Weighted Coloring in Trees

Julio Araujo, Nicolas Nisse and Stéphane Pérennes

COATI, Inria, I3S (CNRS, Univ. Nice-Sophia Antipolis)

COATIs' Seminar Sophia Antipolis, March 5th 2013

Proper Coloring

Let G = (V, E) be a graph.

Proper Coloring:

k-coloring: $c: V \to \{1, \cdots, k\}$ proper: $\forall uv \in E, c(u) \neq c(v)$ Assign a color to each node adjacent nodes \Rightarrow distinct colors

Unproper 3-coloring (red edge)

Proper 6-coloring

Proper 3-coloring

Proper Coloring

Let G = (V, E) be a graph.

Proper Coloring:

k-coloring: $c: V \to \{1, \cdots, k\}$ proper: $\forall uv \in E, c(u) \neq c(v)$ Assign a color to each node adjacent nodes \Rightarrow distinct colors

Chromatic number $\chi(G)$

min. $k \in \mathbb{N}$ such that G has a k-coloring.

Minimum number of colors needed to proper color G Computing χ : NP-complete in general graphs. Trivial in bipartite graphs.

Examples of applications: Four Colors' Theorem, shared resources allocations (e.g., frequency assignment, offices assignment in COATI, *etc.*)

Let G = (V, E) be a graph. Weight function over vertices: $w : V \to \mathbb{R}^+$

Weighted Coloring:

proper coloring:
$$c: V \to \{1, \dots, k\}$$
 such that, $\forall uv \in E, c(u) \neq c(v)$

weight of a color $i \le k$: $w(i) = \max\{w(v) \mid v \in V \text{ and } c(v) = i\}$

maximum weight of a node with color $i \in \{1, \cdots, k\}$

weight of coloring c: $w(c) = \sum_{i=1}^{k} w(i)$

sum of weights of all colors

3-coloring with weight 50 + 50 + 20 = 120

Let G = (V, E) be a graph. Weight function over vertices: $w : V \to \mathbb{R}^+$

Weighted Coloring:

proper coloring:
$$c: V \to \{1, \dots, k\}$$
 such that, $\forall uv \in E, c(u) \neq c(v)$

weight of a color $i \le k$: $w(i) = \max\{w(v) \mid v \in V \text{ and } c(v) = i\}$

maximum weight of a node with color $i \in \{1, \cdots, k\}$

weight of coloring c: $w(c) = \sum_{i=1}^{k} w(i)$

sum of weights of all colors

3-coloring with weight 50 + 50 + 20 = 120

Adding a color may decrease

weight

Let G = (V, E) be a graph. Weight function over vertices: $w : V \to \mathbb{R}^+$

Weighted Coloring:

proper coloring:
$$c: V \to \{1, \dots, k\}$$
 such that, $\forall uv \in E, c(u) \neq c(v)$
weight of a color $i \leq k$: $w(i) = \max\{w(v) \mid v \in V \text{ and } c(v) = i\}$

maximum weight of a node with color $i \in \{1, \cdots, k\}$

weight of coloring c: $w(c) = \sum_{i=1}^{k} w(i)$

sum of weights of all colors

3-coloring with weight 50 + 50 + 20 = 120

4-coloring with weight 50 + 20 + 8 + 4 = 82

Adding a color may decrease weight

Also in trees, using more colors may decrease the weight

Disjoint union behaves badly

Let G = (V, E) be a graph. Weight function over vertices: $w : V \to \mathbb{R}^+$

Weighted Coloring:

proper coloring:
$$c: V \to \{1, \dots, k\}$$
 such that, $\forall uv \in E, c(u) \neq c(v)$
weight of a color $i \leq k$: $w(i) = \max\{w(v) \mid v \in V \text{ and } c(v) = i\}$
maximum weight of a node with color $i \in \{1, \dots, k\}$

weight of coloring c: $w(c) = \sum_{i=1}^{k} w(i)$

sum of weights of all colors

J. Araujo, N. Nisse and S. Pérennes

Weighted Coloring in Trees

input: weighted graph (G, w), $p \in \mathbb{R}^+$

output: \exists proper coloring of *G* with weight $\leq p$?

NP-complete

- general graphs (extends proper coloring)
- split/interval/triangle-free planar/bipartite graphs [DWMP 02, EMP 06, WDEMP 09]

Remark: the number of colors is not fixed

It always exists optimal coloring using $\leq \Gamma$ (grundy number) colors [Guan & Zhu 97]

In bounded treewidth (<i>tw</i>) <i>n</i> -node graphs	
• if the number r of colors is fixed, exact algorithm in $n^{O(r)}$	[Guan & Zhu 97]
• grundy number $\Gamma = O(tw \cdot \log n)$	[Linhares & Reed 06]
 polynomial-time approximation scheme (PTAS) 	[Escoffier et al. 06]

Weighted Coloring Problem in Trees

Open questions in [Guan & Zhu, 1997]

Complexity of computing, in trees (T, w),

- the minimum weight $\chi_w(T)$ of a proper coloring? (Weighted Coloring Problem)
- a proper coloring with minimum weight?
- the minimum number of colors used by a proper coloring with minimum weight?

Partial answers

• Algorithm to compute optimal coloring in time $n^{O(\log n)}$

straightforward from results of previous slide because trees have tw = 1

• in P when nodes of degree \geq 3 form an independent set [Kavitha & Mestre 12]

Weighted Coloring Problem in Trees

Open questions in [Guan & Zhu, 1997]

Complexity of computing, in trees (T, w),

- the minimum weight $\chi_w(T)$ of a proper coloring? (Weighted Coloring Problem)
- a proper coloring with minimum weight?
- the minimum number of colors used by a proper coloring with minimum weight?

Partial answers

Algorithm to compute optimal coloring in time n^{O(log n)}

straightforward from results of previous slide because trees have tw = 1

• in P when nodes of degree ≥ 3 form an independent set

[Kavitha & Mestre 12]

Theorem 1

[Araujo, Nisse, Pérennes]

If 3-SAT cannot be solved in sub-exponential time (ETH), then

Weighted Coloring Problem cannot be solved in trees in time less than $n^{\Omega(\log n)}$

with n the size of the input tree.

3-SAT and NP-hierarchy

3-SAT Problem	$\Phi(v_1,\cdots,v_\eta)$ boolean formula in 3-Conjunctive Normal Form.	
	\exists truth-assignment that satisfies Φ ?	
$\Phi(a,b,c,d,e) = (a \lor \bar{b} \lor c) \land (\bar{e} \lor b \lor \bar{c}) \land (\bar{a} \lor \bar{c} \lor e)$		
$\Phi(a) = (a \lor a \lor a) \land (\bar{a} \lor \bar{a} \lor \bar{a})$		

3-SAT and NP-hierarchy

3-SAT Problem	$\Phi(v_1,\cdots,v_\eta)$ boolean formula in	n 3-Conjunctive Normal Form.
	∃ trut	h-assignment that satisfies Φ ?
$\Phi(a,b,c,d,e) = (a \lor$	$ar{b} \lor c) \land (ar{e} \lor b \lor ar{c}) \land (ar{a} \lor ar{c} \lor e)$	$\Phi(1,1,0,0,0)=\text{true}$
$\Phi(a) = (a \lor a \lor a) \land ($	$ar{a} ee ar{a} ee ar{a}) \qquad \Phi(1) = \Phi(0) =$	FALSE, then NOT SATISFIABLE

3-SAT and NP-hierarchy

3-SAT Problem $\Phi(v_1, \dots, v_\eta)$ boolean formula in 3-Conjunctive Normal Form. \exists truth-assignment that satisfies Φ ? $\Phi(a, b, c, d, e) = (a \lor \overline{b} \lor c) \land (\overline{e} \lor b \lor \overline{c}) \land (\overline{a} \lor \overline{c} \lor e)$ $\Phi(1, 1, 0, 0, 0) = \text{TRUE}$ $\Phi(a) = (a \lor a \lor a) \land (\overline{a} \lor \overline{a} \lor \overline{a})$ $\Phi(1) = \Phi(0) = \text{FALSE, then NOT SATISFIABLE}$

3-SAT is "the" NP-complete problem

 \Rightarrow no polynomial-time $(\eta^{O(1)})$ algorithm to solve 3-SAT unless P = NP

J. Araujo, N. Nisse and S. Pérennes

Cook's Theorem

Weighted Coloring in Trees

Conjecture: Exponential Time Hypothesis (ETH)

There is no sub-exponential-time $(2^{o(\eta)})$ algorithm to solve 3-SAT

We give a $2^{O(\sqrt{\eta})}$ -time algorithm that:

INPUT: any boolean formula $\Phi(v_1, \dots, v_\eta)$ in 3-CNF (# of clauses $\eta^{O(1)}$) OUTPUT: a weighted tree (T, w) such that

$$|V(T)|=2^{O(\sqrt{\eta})}$$
, w encodable with $2^{O(\sqrt{\eta})}$ bits,

 $\chi_w(T) < M$ if and only if $\Phi \in SAT$.

 $(\Rightarrow P \neq NP)$

3-SAT to INT-SAT to Weighted Coloring

We give a $2^{O(\sqrt{\eta})}$ -time algorithm that:

INPUT: any boolean formula $\Phi(v_1, \dots, v_\eta)$ in 3-CNF (# of clauses $\eta^{O(1)}$) OUTPUT: a weighted tree (T, w) such that

 $|V(\mathcal{T})|=2^{O(\sqrt{\eta})}$, w encodable with $2^{O(\sqrt{\eta})}$ bits,

 $\chi_w(T) < M$ if and only if $\Phi \in SAT$.

3-SAT to INT-SAT to Weighted Coloring

We give a $2^{O(\sqrt{\eta})}$ -time algorithm that:

INPUT: any boolean formula $\Phi(v_1, \dots, v_\eta)$ in 3-CNF (# of clauses $\eta^{O(1)}$) OUTPUT: a weighted tree (T, w) such that $|V(T)| = 2^{O(\sqrt{\eta})}$, w encodable with $2^{O(\sqrt{\eta})}$ bits, $\chi_w(T) < M$ if and only if $\Phi \in SAT$.

what Stéphane would like: each variable corresponds to the choice of one color **but**: size of the tree is exponential in the # of colors :(

what Stéphane did: from η boolean variables to $\sqrt{\eta}$ variables in $\{0, \dots, 2^{\sqrt{\eta}}-1\}$

3-SAT to INT-SAT to Weighted Coloring

We give a $2^{O(\sqrt{\eta})}$ -time algorithm that:

INPUT: any boolean formula $\Phi(v_1, \dots, v_\eta)$ in 3-CNF (# of clauses $\eta^{O(1)}$) OUTPUT: a weighted tree (T, w) such that

$$|V(\mathcal{T})|=2^{O(\sqrt{\eta})}$$
, w encodable with $2^{O(\sqrt{\eta})}$ bits,

 $\chi_w(T) < M$ if and only if $\Phi \in SAT$.

Algorithm 1: $2^{O(\sqrt{\eta})}$ -time

INPUT: any boolean formula $\Phi(v_1, \dots, v_\eta)$ in 3-CNF (# of clauses $\eta^{O(1)}$) OUTPUT: boolean formula $\Phi_{int}(y_1^1, \dots, y_{2\sqrt{\eta}}^1, \dots, y_1^{\sqrt{\eta}}, \dots, y_{2\sqrt{\eta}}^{\sqrt{\eta}})$ in CNF $\Phi \in SAT \Leftrightarrow \exists \text{ truth assignment of } \Phi_{int} \text{ s.t. } \forall j \leq \sqrt{\eta} \text{ there is at most one } i \leq 2^{\sqrt{\eta}} \text{ s.t. } y_i^j = 1$ $\Leftrightarrow \exists \text{ truth assignment of } \Phi_{int} \text{ corresponding to } (j_1, \dots, j_{\sqrt{\eta}}) \in \{0, \dots, 2^{\sqrt{\eta}}, 1\}^{\sqrt{\eta}}.$

Algorithm 2: $2^{O(\sqrt{\eta})}$ -time

INPUT: any boolean formula $\Phi_{int}(y_1^1, \dots, y_n^1, \dots, y_1^m, \dots, y_n^m)$ in CNF, OUTPUT: a weighted tree (T, w) s.t. $|V(T)| = poly(nm)2^{O(m)}$ $\chi_w(T) < M \iff \exists$ integral assignment of Φ_{int} (i.e., $\forall j \leq m$ there is at most one $i \leq n$ s.t. $y_i^j = 1$).

Building the tree T

Boolean formula $\Phi_{int}(y_1^1, \dots, y_n^1, \dots, y_1^m, \dots, y_n^m)$ in CNF integral-assignments s.t. $\forall i \leq m$ there is at most one $j \leq n$ s.t. $y_i^i = 1$

Clause tree

truth \Leftrightarrow choice in coloring

One subtree Q_{ℓ} per clause c_{ℓ} .

Kind of correspondence between integral assignments and colorings with weight $\leq M$.

 $c_\ell = 1 \Leftrightarrow$ the root of Q_ℓ can take color Δ_1 or Δ

 $c_\ell = 0 \Leftrightarrow$ the root of Q_ℓ must have color Δ_1

J. Araujo, N. Nisse and S. Pérennes

Weighted Coloring in Trees

Building the tree T

J. Araujo, N. Nisse and S. Pérennes

Weighted Coloring in Trees

Force and forbid some colors

Hierarchy of colors and choices in their value

11/13

The final touch

This picture is impossible to understand, but I spent some time to do it :P

The final touch

Each coloring with weight $\leq M$ has particular structure: corresponds to choose j_i for each color i.

Once j_i is chosen, for each *i*, we have only a choice for the root of $T_{i_i}^i$.

12/13

- Is the weighted coloring problem NP-complete in trees?
- Can our technique, using integral version of SAT, be used to prove other complexity results?
- Julio would like to study the complexity of weighted coloring in *P*₁₂₇-almost-sparse-mais-pas-trop-graphs.