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J. Araujo, N. Nisse and S. Pérennes Weighted Coloring in Trees



2/13

Proper Coloring

Let G = (V ,E) be a graph.

Proper Coloring:

k-coloring: c : V → {1, · · · , k} Assign a color to each node

proper: ∀uv ∈ E , c(u) 6= c(v) adjacent nodes ⇒ distinct colors

Unproper 3-coloring (red edge) Proper 6-coloring Proper 3-coloring

Chromatic number χ(G) min. k ∈ N such that G has a k-coloring.

Minimum number of colors needed to proper color G
Computing χ: NP-complete in general graphs. Trivial in bipartite graphs.

Examples of applications: Four Colors’ Theorem, shared resources allocations
(e.g., frequency assignment, offices assignment in COATI, etc.)
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Weighted Coloring
Let G = (V ,E) be a graph.
Weight function over vertices: w : V → R+

Weighted Coloring:

proper coloring: c : V → {1, · · · , k} such that, ∀uv ∈ E , c(u) 6= c(v)

weight of a color i ≤ k: w(i) = max{w(v) | v ∈ V and c(v) = i}
maximum weight of a node with color i ∈ {1, · · · , k}

weight of coloring c: w(c) =
∑k

i=1 w(i) sum of weights of all colors

50

50

220

8 3

6
4

3-coloring with weight

50 + 50 + 20 = 120

50

50

220

8 3

6
4

4-coloring with weight
50 + 20 + 8 + 4 = 82

Adding a color may decrease

weight

4 41 1

4 41 1

Also in trees, using more colors

may decrease the weight

4 41 1 4 4

Disjoint union behaves badly

Remark: If all nodes have weight 1 ⇒ weight of coloring = number of colors
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J. Araujo, N. Nisse and S. Pérennes Weighted Coloring in Trees



3/13

Weighted Coloring
Let G = (V ,E) be a graph.
Weight function over vertices: w : V → R+

Weighted Coloring:

proper coloring: c : V → {1, · · · , k} such that, ∀uv ∈ E , c(u) 6= c(v)

weight of a color i ≤ k: w(i) = max{w(v) | v ∈ V and c(v) = i}
maximum weight of a node with color i ∈ {1, · · · , k}

weight of coloring c: w(c) =
∑k

i=1 w(i) sum of weights of all colors

50

50

220

8 3

6
4

3-coloring with weight

50 + 50 + 20 = 120

50

50

220

8 3

6
4

4-coloring with weight
50 + 20 + 8 + 4 = 82

Adding a color may decrease

weight

4 41 1

4 41 1

Also in trees, using more colors

may decrease the weight

4 41 1 4 4

Disjoint union behaves badly

Remark: If all nodes have weight 1 ⇒ weight of coloring = number of colors
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Weighted Coloring Problem [Guan & Zhu, 1997]

input: weighted graph (G ,w), p ∈ R+

output: ∃ proper coloring of G with weight ≤ p?

NP-complete

general graphs (extends proper coloring)

split/interval/triangle-free planar/bipartite graphs [DWMP 02, EMP 06, WDEMP 09]

Remark: the number of colors is not fixed

It always exists optimal coloring using ≤ Γ (grundy number) colors [Guan & Zhu 97]

In bounded treewidth (tw) n-node graphs

if the number r of colors is fixed, exact algorithm in nO(r) [Guan & Zhu 97]

grundy number Γ = O(tw · log n) [Linhares & Reed 06]

polynomial-time approximation scheme (PTAS) [Escoffier et al. 06]
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Weighted Coloring Problem in Trees

Open questions in [Guan & Zhu, 1997]

Complexity of computing, in trees (T ,w),

the minimum weight χw (T ) of a proper coloring? (Weighted Coloring Problem)

a proper coloring with minimum weight?

the minimum number of colors used by a proper coloring with minimum weight?

Partial answers

Algorithm to compute optimal coloring in time nO(log n)

straightforward from results of previous slide because trees have tw = 1

in P when nodes of degree ≥ 3 form an independent set [Kavitha & Mestre 12]

Theorem 1 [Araujo, Nisse, Pérennes]

If 3-SAT cannot be solved in sub-exponential time (ETH), then

Weighted Coloring Problem cannot be solved in trees in time less than nΩ(log n)

with n the size of the input tree.
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3-SAT and NP-hierarchy

3-SAT Problem Φ(v1, · · · , vη) boolean formula in 3-Conjunctive Normal Form.

∃ truth-assignment that satisfies Φ?

Φ(a, b, c, d , e) = (a ∨ b̄ ∨ c) ∧ (ē ∨ b ∨ c̄) ∧ (ā ∨ c̄ ∨ e)

Φ(1, 1, 0, 0, 0) = true

Φ(a) = (a ∨ a ∨ a) ∧ (ā ∨ ā ∨ ā)

Φ(1) = Φ(0) = false, then not satisfiable

P
problems solvable in 

Polynomial Time 

NP
problems whose solutions can be 

checked in Polynomial Time

i.e., solvable by polynomial-time
non-deterministic  Türing machine

NP-complete=
NP ∩ NP-hard

NP-hard
Problems "as hard 

as the hardest 
problems in NP"

3-SAT

Π ∈ NP − hard ⇔ (if Π solvable in time f(|Π|) then, ∀P ∈ NP , P  solvable in time f(|P |O(1)))

Cook’s Theorem 3-SAT is “the” NP-complete problem

⇒ no polynomial-time (ηO(1)) algorithm to solve 3-SAT unless P = NP
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NP-complete=
NP ∩ NP-hard

NP-hard
Problems "as hard 

as the hardest 
problems in NP"

3-SAT

Π ∈ NP − hard ⇔ (if Π solvable in time f(|Π|) then, ∀P ∈ NP , P  solvable in time f(|P |O(1)))

Cook’s Theorem 3-SAT is “the” NP-complete problem

⇒ no polynomial-time (ηO(1)) algorithm to solve 3-SAT unless P = NP
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3-SAT, ETH and reductions

P
problems solvable in 

Polynomial Time 

NP
problems whose solutions can be 

checked in Polynomial Time

i.e., solvable by polynomial-time
non-deterministic  Türing machine

NP-complete=
NP ∩ NP-hard

NP-hard
Problems "as hard 

as the hardest 
problems in NP"

3-SAT
and  Alg polynomial-time algorithm

in particular |Alg(I)| = |I|O(1)

Π ∈ NP -hard ⇔ (if Π solvable in time f(|Π|) then, ∀P ∈ NP , P  solvable in time f(|P |O(1)))

Π� ∈ NP -hard

Π ∈ NP -hard

Alg(I)I Alg

Π(I) ⇔ Π�(Alg(I))

Conjecture: Exponential Time Hypothesis (ETH) (⇒ P 6= NP)

There is no sub-exponential-time (2o(η)) algorithm to solve 3-SAT

We give a 2O(
√
η)-time algorithm that:

input: any boolean formula Φ(v1, · · · , vη) in 3-CNF (# of clauses ηO(1))
output: a weighted tree (T ,w) such that

|V (T )| = 2O(
√
η), w encodable with 2O(

√
η) bits,

χw (T ) < M if and only if Φ ∈ SAT .
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J. Araujo, N. Nisse and S. Pérennes Weighted Coloring in Trees



7/13

3-SAT, ETH and reductions

P
problems solvable in 

Polynomial Time 

NP
problems whose solutions can be 

checked in Polynomial Time

i.e., solvable by polynomial-time
non-deterministic  Türing machine
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3-SAT to INT-SAT to Weighted Coloring

We give a 2O(
√
η)-time algorithm that:

input: any boolean formula Φ(v1, · · · , vη) in 3-CNF (# of clauses ηO(1))
output: a weighted tree (T ,w) such that

|V (T )| = 2O(
√
η), w encodable with 2O(

√
η) bits,

χw (T ) < M if and only if Φ ∈ SAT .

Algorithm 1: 2O(
√
η)-time

input: any boolean formula Φ(v1, · · · , vη) in 3-CNF (# of clauses ηO(1))

output: boolean formula Φint(y
1
1 , · · · , y1

2
√

η , · · · , y
√
η

1 , · · · , y
√
η

2
√

η ) in CNF

Φ ∈ SAT ⇔ ∃ truth assignment of Φint s.t. ∀j ≤ √η there is at most one i ≤ 2
√

η s.t. y
j
i = 1

⇔ ∃ truth assignment of Φint corresponding to (j1, · · · , j√η) ∈ {0, · · · , 2
√

η -1}
√

η.

Algorithm 2: 2O(
√
η)-time

input: any boolean formula Φint(y
1
1 , · · · , y1

n , · · · , ym
1 , · · · , ym

n ) in CNF,

output: a weighted tree (T ,w) s.t. |V (T )| = poly(nm)2O(m)

χw (T ) < M ⇔ ∃ integral assignment of Φint (i.e., ∀j ≤ m there is at most one i ≤ n s.t. y
j
i = 1).
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√
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|V (T )| = 2O(
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√
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what Stéphane would like: each variable corresponds to the choice of one color
but: size of the tree is exponential in the # of colors :(
what Stéphane did: from η boolean variables to

√
η variables in {0, · · · , 2

√
η-1}

v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16

0 1 0 0 

4 14

0 1 01 1 1 1 0  0 0 0 1

15

0000000000010000

0100000000000000

0000000000100000

0000000000000010

η variables

√
η integers in {0, · · · , 2

√
η − 1}

√
η · 2

√
η
 booleans

√
η ×√

η booleans
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Building the tree T
Boolean formula Φint(y

1
1 , · · · , y1

n , · · · , ym
1 , · · · , ym

n ) in CNF
integral-assignments s.t. ∀i ≤ m there is at most one j ≤ n s.t. y i

j = 1

Clause tree truth ⇔ choice in coloring

One subtree Q` per clause c`.
Kind of correspondence between integral assignments and colorings with weight ≤ M.

c` = 1⇔ the root of Q` can take color ∆1 or ∆

c` = 0⇔ the root of Q` must have color ∆1

The tree T (squares indicate possible colors)

Q1 Q2 Q� Qq

new color

If one clause is wrong ⇒ colored ∆1 ⇒ the root of T colored C ⇒ weight > M.
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Building the tree T
Boolean formula Φint(y

1
1 , · · · , y1

n , · · · , ym
1 , · · · , ym

n ) in CNF
integral-assignments s.t. ∀i ≤ m there is at most one j ≤ n s.t. y i

j = 1

Variable trees

One subtree T i
j per occurrence of variable y i

j .
Kind of correspondence between integral assignments and colorings with weight ≤ M.

y j
i = 1⇔ the root of T j

i can take color ∆1 or ∆

y j
i = 0⇔ the root of T j

i must have color ∆1

To make an “OR” and the Clause trees (squares indicate possible colors)

variable-tree a

"a ⊕ b"

False False

False

False "True"
(choice)

"True"
(choice)

variable/clause-tree b

J. Araujo, N. Nisse and S. Pérennes Weighted Coloring in Trees
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Force and forbid some colors

1
1

1 1 1

1

1

1

1/2

1/4
1/2

1/8
1/4

1/21/2

1
2̂ı

1 1/2 1/4 1/8

B0
B1

B2

B3 Bi

new color must be 
used

B0
B1 B2 B3 Bj

1 1/2 1/4

1
2i

we create choices
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Hierarchy of colors and choices in their value

11/21/41/8
1
2�

1
2i

1
4 + j� 1

2 + j��1
2� + k�

Each color i has weight 1
2i

+ ji ε for some ji ∈ {1 · · · n}.

1/2 1/4 1/81

i i-1

1/2
1/4

1/81

i-1∆

1
2i + j�

1
2i

1
2i−2

1
2i−2

∆

Either we “pay” jε for color i , or the root must receive Color ∆.
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The final touch

This picture is impossible to understand, but I spent some time to do it :P

∆1 ∆1 ∆1 ∆1 ∆1

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

1
2i + (j + 3)�1

2i + (j + 2)�1
2i + j� 1

2i + (j + 1)�
1

2i� + (n − j)�

1
2i + (j + 4)�

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

1
2i� + (n − j − 1)�

1
2i� + (n − j − 2)� 1

2i� + (n − j − 3)�

1
2i� + (n − j − 4)�

1
2i + (j + 5)�1

2i + (j + 3)�1
2i + (j + 2)�

1
2i + (j + 1)� 1

2i + (j + 4)�

1
2i� + (n − j − 1)�

1
2i� + (n − j − 2)� 1

2i� + (n − j − 3)�

1
2i� + (n − j − 4)� 1

2i� + (n − j − 5)�
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The final touch

Each coloring with weight ≤ M has particular structure:
corresponds to choose ji for each color i .

i,j i',n-j i,j+1 i',n-j-1 i,j+2 i',n-j-2 i,j+3 i',n-j-3 i,j+4 i',n-j-4

i,j+1 i,j+3 i,j+4 i,j+5i,j+2i',n-j-1 i',n-j-2 i',n-j-3 i',n-j-4 i',n-j-5

T i
j T i

j+1 T i
j+2 T i

j+3 T i
j+4

we pay (j + 2)� for color i

we pay (n − j − 3)� for color i'

Once ji is chosen, for each i , we have only a choice for the root of T i
ji

.
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Further work

Is the weighted coloring problem NP-complete in trees?

Can our technique, using integral version of SAT, be used to prove other
complexity results?

Julio would like to study the complexity of weighted coloring in
P127-almost-sparse-mais-pas-trop-graphs.
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