SSLE in PP over Arbitrary Graphs

Basics SSLE

Oracle Ω

Results

Conclusion

Self-Stabilizing Leader Election (SSLE) in Population Protocols over Arbitrary Communication Graphs J. BEAUQUIER, P. BLANCHARD, J. BURMAN

SSLE in PP over Arbitrary Graphs

Basics

SSLE

Oracle Ω?

Results

Conclusion

Population Protocol (PP)

- Network of mobile agents
- Constant memory (e.g. no ids)
- Protocol = set of transition rules for 2 meeting agents.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

SSLE in PP over Arbitrary Graphs

Basics

SSLE

Oracle Ω

Results

Conclusion

Communication Graph

- node = agent
- edge (u, v) = possible meeting of u and v
- connected
- **Population Protocol**
 - \blacksquare family of communication graphs ${\mathcal F}$
 - state space Q, input space I
 - finite set of rules : $(p,i)(q,j) \rightarrow p',q'$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

SSLE in PP over Arbitrary Graphs

Basics

SSLE

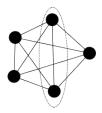
Oracle Ω

Results

Conclusion

Example : state space $\{\circ, \bullet\}$, input space $\{\bot\}$

 $\bullet \bullet \to \circ \bullet$



 (γ_1, α_1)

configuration, input

SSLE in PP over Arbitrary Graphs

Basics

SSLE

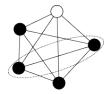
Oracle Ω

Results

Conclusion

Example : state space $\{\circ, \bullet\}$, input space $\{\bot\}$

 $\bullet \bullet \to \circ \bullet$



$$(\gamma_1, \alpha_1) \xrightarrow{\text{edge } e_1} (\gamma_2, \alpha_2)$$

SSLE in PP over Arbitrary Graphs

Basics

SSLE

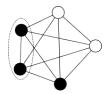
Oracle Ω

Results

Conclusion

Example : state space $\{\circ, \bullet\}$, input space $\{\bot\}$

 $\bullet \bullet \to \circ \bullet$



$$(\gamma_1, \alpha_1) \xrightarrow{e_1} (\gamma_2, \alpha_2) \xrightarrow{e_2} (\gamma_3, \alpha_3)$$

SSLE in PP over Arbitrary Graphs

Basics

SSLE

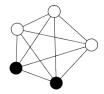
Oracle Ω

Results

Conclusion

Example : state space $\{\circ, \bullet\}$, input space $\{\bot\}$

 $\bullet \bullet \to \circ \bullet$



$$(\gamma_1,\alpha_1) \xrightarrow{e_1} (\gamma_2,\alpha_2) \xrightarrow{e_2} (\gamma_3,\alpha_3) \to \dots$$

SSLE in PP over Arbitrary Graphs

Basics

SSLE

Oracle Ω

Results

Conclusion

Definition (Global Fairness)

If (γ, α) occurs infinitely often and $(\gamma, \alpha) \to \gamma'$ then γ' occurs infinitely often.

- Mobility of the agents is non-deterministic.
- As commonly in PP, we consider only globally fair executions.

ヘロト 人間 とくほとくほとう

SSLE

SSLE in PP over Arbitrary Graphs

Basics

SSLE

- Oracle Ω
- Results
- Conclusion

Basic Idea :

- Each agent is leader or non-leader
- Eventually, unique and static leader agent
- Agents are NOT required to :
 - Know when the leader is elected (no termination)
 - Know who the leader is (no id)

Self-stabilization

- Arbitrary initial configuration
- Convergence after a finite period of time

< □ > < 同 > < 臣 > < 臣

SSLE

SSLE in PP over Arbitrary Graphs

Basics

SSLE

Oracle Ω

Results

Conclusion

On *complete* graphs, let's try $\bullet \bullet \to \bullet \circ$

æ

ヘロト 人間 とくほとくほとう

SSLE

SSLE in PP over Arbitrary Graphs

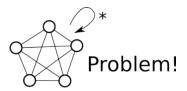
Basics

SSLE

Oracle Ω

Results

Conclusion



Previous protocol is not self-stabilizing

■ Need to create leaders (e.g. $\circ \circ \rightarrow \bullet \circ$)

Need to stop creating leaders

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Oracle Ω ?

SSLE in PP over Arbitrary Graphs

Basics SSLE Oracle Ω? Results

Conclusion

(Angluin et al., 2005).

SSLE impossible on complete graphs.

Fischer and Jiang (distributed) oracle Ω ?

- For each agent x, output Ω ?_x as input to x
- Constantly observe the leader bit in the configurations
- Forever 0 leader ⇒ eventually output 0 in *some* agent
- Forever at least 1 leader ⇒ eventually output 1 in *every* agent

N.B. : The observed bit is not necessarily interpreted as "leader".

/∰ ► < Ξ ►

Oracle Ω ?

SSLE in PP over Arbitrary Graphs

Basics

SSLE

Oracle Ω ?

Results

Conclusion

Main ideas for using Ω ? to solve SSLE :

- Leader detector.
- Create leader at *x* iff Ω ?_{*x*} = 0.
- Each leader tries to "kill" other leaders ...
- ... without killing himself.

SSLE in PP over Arbitrary Graphs

- Basics
- SSLE
- Oracle Ω
- Results
- Conclusion

Some previous results for SSLE :

- (Fischer, Jiang) solution, oracle Ω ?, over complete graphs
- (Fischer, Jiang) solution, oracle Ω ?, over all rings
- (Angluin et al.) For each k, solution, no oracle, over rings of size ∉ kZ
- (Caneda, Potop-Butucaru) impossibility of *silent* self-stabilizing leader election even with the help of Ω?
- (Cai, Izumi, Wada) solution, no oracle, over a complete graph of size n using state space of size n

SSLE in PP over Arbitrary Graphs

Basics

SSLE

Oracle Ω?

Results

Conclusion

Our results :

- Leader election over arbitrary graphs without oracles, with uniform initialization (non self-stabilizing)
- family {Ω?[k,d]}_{k,d∈ℕ} that generalizes Fischer and Jiang's oracle Ω?.
- a self-stabilizing protocol over arbitrary graphs using Ω?[2,1] = 2 instances of Ω?.
- **Ω**? cannot be implemented using *SSLE* over arbitrary graphs.

SSLE in PP over Arbitrary Graphs

Basics

SSLE

Oracle Ω?

Results

Conclusion

Our results :

- Leader election over arbitrary graphs without oracles, with uniform initialization (non self-stabilizing)
- family {Ω?[k,d]}_{k,d∈ℕ} that generalizes Fischer and Jiang's oracle Ω?.
- a self-stabilizing protocol over arbitrary graphs using Ω ?[2,1] = 2 instances of Ω ?.
- Ω ? cannot be implemented using *SSLE* over arbitrary graphs.

ヘロト 人間 とくほとくほとう

SSLE in PP over Arbitrary Graphs

Basics

Oracle Ω?

Results

Conclusion

Protocol \mathcal{A} , each agent

- is either non-leader, white leader (\circ), black leader (\bullet)
- holds either no token, white token (\triangleright) , black token (\blacktriangleright)
- Ω ?[2,1] = two instances of Ω ?
 - leader detector, Ω ?^{*l*}, observes the presence of leaders
 - token detector, Ω ?^{*t*}, observes the presence of tokens

SSLE in PP over Arbitrary Graphs

- Basics
- SSLE
- Oracle Ω
- Results
- Conclusion

Rules of $\mathcal A$

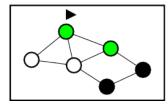
- Ω ?^{*l*} = 0 : creates a black leader
- Ω ?^{*t*} = 0 : creates a black token
- tokens move (by swapping)
- \blacksquare black token kills white leader $\blacktriangleright, \circ \rightarrow \bot$
- white token whitens black leader $\triangleright, \bullet \rightarrow \circ$
- if a token meets a leader with the same color, they both flip their colors
- two colliding tokens : one disappears

SSLE in PP over Arbitrary Graphs

Results

Why does it work?

- With Ω ?^{*t*} : eventually a unique token (changing color)
- Synchronized pair of leader and token : same color
- Invariant : if a config contains a synchronized pair, then the next config also contains a synchronized pair



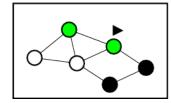
< □ > < 同 > < 臣 > < 臣

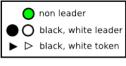
SSLE in PP over Arbitrary Graphs

Results

Why does it work?

- With Ω ?^{*t*} : eventually a unique token (changing color)
- Synchronized pair of leader and token : same color
- Invariant : if a config contains a synchronized pair, then the next config also contains a synchronized pair





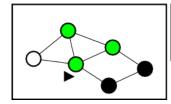
< □ > < 同 > < 回 > .

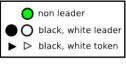
SSLE in PP over Arbitrary Graphs

Results

Why does it work?

- With Ω ?^{*t*} : eventually a unique token (changing color)
- Synchronized pair of leader and token : same color
- Invariant : if a config contains a synchronized pair, then the next config also contains a synchronized pair





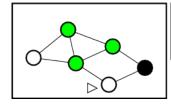
< □ > < 同 > < 回 > .

SSLE in PP over Arbitrary Graphs

Results

Why does it work?

- With Ω ?^{*t*} : eventually a unique token (changing color)
- Synchronized pair of leader and token : same color
- Invariant : if a config contains a synchronized pair, then the next config also contains a synchronized pair



< □ > < 同 > < 回 > .

SSLE in PP over Arbitrary Graphs

Basics

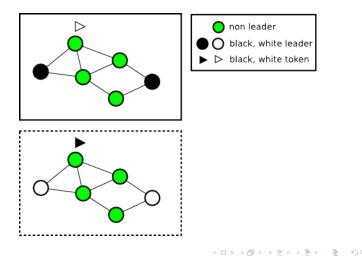
SSLE

Oracle Ω

Results

Conclusion

What about configuration without synchronized pair?



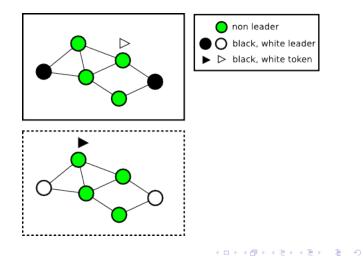
Basics

0022

Oracle Ω

Results

What about configuration without synchronized pair?



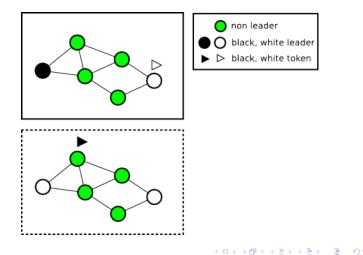
Basics

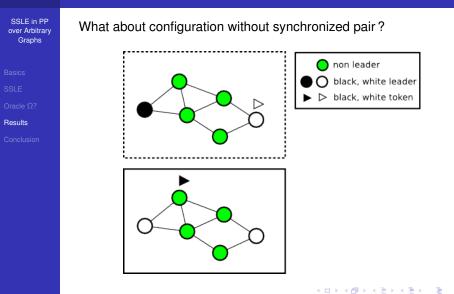
SOLE

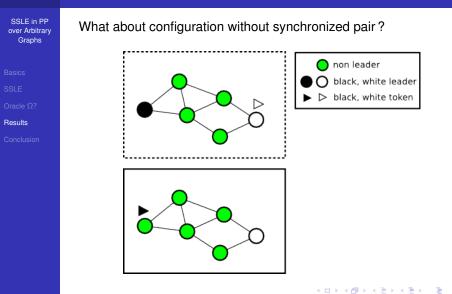
Oracle Ω

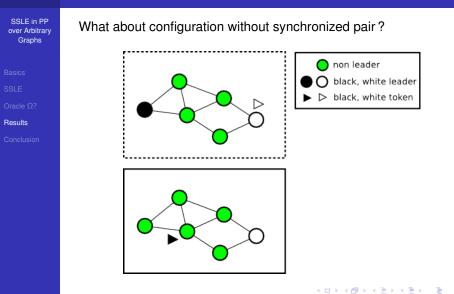
Results

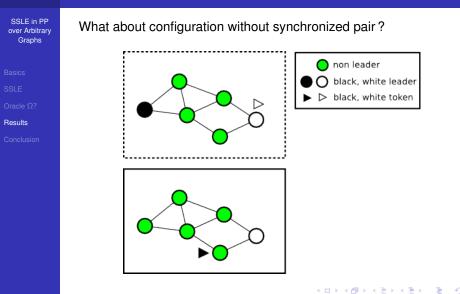
What about configuration without synchronized pair?

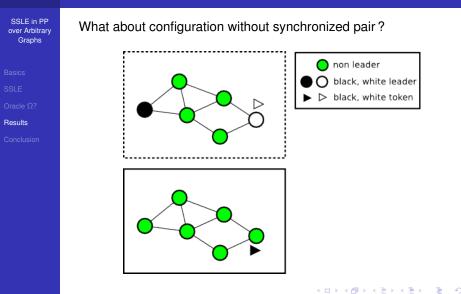


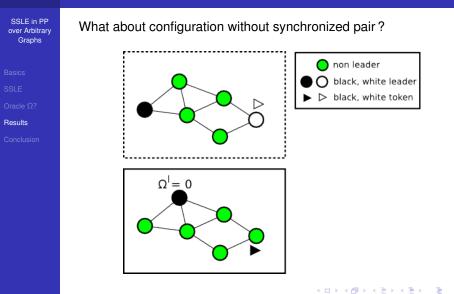












SSLE in PP over Arbitrary Graphs

Basics

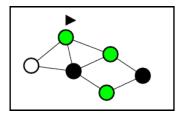
SSLE

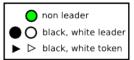
Oracle Ω?

Results

Conclusion

- Unique token synchronized with some leader
- The number of leaders (≥ 1) cannot increase (via Ω?')
- The number of leaders eventually reaches 1 (by global fairness)





SSLE in PP over Arbitrary Graphs

Basics

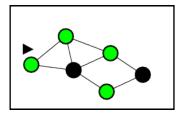
SSLE

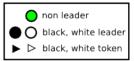
Oracle Ω?

Results

Conclusion

- Unique token synchronized with some leader
- The number of leaders (≥ 1) cannot increase (via Ω?')
- The number of leaders eventually reaches 1 (by global fairness)





SSLE in PP over Arbitrary Graphs

Basics

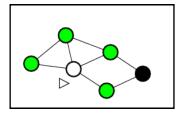
SSLE

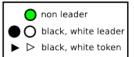
Oracle Ω

Results

Conclusion

- Unique token synchronized with some leader
- The number of leaders (≥ 1) cannot increase (via Ω?')
- The number of leaders eventually reaches 1 (by global fairness)





SSLE in PP over Arbitrary Graphs

Basics

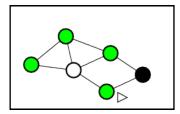
SSLE

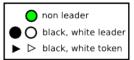
Oracle Ω?

Results

Conclusion

- Unique token synchronized with some leader
- The number of leaders (≥ 1) cannot increase (via Ω?')
- The number of leaders eventually reaches 1 (by global fairness)





SSLE in PP over Arbitrary Graphs

Basics

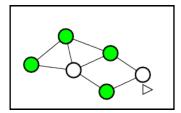
SSLE

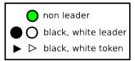
Oracle Ω

Results

Conclusion

- Unique token synchronized with some leader
- The number of leaders (≥ 1) cannot increase (via Ω?')
- The number of leaders eventually reaches 1 (by global fairness)





SSLE in PP over Arbitrary Graphs

Basics

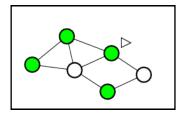
SSLE

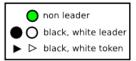
Oracle Ω

Results

Conclusion

- Unique token synchronized with some leader
- The number of leaders (≥ 1) cannot increase (via Ω?')
- The number of leaders eventually reaches 1 (by global fairness)





SSLE in PP over Arbitrary Graphs

Basics

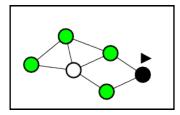
SSLE

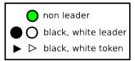
Oracle Ω

Results

Conclusion

- Unique token synchronized with some leader
- The number of leaders (≥ 1) cannot increase (via Ω?')
- The number of leaders eventually reaches 1 (by global fairness)





SSLE in PP over Arbitrary Graphs

Basics

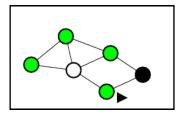
SSLE

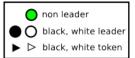
Oracle Ω

Results

Conclusion

- Unique token synchronized with some leader
- The number of leaders (≥ 1) cannot increase (via Ω?')
- The number of leaders eventually reaches 1 (by global fairness)





SSLE in PP over Arbitrary Graphs

Basics

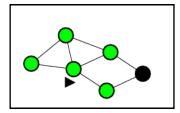
SSLE

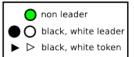
Oracle Ω

Results

Conclusion

- Unique token synchronized with some leader
- The number of leaders (≥ 1) cannot increase (via Ω?')
- The number of leaders eventually reaches 1 (by global fairness)





Conclusion

SSLE in PP over Arbitrary Graphs

Basics

SSLE

Oracle Ω?

Results

Conclusion

Perspectives

- Is Fischer-Jiang Ω? enough to solve SSLE over arbitrary graphs?
- Prove the conjecture : there is no solution to SSLE, without oracles, over the family of all rings.

SSLE in PP over Arbitrary Graphs

Basics

SSLE

Oracle Q

Results

Conclusion

Thank you.

æ