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Proper Coloring

Let G = (V, E) be a graph.

Proper Coloring:

k-coloring: c¢:V — {1,--- , k} Assign a color to each node
proper: Yuv € E, c(u) # c(v) adjacent nodes = distinct colors

"
[ AT
S NV

Unproper 3-coloring (red edge) Proper 6-coloring Proper 3-coloring
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Proper Coloring

Let G = (V, E) be a graph.

Proper Coloring:

k-coloring: c¢:V — {1,--- , k} Assign a color to each node
proper: Yuv € E, c(u) # c(v) adjacent nodes = distinct colors
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Unproper 3-coloring (red edge) Proper 6-coloring Proper 3-coloring

Chromatic number min. k € N such that G has a k-coloring.

Minimum number of colors needed to proper color G
Computing x: NP-complete in general graphs. Trivial in bipartite graphs.

Examples of applications: Four Colors’ Theorem, shared resources allocations
(e.g., frequency assignment, offices assignment in COATI, etc.) 2/13
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Weighted Coloring

Let G = (V, E) be a graph.
Weight function over vertices: w : V — RT

Weighted Coloring:

proper coloring: c¢: V — {1,--- , k} such that, Yuv € E, c(u) # c(v)
weight of a color i < k: w(i) = max{w(v)|v €V and c(v) =i}

maximum weight of a node with color i € {1, --- , k}
weight of coloring c: W(C) = Zf-(:]_ W(i) sum of weights of all colors

3-coloring with weight
50 + 50 + 20 = 120
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Weighted Coloring

Let G = (V, E) be a graph.
Weight function over vertices: w : V — RT

Weighted Coloring:

proper coloring: c¢: V — {1,--- , k} such that, Yuv € E, c(u) # c(v)
weight of a color i < k: w(i) = max{w(v)|v €V and c(v) =i}

maximum weight of a node with color i € {1, --- , k}
weight of coloring c: W(C) = f-(:]_ W(i) sum of weights of all colors

50

4-coloring with weight
+20+8+4 =82

Adding a color may decrease

3-coloring with weight
50 + 50 + 20 = 120

weight
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Weighted Coloring

Let G = (V, E) be a graph.
Weight function over vertices: w : V — RT

Weighted Coloring:

proper coloring: c¢: V — {1,--- , k} such that, Yuv € E, c(u) # c(v)
weight of a color i < k: w(i) = max{w(v)|v € V and c(v) =i}

maximum weight of a node with color i € {1, --- , k}

weight of coloring c: W(C) = f-(:]_ W(I) sum of weights of all colors

Also in trees, using more colors

50 may decrease the weight

3-coloring with weight 4-coloring with weight
+20+8+4 =82 Q - ) o—e
50 + 50 + 20 = 120 .
Adding a color may decrease

weight Disjoint union behaves badly

3/13

J. Araujo, N. Nisse and Weighted Coloring in Trees



Weighted Coloring

Let G = (V, E) be a graph.
Weight function over vertices: w : V — RT

Weighted Coloring:

proper coloring: c¢: V — {1,--- , k} such that, Yuv € E, c(u) # c(v)
weight of a color i < k: w(i) = max{w(v)|v €V and c(v) =i}
maximum weight of a node with color i € {1, --- , k}
weight of coloring c: W(C) = f-(:]_ W(i) sum of weights of all colors
4 1 1 4
o—e—C—=@
4 1 1 4
o—@—8 20

Also in trees, using more colors

50 may decrease the weight

3-coloring with weight 4-coloring with weight
+20+8+4 =82 Q - ) o—e
50 + 50 + 20 = 120 .
Adding a color may decrease

weight Disjoint union behaves badly

Remark: If all nodes have weight 1 = weight of coloring = number of colors) 3/13
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Weighted Coloring Problem [Guan & Zhu, 1997]

input: weighted graph (G,w), p € RT
output: 3 proper coloring of G with weight < p?

NP-complete

| N

@ general graphs (extends proper coloring)

@ split/interval/triangle-free planar/bipartite graphs  [DWMP 02, EMP 06, WDEMP 09]
v

Remark: the number of colors is not fixed

It always exists optimal coloring using < I (grundy number) colors [Guan & Zhu 97]

In bounded treewidth (tw) n-node graphs

@ if the number r of colors is fixed, exact algorithm in no() [Guan & Zhu 97]
@ grundy number ' = O(tw - log n) [Linhares & Reed 06]
@ polynomial-time approximation scheme (PTAS) [Escoffier et al. 06]
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Weighted Coloring Problem in Trees

Open questions in [Guan & Zhu, 1997]

Complexity of computing, in trees (T, w),
@ the minimum weight xw (T) of a proper coloring? (Weighted Coloring Problem)
@ a proper coloring with minimum weight?

@ the minimum number of colors used by a proper coloring with minimum weight?
i

Partial answers

O(log n)

@ Algorithm to compute optimal coloring in time n

straightforward from results of previous slide because trees have tw = 1

@ in P when nodes of degree > 3 form an independent set [Kavitha & Mestre 12]
v
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Weighted Coloring Problem in Trees

Open questions in [Guan & Zhu, 1997]

Complexity of computing, in trees (T, w),
@ the minimum weight xw (T) of a proper coloring? (Weighted Coloring Problem)
@ a proper coloring with minimum weight?
@ the minimum number of colors used by a proper coloring with minimum weight?

Partial answers

@ Algorithm to compute optimal coloring in time n©(lo )
straightforward from results of previous slide because trees have tw = 1

@ in P when nodes of degree > 3 form an independent set [Kavitha & Mestre 12]
v

[Araujo, Nisse, Pérennes]

Theorem 1

If 3-SAT cannot be solved in sub-exponential time (ETH), then

Weighted Coloring Problem cannot be solved in trees in time less than n
with n the size of the input tree.
”

Q(log n)
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3-SAT and NP-hierarchy

3-SAT Problem ®(vi,- -, vy) boolean formula in 3-Conjunctive Normal Form.

3 truth-assignment that satisfies ®7

®(a, b,c,d,e) =(aVbVc)A(EVbVE)A(aVEVe)
d(a)=(avVaVva)A(aVvaVva)
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3-SAT and NP-hierarchy

3-SAT Problem ®(vi,- -, vy) boolean formula in 3-Conjunctive Normal Form.

3 truth-assignment that satisfies ®7

®(a, b,c,d,e) =(aVbVc)A(EVbVE)A(aVEVe) ®(1,1,0,0,0) = TRUE
d(a)=(avVaVva)A(aVvaVva) ®(1) = ¢(0) = FALSE, then NOT SATISFIABLE
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3-SAT and NP-hierarchy

3-SAT Problem ®(vi,- -, vy) boolean formula in 3-Conjunctive Normal Form.

3 truth-assignment that satisfies ®7

®(a, b,c,d,e) =(aVbVc)A(EVbVE)A(aVEVe) ®(1,1,0,0,0) = TRUE
d(a)=(avVaVva)A(aVvaVva) ®(1) = ¢(0) = FALSE, then NOT SATISFIABLE
[ NP — hard & (it I solvable in time J (1) then, 7P € NP, P solvable in time /UPI°)) |

NP
problems whose solutions can be
checked in Polynomial Time

NP N NP-hard

i.e., solvable by polynomial-time
non-deterministic Tiiring machine

P
problems solvable in
Polynomial Time

Cook's Theorem 3-SAT is “the” NP-complete problem

= no polynomial-time (n°(1)) algorithm to solve 3-SAT unless P = NP .
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3-SAT, ETH and reductions

Il € NP-hard ¢ (if Ti solvable in time /([11]) then, ¥ € N'P, P solvable in time /(|P|°™"),

)

I € NP-hard

NP
problems whose solutions can be
checked in Polynomial Time NP 1 NP-hard

i.e., solvable by polynomial-time

11 € NP-hard
non-deterministic Tiiring machine

Alg Alg(T)

e\

TI(Z) & 10 (Alg(T))

P
problems solvable in
Polynomial Time

and Al polynomial-time algorithm

in particular | 4l9(Z)| = |Z/°)
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3-SAT, ETH and reductions

11 '€ NP-hard < (if T solvable in time /(111]) then, ¥P € NP, P solvable in time f(IPI”"")))

NP

problems whose solutions can be e @
r w uti
checked in Polynomial Time NP 1 NP-hard

i.e., solvable by polynomial-time

11 € NP-hard
non-deterministic Tiiring machine

Alg Alg(T)

e\

TI(Z) & 10 (Alg(T))

P
problems solvable in
Polynomial Time

and Al polynomial-time algorithm

in particular | 4l9(Z)| = |Z/°)

Conjecture: Exponential Time Hypothesis (ETH)

(= P # NP)
There is no sub-exponential-time (20(’7)) algorithm to solve 3-SAT
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3-SAT, ETH and reductions

11 '€ NP-hard < (if T solvable in time /(111]) then, ¥P € NP, P solvable in time f(IPI”"")))

NP

problems whose solutions can be e @
r w uti
checked in Polynomial Time NP 1 NP-hard

i.e., solvable by polynomial-time

11 € NP-hard
non-deterministic Tiiring machine

Alg Alg(T)

e\

TI(Z) & 10 (Alg(T))

P
problems solvable in
Polynomial Time

and Al polynomial-time algorithm

in particular | 4l9(Z)| = |Z/°)

Conjecture: Exponential Time Hypothesis (ETH)

(= P # NP)
There is no sub-exponential-time (20(’7)) algorithm to solve 3-SAT

V()| < 2000

Proof of Th.1:
JAlg s.t.

$ in 3-CNF (T, w), M) = Alg(®)
Al 3.SAT(®) & xu(T) < M

and Alg sub-exponential-time algorithm
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3-SAT, ETH and reductions

1€ NP-hard < (if T solvable in time /(11]) then, 7P € NP, P solvable in time /(I717"))
I € NP-hard
NP
problems whose solutions can be
checked in Polynomial Time NP 1 NP-hard
i.e., solvable by polynomial-time 11 € NP-hard
non-deterministic Tiiring machine )
I Alg Alg(T)
P

problems solvable in TI(Z) + I1'(Alg(T))
Polynomial Time
and Al polynomial-time algorithm

in particular | 4lg(Z)| = 170

Conjecture: Exponential Time Hypothesis (ETH)

(= P # NP)
There is no sub-exponential-time (20(’7)) algorithm to solve 3-SAT

We give a 2°(vM_time algorithm that:

INPUT: any boolean formula ®(vi,--- , vy) in 3-CNF (# of clauses n°(1)
OUTPUT: a weighted tree (T, w) such that

[V(T)| =290, & encodable with 2°(vV7) bits,

Xw(T) < M if and only if & € SAT.

J. Araujo, N. Nisse and S
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3-SAT to INT-SAT to Weighted Coloring

We give a 2°(v7)-time algorithm that:

INPUT: any boolean formula ®(vy, -, v,) in 3-CNF (# of clauses n°(1))
OUTPUT: a weighted tree (T, w) such that

|\V(T)| = 20V7) | 4 encodable with 2°(V7) bits,
Xxw(T) < M if and only if & € SAT.
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3-SAT to INT-SAT to Weighted Coloring

We give a 20(vM_time algorithm that:

INPUT: any boolean formula ®(vi, - - , vy) in 3-CNF (# of clauses n°(1))
OUTPUT: a weighted tree (T, w) such that

|\V(T)| = 200V |y encodable with 290V bits,
xw(T) < M if and only if & € SAT.

what Stéphane would like: each variable corresponds to the choice of one color
but: size of the tree is exponential in the # of colors :(
what Stéphane did: from 7 boolean variables to /7 variables in {0, - ,2V7-1}

7l variables V1, V2, U3, Vg, Us, Ug, U7, Vg, Vg, V10, V11, V12, V13, V14, V15, V16
V1% VT booleans 0100 1110 0101 0001
VT integers in {0, -+, 2V7 — 1} 4 14 5 1
V27 booleans 0000000000010000  0000000000100000
0100000000000000 0000000000000010
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3-SAT to INT-SAT to Weighted Coloring

We give a 2°(v7)-time algorithm that:

INPUT: any boolean formula ®(vy, -, v,) in 3-CNF (# of clauses n°(1))
OUTPUT: a weighted tree (T, w) such that

|\V(T)| = 20V7) | 4 encodable with 2°(V7) bits,
Xxw(T) < M if and only if & € SAT.

A

Algorithm 1: 20(v/M)_time

INPUT: any boolean formula ®(vy, -, v;) in 3-CNF (# of clauses n°())
OUTPUT: boolean formula <I>,-,,t(y11, EERI 21\/5’ e ,yl\/ﬁ, s 2\{2) in CNF

b € SAT =4 3 truth assignment of &, s.t. Vj < /7 there is at most one i < 2V st ylJ =1
54 3 truth assignment of ®;,; corresponding to (ji, - - - ,j\/ﬁ) € {0,--- ,2ﬁ-1}ﬁ.

<

Algorithm 2: 2°(V7)-time

INPUT: any boolean formula <1>,-,,t(y11, Ly ¥+, y7) in CNF,
OUTPUT: a weighted tree (T,w) s.t. |V(T)| = poly(nm)29°(m)

XW(T) <M < 3 integral assignment of ®;,; (i.e., Vj < m there is at most one i < ns.t. yl/ =1). 8/13
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Building the tree T

Boolean formula d>,-,,t(y11, YR Y7+, y) in CNF )
integral-assignments s.t. Vi < m there is at most one j < n s.t. yj’ =1

Clause tree

One subtree Qp per clause cy.
Kind of correspondence between integral assignments and colorings with weight < M.

¢y = 1 & THE ROOT OF Qp CAN TAKE COLOR Aj OR
¢y = 0 & THE ROOT OF @y MUST HAVE COLOR Aj

The tree T (squares indicate possible colors)

[ new color
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Building the tree T

Boolean formula d>,-,,t(y11, YR Y7, y) in CNF )
integral-assignments s.t. Vi < m there is at most one j < n s.t. yj’ =1

Variable trees

One subtree T/ per occurrence of variable y/.
Kind of correspondence between integral assignments and colorings with weight < M.

y’ =1 & THE ROOT OF TIJ CAN TAKE COLOR A; OR
yJ = 0 < THE ROOT OF Tf MUST HAVE COLOR A

v

To make an “OR" and the Clause trees (squares indicate possible colors)

"True"
(choice)

g & b W

False "True"
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Force and forbid some colors
° 9

new color must be
used

By
By
D, /82
Q)
®© O O @
By a B, 0 5

6 we create choices
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Hierarchy of colors and choices in their value

= 57 Ltke 18 14 Laje 2 Leje 1

NN

Each color i has welght = + jie for some j; € {1---n}.

Either we “pay” je for color i, or the root must receive Color 113
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The final touch

This picture is impossible to understand, but | spent some time to do it :P
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The final touch

Each coloring with weight < M has particular structure:
corresponds to choose j; for each color i.

we pay (7 — 7 = 3)€ for color i'

v

we pay (7 + 2)€ for color i

Once j; is chosen, for each i, we have only a choice for the root of TJ’
! 12/13
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Further work

@ s the weighted coloring problem NP-complete in trees?

@ Can our technique, using integral version of SAT, be used to prove other
complexity results?

@ Julio would like to study the complexity of weighted coloring in
P127-almost-sparse-mais-pas-trop-graphs.
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