Ω?t , observes the presence of tokens
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Rules of A
Ω?l = 0 : creates a black leader

Ω?t = 0 : creates a black token

tokens move (by swapping)

black token kills white leader �,◦→⊥
white token whitens black leader �,•→ ◦
if a token meets a leader with the same color, they both flip
their colors

two colliding tokens : one disappears
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Why does it work ?

With Ω?t : eventually a unique token (changing color)

Synchronized pair of leader and token : same color

Invariant : if a config contains a synchronized pair, then the
next config also contains a synchronized pair
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What about configuration without synchronized pair ?
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Unique token synchronized with some leader

The number of leaders (≥ 1) cannot increase (via Ω?l )

The number of leaders eventually reaches 1 (by global
fairness)
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Perspectives

Is Fischer-Jiang Ω? enough to solve SSLE over arbitrary
graphs ?

Prove the conjecture : there is no solution to SSLE , without
oracles, over the family of all rings.
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