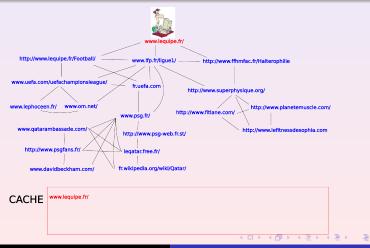
To Satisfy Impatient Web Surfers is Hard

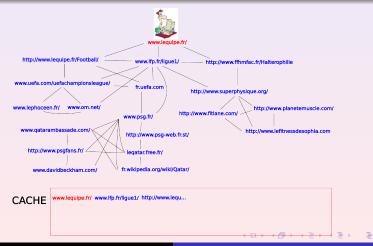
Fedor V. Fomin¹ Frédéric Giroire² Alain Jean-Marie³ Dorian Mazauric² Nicolas Nisse²

¹ University of Bergen, Norway

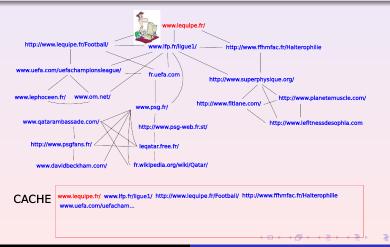

² MASCOTTE, INRIA, I3S (CNRS, UNS) Sophia Antipolis, France

³ LIRMM, MAESTRO, INRIA, Montpellier, France

Séminaire MASCOTTE, October 25th, 2011

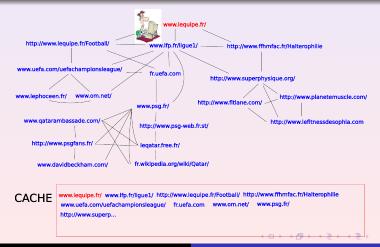

1/15

Web: pre-loading web pages before the web Surfer accesses it Goal: Avoid the web Surfer to wait


2/15

the web Surfer starts from a given web page in cache try to load web pages in cache \rightarrow TAKES TIME

2/15


at some point, web Surfer moves if web page reached already in the cache

OK

2/15

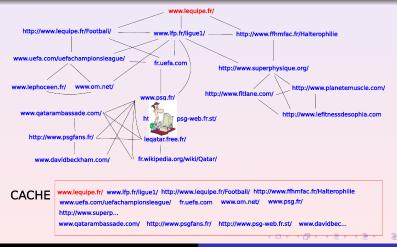
web Surfer follows the hyperlinks in an unpredictable way web pages to be loaded may be "guessed"

Fomin, Giroire, Jean-Marie, Mazauric and Nisse To Satisfy Impatient Web Surfers is Hard

if time is not sufficient...

web Surfer may access a page not in cache

Fomin, Giroire, Jean-Marie, Mazauric and Nisse To Satisfy Impatient Web Surfers is Hard


Fomin, Giroire, Jean-Marie, Mazauric and Nisse To Satisfy Impatient Web Surfers is Hard

even if we guessed well choices might be too numerous

Fomin, Giroire, Jean-Marie, Mazauric and Nisse To Satisfy Impatient Web Surfers is Hard

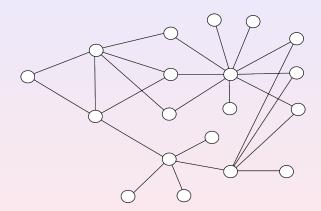
again... web Surfer may access a page not in cache

Fomin, Giroire, Jean-Marie, Mazauric and Nisse To Satisfy Impatient Web Surfers is Hard

Fomin, Giroire, Jean-Marie, Mazauric and Nisse To Satisfy Impatient Web Surfers is Hard

Issue: download speed, NOT size of cache **Instance:** network KNOWN ((di)graph)

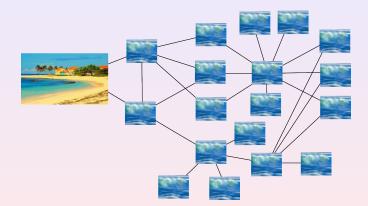
Related work: Probabilistic algorithms (arcs + transition probabilities)


- Markovian model [Vitter,Krishnan. JACM'96] [Morad,Jean-Marie. ROADEF'10]
- Stochastic Dynamic Programming framework [Joseph,Grunwald. ISCA'97]
 [Grigoras,Charvillat,Douze. ACM Multimedia'02]

Our work:

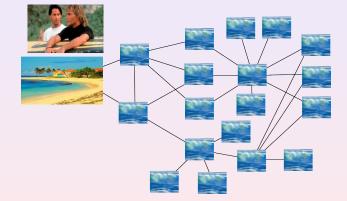
minimize download speed to insure web Surfer never waits (worst case, deterministic)

3/15


・ 同 ト ・ ヨ ト ・ ヨ ト

Web = connected (di)graph

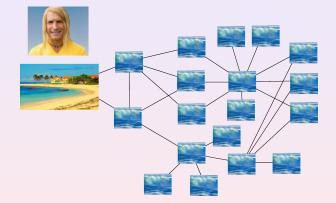
4/15


< □ > < □ > < □ > < □ > < □ > < □ > = □

Web = (di)graph with a specified starting point (beach)

Э

・ロト ・日ト ・ヨト ・ヨト


then, we need a (web) Surfer

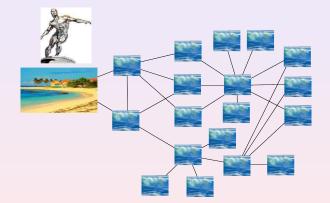
..not them...

・ロト ・回ト ・ヨト ・ヨト

4/15

Э

then, we need a (web) Surfer


...definitively not...

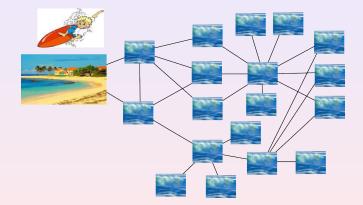
・ロト ・回ト ・ヨト ・ヨト

Fomin, Giroire, Jean-Marie, Mazauric and Nisse To Satisfy Impatient Web Surfers is Hard

4/15

臣

then, we need a (web) Surfer


..almost...

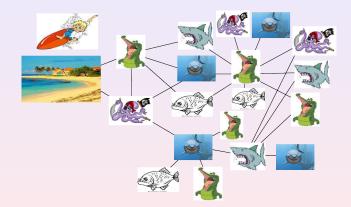
・ロト ・回ト ・ヨト ・ヨト

Fomin, Giroire, Jean-Marie, Mazauric and Nisse To Satisfy Impatient Web Surfers is Hard

4/15

Э

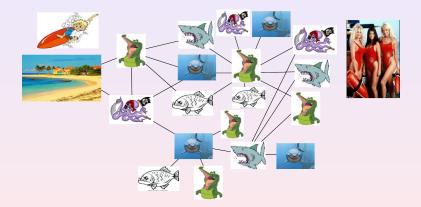
then, we need a (web) Surfer


...let's take this one

・ロト ・回ト ・ヨト ・ヨト

Fomin, Giroire, Jean-Marie, Mazauric and Nisse To Satisfy Impatient Web Surfers is Hard

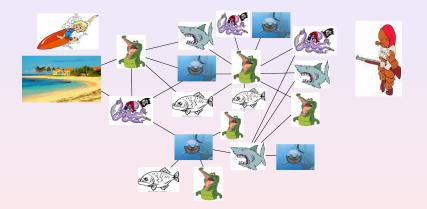
4/15


臣

unloaded page = dangerous node

4/15

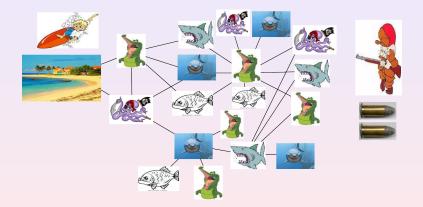
(ロ) (同) (E) (E) (E)



we need someone to help the Surfer

oups... sorry

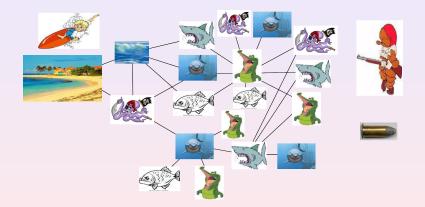
・ロン ・回 と ・ ヨ と ・ ヨ と


4/15

we need someone to help the Surfer let's call it the Guard

4/15

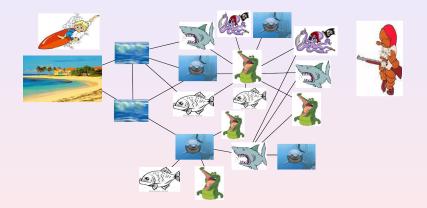
・ロト ・回ト ・ヨト ・ヨト



download speed = amount of balls

Fomin, Giroire, Jean-Marie, Mazauric and Nisse To Satisfy Impatient Web Surfers is Hard

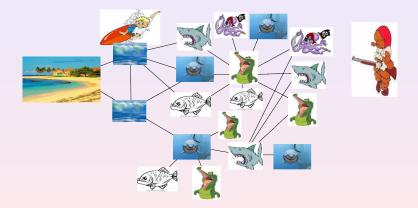
4/15


(ロ) (同) (E) (E) (E)

Guard uses one ball to secure one node

4/15

3

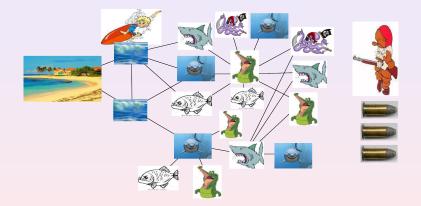


clearly, $degree(beach) \le \#$ of balls required to save Surfer

Fomin, Giroire, Jean-Marie, Mazauric and Nisse To Satisfy Impatient Web Surfers is Hard

4/15

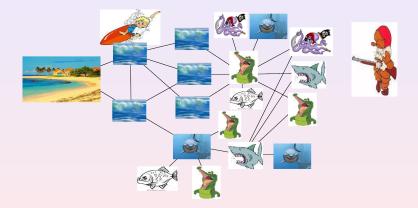
・ロト ・日ト ・ヨト ・ヨト



then, Surfer may move

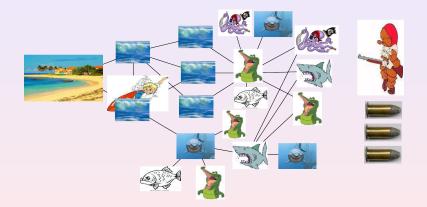
Fomin, Giroire, Jean-Marie, Mazauric and Nisse To Satisfy Impatient Web Surfers is Hard

4/15


(ロ) (同) (E) (E) (E)

here one more ball is needed

4/15


(ロ) (同) (E) (E) (E)

$degree(beach) \leq amount of balls \leq max degree$

4/15

イロン イ団ン イヨン イヨン 三日

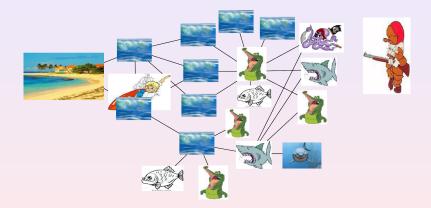


Surfer may move anywhere in its neighborhood

4/15

크

イロト イヨト イヨト イヨト



balls may be used to prevent future moves

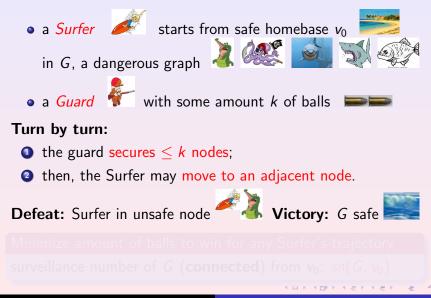
4/15

臣

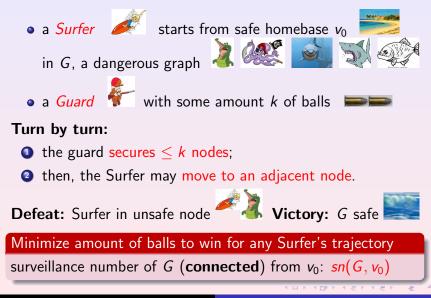
御 と く き と く き と

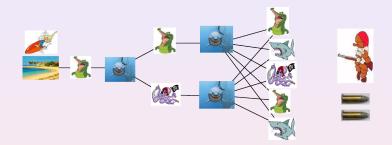
are 3 balls sufficient to make sure Surfer never eaten?

4/15


臣

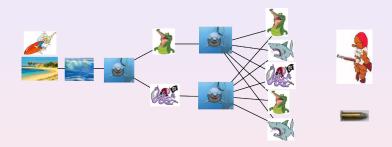
・ロン ・回 ・ ・ ヨ ・ ・ ヨ ・


Model: a Two players game


Model: a Two players game

Model: a Two players game

Fomin, Giroire, Jean-Marie, Mazauric and Nisse To Satisfy Impatient Web Surfers is Hard

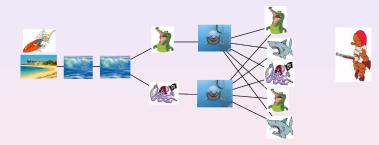


with 1 ball: after 2 steps, Surfer faces 2 dangerous nodes!!

 $sn(G, v_0) > 1$

6/15

・ 同 ト ・ ヨ ト ・ ヨ ト

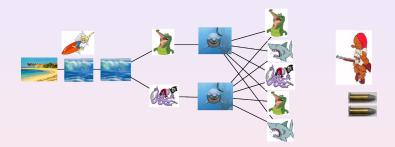

Guard uses his balls

Fomin, Giroire, Jean-Marie, Mazauric and Nisse To Satisfy Impatient Web Surfers is Hard

6/15

크

・ロン ・回 と ・ ヨ と ・ ヨ と

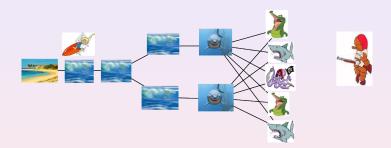


Guard uses (all) his balls

Fomin, Giroire, Jean-Marie, Mazauric and Nisse To Satisfy Impatient Web Surfers is Hard

6/15

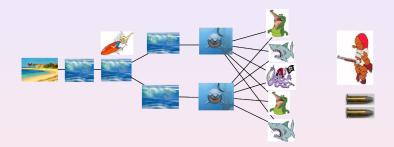
<日><10</td>



Guard uses (all) his balls, **then** Surfer may move Clearly: worst case if Surfer always move

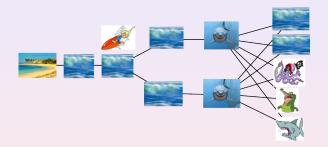
Fomin, Giroire, Jean-Marie, Mazauric and Nisse To Satisfy Impatient Web Surfers is Hard

6/15


向下 イヨト イヨト

Guard uses (all) his balls, then Surfer may move

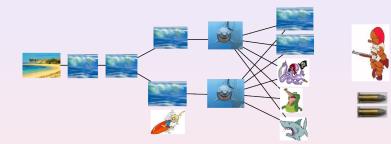
6/15


A (B) > A (B) > A (B) >

Guard uses (all) his balls, then Surfer moves

6/15

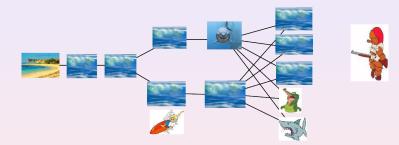
・ 同 ト ・ ヨ ト ・ ヨ ト



向下 イヨト イヨト

6/15

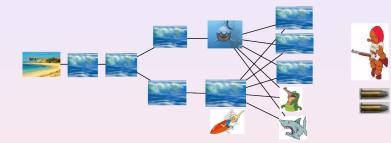
Guard uses (all) his balls, then Surfer moves


Guard may secure any node in the graph

Guard uses (all) his balls, then Surfer moves

6/15

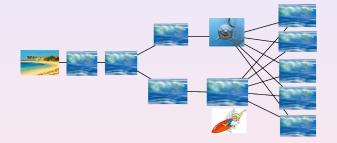
向下 イヨト イヨト



Guard uses (all) his balls, then Surfer moves

strategy: safe nodes + Surfer's node $\Rightarrow \leq k$ nodes to secure

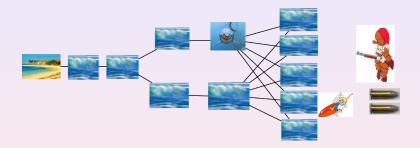
6/15


A (10) A (10)

Guard uses (all) his balls, then Surfer moves

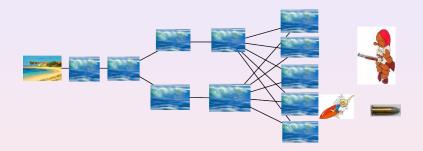
6/15

・ 同 ト ・ ヨ ト ・ ヨ ト



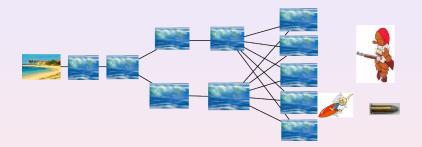
< □ > < □ > < □ >

6/15


Guard uses (all) his balls, then Surfer moves

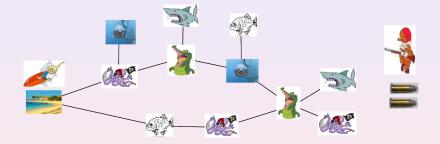
Guard uses (all) his balls, then Surfer moves

6/15


同 と く ヨ と く ヨ と

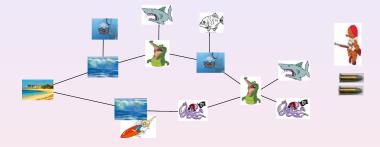
Guard uses (all) his balls, then Surfer moves

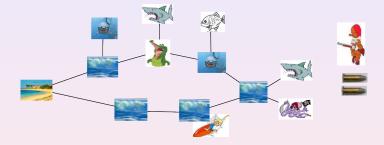
All nodes safe: Victory against this trajectory of the Surfer


6/15

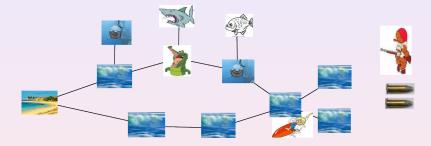
In this example, all Surfer's trajectory similar (by symmetry) victory whatever Surfer's trajectory $\Rightarrow sn(G, v_0) = 2$

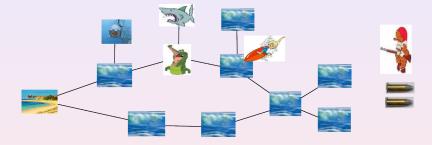
6/15

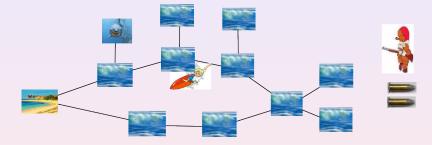

・ 同 ト ・ ヨ ト ・ ヨ ト

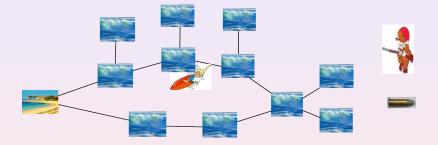

degree of homebase $= 2 \Rightarrow \ge 2$ balls required!! $sn(G, v_0) \ge 2$ **Question:** Is it more difficult to protect "fast" Surfers?

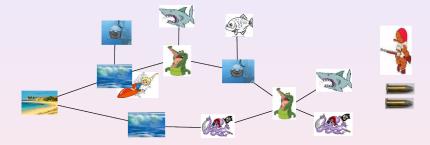
7/15


向下 イヨト イヨト

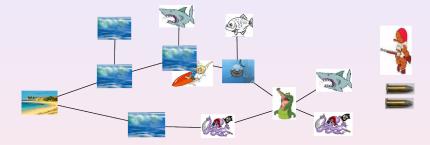

let's try with 2 balls if Surfer moves anti-clockwise...


let's try with 2 balls if Surfer moves anti-clockwise...

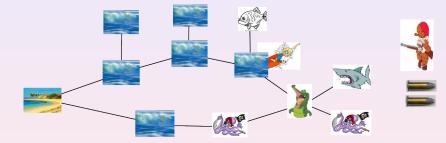

let's try with 2 balls if Surfer moves anti-clockwise...


let's try with 2 balls if Surfer moves anti-clockwise...

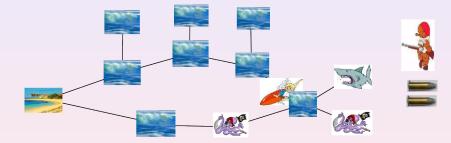
let's try with 2 balls if Surfer moves anti-clockwise...



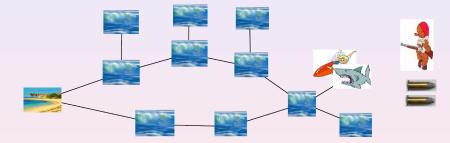
let's try with 2 balls if Surfer moves anti-clockwise, Guard manage to secure G!!


let's try with 2 balls if Surfer moves clockwise...

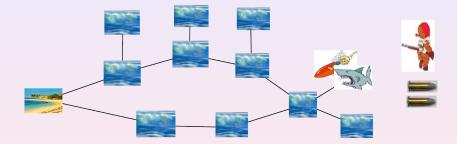
7/15

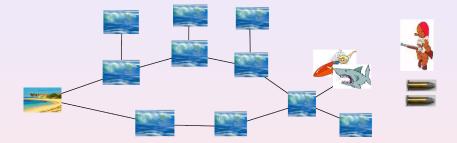

let's try with 2 balls if Surfer moves clockwise...

7/15



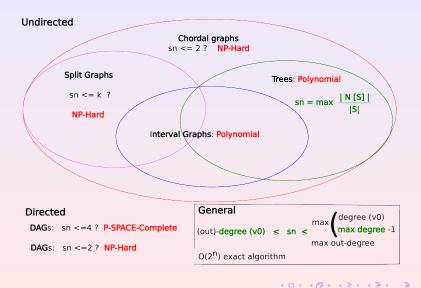
let's try with 2 balls if Surfer moves clockwise...


7/15


let's try with 2 balls if Surfer moves clockwise...

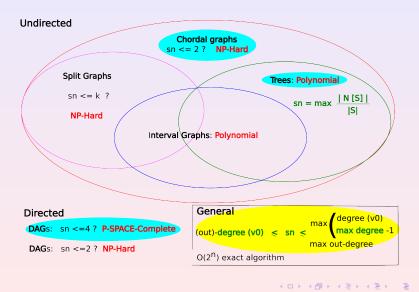
let's try with 2 balls if Surfer moves clockwise, a shark is happy!!

following a longest path may be more dangerous for the Surfer we cannot restrict our study to shortest paths :(



.... however, we can restrict our study to induced paths

Theorem 1: Worst case when Surfer follows induced paths Restricting Surfer to induced paths does not decrease *sn*


7/15

Results: Complexity, Algorithms and Combinatoric

Fomin, Giroire, Jean-Marie, Mazauric and Nisse To Satisfy Impatient Web Surfers is Hard

Results: Complexity, Algorithms and Combinatoric

Chordal graph: no induced cycle of length > 3.

reduction from

3-Hitting Set

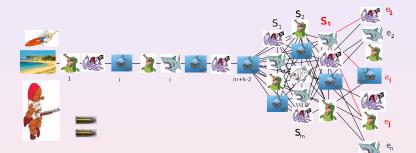
Inputs:

- set $E = \{e_1, \cdots, e_n\}$
- $S = \{S_1, \dots, S_\ell = \{e_i, e_j, e_t\}, \dots, S_m\}$ of triples of *E*

sn < 2

9/15

(NP-complete)

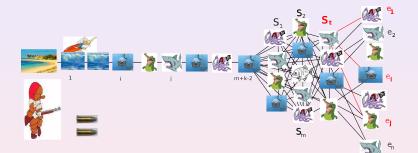

• integer $k \geq 1$

Question: \exists ? $H \subseteq E$ such that

•
$$|H| \leq k$$

• $H \cap S_i \neq \emptyset$ for any $i \leq m$

Input: $E = \{e_1, \dots, e_n\}, S = \{S_1, \dots, S_m\}$ and $k \ge 1$.

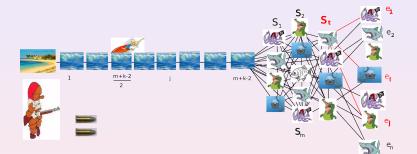


sn < 2?

9/15

イロト イポト イヨト イヨト 二日

Input:
$$E = \{e_1, \cdots, e_n\}$$
, $S = \{S_1, \cdots, S_m\}$ and $k \ge 1$.

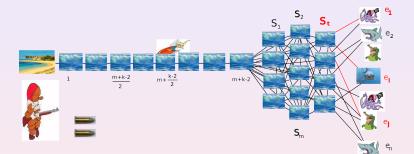


sn <u>≤ 2?</u>

9/15

3

Input:
$$E = \{e_1, \cdots, e_n\}$$
, $\mathcal{S} = \{S_1, \cdots, S_m\}$ and $k \ge 1$.

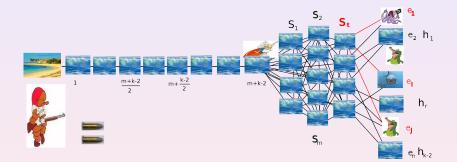

 $sn \leq 2?$

9/15

3

イロト イヨト イヨト イヨト

Input:
$$E = \{e_1, \cdots, e_n\}$$
, $\mathcal{S} = \{S_1, \cdots, S_m\}$ and $k \ge 1$.



 $sn \leq 2?$

9/15

イロン イ団ン イヨン イヨン 三日

Input: $E = \{e_1, \dots, e_n\}, S = \{S_1, \dots, S_m\}$ and $k \ge 1$.

$sn(G, v_0) \leq 2 \Leftrightarrow hittingSet(E, S) \leq k$

9/15

(ロ) (同) (E) (E) (E)

sn < 2?

DAG: Directed Acyclic Graph.

reduction from

3-QSAT

Inputs:

- set of variables $\{x_1, \cdots, x_n, y_1, \cdots, y_n\}$
- logical formula $\Phi(x_1, \cdots, x_n, y_1, \cdots, y_n)$

Question: is it true?

$$\forall x_1 \exists y_1 \forall x_2 \exists y_2 \cdots \forall x_n \exists y_n \ \Phi(x_1, \cdots, x_n, y_1, \cdots, y_n)$$

(PSPACE-complete)

(ロ) (同) (E) (E) (E)

PSPACE-hardness in DAGs

DAG: Directed Acyclic Graph.

reduction from

3-QSAT

Inputs:

- set of variables $\{x_1, \cdots, x_n, y_1, \cdots, y_n\}$
- logical formula $\Phi(x_1, \cdots, x_n, y_1, \cdots, y_n)$

Question: is it true?

$$\forall x_1 \exists y_1 \forall x_2 \exists y_2 \cdots \forall x_n \exists y_n \ \Phi(x_1, \cdots, x_n, y_1, \cdots, y_n)$$

sn

10/15

(PSPACE-complete)

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

- " $\forall x_i$ " depends on Surfer's path
- "∃y_i" depends on Guard's strategy

PSPACE-hardness in DAGs

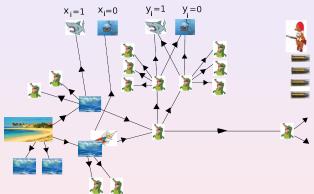
Input: $\{x_1, \dots, x_n, y_1, \dots, y_n\}$ and $\Phi(x_1, \dots, x_n, y_1, \dots, y_n)$ $y_i = 1$ $y_i = 0$ $x_i = 1$ $x_i = 0$

sn <

10/15

Gadget for x_i and y_i : When Surfer reaches the right, 2 "sharks" have left \Rightarrow assignment of x_i (Surfer choice) and y_i (Guard choice)

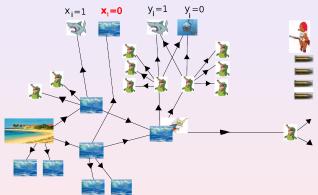
PSPACE-hardness in DAGs


Input: $\{x_1, \dots, x_n, y_1, \dots, y_n\}$ and $\Phi(x_1, \dots, x_n, y_1, \dots, y_n)$ $y_i = 1$ $y_i = 0$ $x_i = 1$ $x_i = 0$

sn <

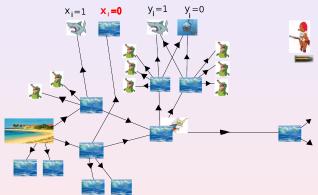
10/15

Gadget for x_i and y_i : When Surfer reaches the right, 2 "sharks" have left \Rightarrow assignment of x_i (Surfer choice) and y_i (Guard choice)


Input: $\{x_1, \dots, x_n, y_1, \dots, y_n\}$ and $\Phi(x_1, \dots, x_n, y_1, \dots, y_n)$

sn ·

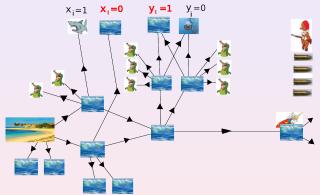
10/15


Input: $\{x_1, \dots, x_n, y_1, \dots, y_n\}$ and $\Phi(x_1, \dots, x_n, y_1, \dots, y_n)$

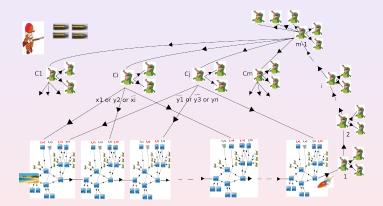
sn <

10/15

Input: $\{x_1, \dots, x_n, y_1, \dots, y_n\}$ and $\Phi(x_1, \dots, x_n, y_1, \dots, y_n)$


sn <

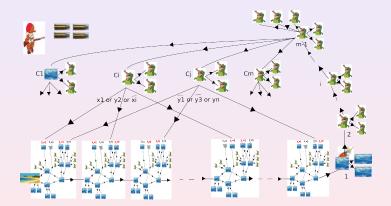
10/15


Input: $\{x_1, \cdots, x_n, y_1, \cdots, y_n\}$ and $\Phi(x_1, \cdots, x_n, y_1, \cdots, y_n)$

sn ·

10/15

Input: $\{x_1, \dots, x_n, y_1, \dots, y_n\}$ and $\Phi(x_1, \dots, x_n, y_1, \dots, y_n)$

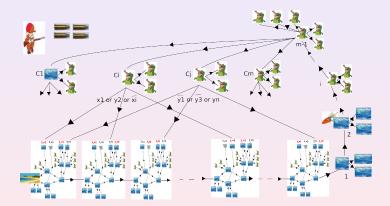


When Surfer reaches the bottom-right, all variables have been 10/15 assigned: x_i 's by Surfer, y_i 's by Guard

Fomin, Giroire, Jean-Marie, Mazauric and Nisse To Satisfy Impatient Web Surfers is Hard

sn

Input: $\{x_1, \dots, x_n, y_1, \dots, y_n\}$ and $\Phi(x_1, \dots, x_n, y_1, \dots, y_n)$

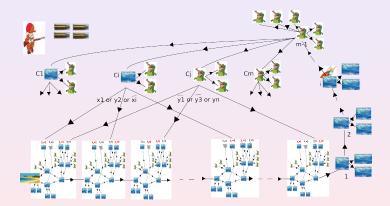

When Surfer reaches the bottom-right, all variables have been assigned: x_i 's by Surfer, y_i 's by Guard

Fomin, Giroire, Jean-Marie, Mazauric and Nisse To S

To Satisfy Impatient Web Surfers is Hard

sn

Input: $\{x_1, \dots, x_n, y_1, \dots, y_n\}$ and $\Phi(x_1, \dots, x_n, y_1, \dots, y_n)$

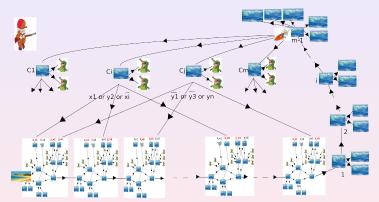


When Surfer reaches the bottom-right, all variables have been 10/15 assigned: x_i 's by Surfer, y_i 's by Guard

Fomin, Giroire, Jean-Marie, Mazauric and Nisse To Satisfy Impatient Web Surfers is Hard

sn

Input: $\{x_1, \dots, x_n, y_1, \dots, y_n\}$ and $\Phi(x_1, \dots, x_n, y_1, \dots, y_n)$

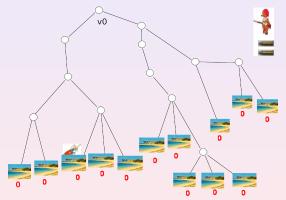


When Surfer reaches the bottom-right, all variables have been 10/15 assigned: x_i 's by Surfer, y_i 's by Guard

Fomin, Giroire, Jean-Marie, Mazauric and Nisse To Satisfy Impatient Web Surfers is Hard

sn ⁻

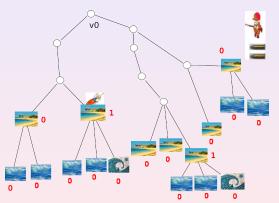
Input: $\{x_1, \dots, x_n, y_1, \dots, y_n\}$ and $\Phi(x_1, \dots, x_n, y_1, \dots, y_n)$



 $sn(D, v_0) \leq 4 \Leftrightarrow \forall x_1 \cdots \exists y_n \Phi true$

10/15

sn <


Dynamic Programming: amount of balls fixed to k

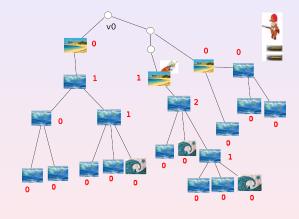
 $label(v) = \min \#$ of nodes to be secured **before starting** to win in T_v starting in v, with k balls label(leaf) = 0


< 🗇 > < 🖃 >

Dynamic Programming: amount of balls fixed to k

 $label(v) = \min \#$ of nodes to be secured **before starting** to win in T_v starting in v, with k balls

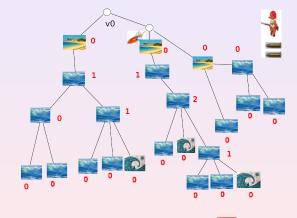
Dynamic Programming: amount of balls fixed to k



 $label(v) = \max\{0; deg(v) - k + \sum_{i=1}^{n} k_{i}\}$ label(w)} w child of v

11/15

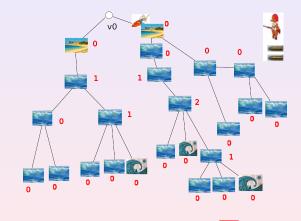
・ロッ ・四ッ ・ヨッ


Dynamic Programming: amount of balls fixed to k

 $label(v) = \max\{0; deg(v) - k + \sum_{i=1}^{n} k_{i}\}$ label(w)} w child of v

To Satisfy Impatient Web Surfers is Hard

Dynamic Programming: amount of balls fixed to k

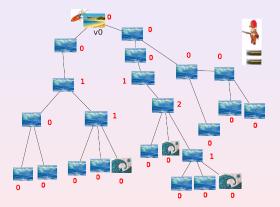

 $label(v) = \max\{0; deg(v) - k + \sum_{\substack{w \text{ child of } v}} label(w)\}$

Fomin, Giroire, Jean-Marie, Mazauric and Nisse

To Satisfy Impatient Web Surfers is Hard

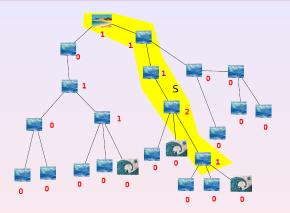
・ロッ ・四ッ ・ヨッ

Dynamic Programming: amount of balls fixed to k


 $label(v) = \max\{0; deg(v) - k + \sum_{w \text{ child of } v} label(w)\}$

Fomin, Giroire, Jean-Marie, Mazauric and Nisse

To Satisfy Impatient Web Surfers is Hard


・ロッ ・回ッ ・ヨッ

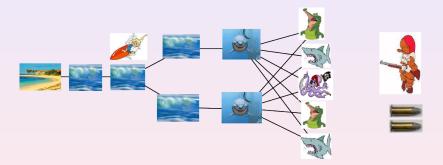
Dynamic Programming: amount of balls fixed to k

 $sn(T, v_0) \leq k \Leftrightarrow label(v_0) = 0$

11/15

Upper bound: if $k < sn(T, v_0)$, $label(v_0) > 0$ maximal subtree S of nodes v with label(v) > 0 containing v_0

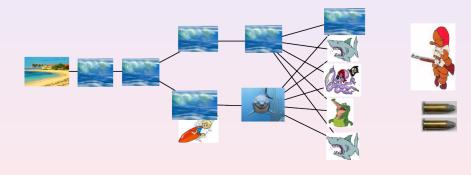
$$\frac{|N[S]|-1}{|S|} > k \qquad \text{hence max} \frac{|N[S]|-1}{|S|} \ge sn(T, v_0)$$


Combinatorial characterization in Trees

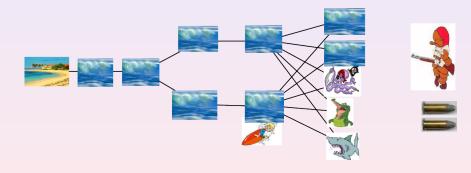
For any tree T, $v_0 \in V(T)$, $sn(T, v_0) = \max\left\lceil \frac{|N[S]|-1}{|S|} \right\rceil$, taken for any subtree S containing v_0 .

Exact Algorithms

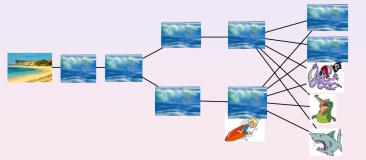
- $O(2^n)$ algorithm in *n*-node graphs;
- sn(T, v₀) can be computed in time O(n log n) in any n-node tree T and for any v₀ ∈ V(T);
- sn(G, v₀) can be computed in time O(n · Δ³) in any n-node interval graph G with maximum degree Δ and for any v₀ ∈ V(T).


Constraint: safe vertices must induce a connected subgraph

13/15


・ 同 ト ・ ヨ ト ・ ヨ ト

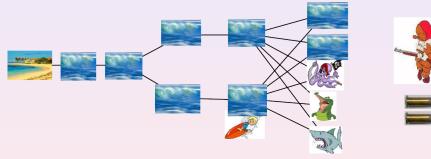
Constraint: safe vertices must induce a connected subgraph


13/15

Constraint: safe vertices must induce a connected subgraph

13/15

Constraint: safe vertices must induce a connected subgraph


13/15

・ 同 ト ・ ヨ ト ・ ヨ ト

Connectivity costs:

connected- $sn(G, v_0) = 3 > sn(G, v_0) = 2$ All previous results hold for the connected variant

Constraint: safe vertices must induce a connected subgraph

Connectivity costs: connected- $sn(G, v_0) = 3 > sn(G, v_0) = 2$ $\exists ? G \text{ and } v_0 \text{ such that } c-sn(G, v_0) \ge sn(G, v_0) + 2 ????$

13/15

Fomin, Giroire, Jean-Marie, Mazauric and Nisse To Satisfy Impatient Web Surfers is Hard

• complexity in bounded degree graphs?

(polynomial if $\Delta \leq 3$)

- complexity in bounded treewidth graphs?
- $\exists ?c < 2 \text{ and } O(c^n) \text{ algorithm in } n \text{-node graphs}?$
- sn(G, v₀) = max[^{|N[S]|-1}/_{|S|}], taken for any connected subgraph S containing v₀?
- cost of connectivity? $\frac{connected sn}{sn} \le cte$? \exists ? *G* and v_0 such that $c-sn(G, v_0) \ge sn(G, v_0) + 2$????
- ...

Thank you for your attention¹

¹No seafood... no animal has been hurt when preparing this talk. = $\sqrt{2}$ Fomin, Giroire, Jean-Marie, Mazauric and Nisse To Satisfy Impatient Web Surfers is Hard