Eternal Domination in Grid-like Graphs

Fionn Mc Inerney, Nicolas Nisse, Stéphane Pérennes

Université Côte d'Azur, Inria, CNRS, I3S, France

Northwestern Polytechnical University, Xi'an, Sept. 9th, 2019

Domination in Graphs

Dominating set in $G=(V, E)$

$D \subseteq V$ such that $N[D]=V$
i.e., for all $v \in V, v \in D$ or $\exists w \in D$ with $v w \in E$.
$\gamma(G)$: minimum size of a dominating set in G.

Computation of $\gamma(G)$: NP-complete [Karp 72], W[2]-hard, no $c \log n$-approximation (for some $c<1$) [Alon et al. 06]
Graph classes: $\gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil, \gamma\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil, \gamma\left(P_{n} \boxtimes P_{m}\right)=\left\lceil\frac{n}{3}\right\rceil\left\lceil\frac{m}{3}\right\rceil$
$\gamma\left(P_{n} \square P_{m}\right)=\left\lfloor\frac{(n+2)(m+2)}{5}\right\rfloor-4(16 \leq n \leq m)$ [Goncalves al. 11]
Vizing conjecture: $\gamma(G \square H) \geq \gamma(G) \gamma(H)$

$$
\text { best known: } \gamma(G \square H) \geq \frac{1}{2} \gamma(G) \gamma(H) \text { [Clark,Suen 00] }
$$

Eternal Domination (one guard move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Defender moves one guard from $w \in N[v]$ to v.

If no Guard occupies the (closed) neighborhood of the attacked vertex, Attacker wins. If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma^{\infty}(G):$ minimum k ensuring guards to win in G.

Eternal Domination (one guard move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Defender moves one guard from $w \in N[v]$ to v.

If no Guard occupies the (closed) neighborhood of the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma^{\infty}(G)$: minimum k ensuring guards to win in G.
For any graph $G, \gamma(G) \leq \alpha(G) \leq \gamma^{\infty}(G) \leq \theta(G)$
[Burger et al. 2004]
$\gamma(G)$: min. size of dominating set
$\alpha(G)$: min. size of independent set $\theta(G): \mathrm{min}$. size of clique cover

Eternal Domination (one guard move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Defender moves one guard from $w \in N[v]$ to v.

If no Guard occupies the (closed) neighborhood of the attacked vertex, Attacker wins. If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma^{\infty}(G)$: minimum k ensuring guards to win in G.

For any graph $G, \gamma(G) \leq \alpha(G) \leq \gamma^{\infty}(G) \leq \theta(G)$

If $<\alpha(G)$ guards, sequentially attack vertices of a stable max.
$\gamma(G)$: min. size of dominating set $\alpha(G)$: min. size of independent set $\theta(G)$: min. size of clique cover

Eternal Domination (one guard move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Defender moves one guard from $w \in N[v]$ to v.

If no Guard occupies the (closed) neighborhood of the attacked vertex, Attacker wins. If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma^{\infty}(G)$: minimum k ensuring guards to win in G.

For any graph $G, \gamma(G) \leq \alpha(G) \leq \gamma^{\infty}(G) \leq \theta(G)$

If $<\alpha(G)$ guards, sequentially attack vertices of a stable max.
$\gamma(G)$: min. size of dominating set $\alpha(G)$: min. size of independent set $\theta(G)$: min. size of clique cover

Eternal Domination (one guard move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Defender moves one guard from $w \in N[v]$ to v.

If no Guard occupies the (closed) neighborhood of the attacked vertex, Attacker wins. If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma^{\infty}(G)$: minimum k ensuring guards to win in G.

For any graph $G, \gamma(G) \leq \alpha(G) \leq \gamma^{\infty}(G) \leq \theta(G)$

If $<\alpha(G)$ guards, sequentially attack vertices of a stable max.
$\gamma(G)$: min. size of dominating set $\alpha(G)$: min. size of independent set $\theta(G)$: min. size of clique cover

Eternal Domination (one guard move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Defender moves one guard from $w \in N[v]$ to v.

If no Guard occupies the (closed) neighborhood of the attacked vertex, Attacker wins. If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma^{\infty}(G)$: minimum k ensuring guards to win in G.

For any graph $G, \gamma(G) \leq \alpha(G) \leq \gamma^{\infty}(G) \leq \theta(G)$

If $<\alpha(G)$ guards, sequentially attack vertices of a stable max.
$\gamma(G)$: min. size of dominating set $\alpha(G)$: min. size of independent set $\theta(G)$: min. size of clique cover

Eternal Domination (one guard move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Defender moves one guard from $w \in N[v]$ to v.

If no Guard occupies the (closed) neighborhood of the attacked vertex, Attacker wins. If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma^{\infty}(G)$: minimum k ensuring guards to win in G.

For any graph $G, \gamma(G) \leq \alpha(G) \leq \gamma^{\infty}(G) \leq \theta(G)$

If $<\alpha(G)$ guards, sequentially attack vertices of a stable max.
$\gamma(G)$: min. size of dominating set $\alpha(G)$: min. size of independent set $\theta(G)$: min. size of clique cover

Eternal Domination (one guard move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Defender moves one guard from $w \in N[v]$ to v.

If no Guard occupies the (closed) neighborhood of the attacked vertex, Attacker wins. If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma^{\infty}(G)$: minimum k ensuring guards to win in G.

For any graph $G, \gamma(G) \leq \alpha(G) \leq \gamma^{\infty}(G) \leq \theta(G)$

If $<\alpha(G)$ guards, sequentially attack vertices of a stable max.
$\gamma(G)$: min. size of dominating set $\alpha(G)$: min. size of independent set $\theta(G)$: min. size of clique cover

Eternal Domination (one guard move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Defender moves one guard from $w \in N[v]$ to v.

If no Guard occupies the (closed) neighborhood of the attacked vertex, Attacker wins. If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma^{\infty}(G)$: minimum k ensuring guards to win in G.

For any graph $G, \gamma(G) \leq \alpha(G) \leq \gamma^{\infty}(G) \leq \theta(G)$

If $<\alpha(G)$ guards, sequentially attack vertices of a stable max.
$\gamma(G)$: min. size of dominating set $\alpha(G)$: min. size of independent set $\theta(G)$: min. size of clique cover

Eternal Domination (one guard move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Defender moves one guard from $w \in N[v]$ to v.

If no Guard occupies the (closed) neighborhood of the attacked vertex, Attacker wins. If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma^{\infty}(G)$: minimum k ensuring guards to win in G.

For any graph $G, \gamma(G) \leq \alpha(G) \leq \gamma^{\infty}(G) \leq \theta(G)$

If $<\alpha(G)$ guards, sequentially attack vertices of a stable max.
$\gamma(G)$: min. size of dominating set $\alpha(G)$: min. size of independent set $\theta(G)$: min. size of clique cover

Eternal Domination (one guard move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Defender moves one guard from $w \in N[v]$ to v.

If no Guard occupies the (closed) neighborhood of the attacked vertex, Attacker wins. If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma^{\infty}(G)$: minimum k ensuring guards to win in G.
For any graph $G, \gamma(G) \leq \alpha(G) \leq \gamma^{\infty}(G) \leq \theta(G)$

$\gamma(G)$: min. size of dominating set $\alpha(G)$: min. size of independent set $\theta(G)$: min. size of clique cover

If $\geq \theta(G)$ guards, one guard per clique

Eternal Domination (one guard move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Defender moves one guard from $w \in N[v]$ to v.

If no Guard occupies the (closed) neighborhood of the attacked vertex, Attacker wins. If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma^{\infty}(G)$: minimum k ensuring guards to win in G.
For any graph $G, \gamma(G) \leq \alpha(G) \leq \gamma^{\infty}(G) \leq \theta(G)$

$\gamma(G)$: min. size of dominating set $\alpha(G)$: min. size of independent set $\theta(G)$: min. size of clique cover

If $\geq \theta(G)$ guards, one guard per clique

Eternal Domination (one guard move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Defender moves one guard from $w \in N[v]$ to v.

If no Guard occupies the (closed) neighborhood of the attacked vertex, Attacker wins. If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma^{\infty}(G)$: minimum k ensuring guards to win in G.
For any graph $G, \gamma(G) \leq \alpha(G) \leq \gamma^{\infty}(G) \leq \theta(G)$

$\gamma(G)$: min. size of dominating set $\alpha(G)$: min. size of independent set $\theta(G)$: min. size of clique cover

If $\geq \theta(G)$ guards, one guard per clique

Eternal Domination (one guard move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Defender moves one guard from $w \in N[v]$ to v.

If no Guard occupies the (closed) neighborhood of the attacked vertex, Attacker wins. If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma^{\infty}(G)$: minimum k ensuring guards to win in G.
For any graph $G, \gamma(G) \leq \alpha(G) \leq \gamma^{\infty}(G) \leq \theta(G)$

$\gamma(G)$: min. size of dominating set $\alpha(G)$: min. size of independent set $\theta(G)$: min. size of clique cover

If $\geq \theta(G)$ guards, one guard per clique

Eternal Domination (one guard move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Defender moves one guard from $w \in N[v]$ to v.

If no Guard occupies the (closed) neighborhood of the attacked vertex, Attacker wins. If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma^{\infty}(G)$: minimum k ensuring guards to win in G.
For any graph $G, \gamma(G) \leq \alpha(G) \leq \gamma^{\infty}(G) \leq \theta(G)$

$\gamma(G)$: min. size of dominating set $\alpha(G)$: min. size of independent set $\theta(G)$: min. size of clique cover

If $\geq \theta(G)$ guards, one guard per clique

Eternal Domination (all guards move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Each guard may move to some neighbor.

If no guard reaches the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma_{\text {all }}^{\infty}(G)$: minimum k ensuring guards to win in G.

Eternal Domination (all guards move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Each guard may move to some neighbor.

If no guard reaches the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma_{\text {all }}^{\infty}(G)$: minimum k ensuring guards to win in G.

Difference with the "One guard moves" version:

One guard moves

Each guard may move

Eternal Domination (all guards move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Each guard may move to some neighbor.

If no guard reaches the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma_{\text {all }}^{\infty}(G)$: minimum k ensuring guards to win in G.

Difference with the "One guard moves" version:

One guard moves

Each guard may move

Eternal Domination (all guards move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Each guard may move to some neighbor.

If no guard reaches the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma_{\text {all }}^{\infty}(G)$: minimum k ensuring guards to win in G.

Difference with the "One guard moves" version:

One guard moves

Each guard may move

Eternal Domination (all guards move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Each guard may move to some neighbor.

If no guard reaches the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma_{\text {all }}^{\infty}(G)$: minimum k ensuring guards to win in G.

Difference with the "One guard moves" version:

One guard moves

Each guard may move

Eternal Domination (all guards move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Each guard may move to some neighbor.

If no guard reaches the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma_{\text {all }}^{\infty}(G):$ minimum k ensuring guards to win in G.

Difference with the "One guard moves" version:

One guard moves

Each guard may move

For any graph $G, \gamma(G) \leq \gamma_{\text {all }}^{\infty}(G) \leq \alpha(G) \leq \gamma^{\infty}(G) \leq \theta(G)$

Eternal Domination (all guards move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn

(1) Attacker attacks one vertex v
(2) Each guard may move to some neighbor.

If no guard reaches the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma_{\text {all }}^{\infty}(G):$ minimum k ensuring guards to win in G.

Eternal Domination (all guards move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn

(1) Attacker attacks one vertex v
(2) Each guard may move to some neighbor.

If no guard reaches the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma_{\text {all }}^{\infty}(G):$ minimum k ensuring guards to win in G.

Eternal Domination (all guards move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn

(1) Attacker attacks one vertex v
(2) Each guard may move to some neighbor.

If no guard reaches the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma_{\text {all }}^{\infty}(G):$ minimum k ensuring guards to win in G.

Eternal Domination (all guards move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn

(1) Attacker attacks one vertex v
(2) Each guard may move to some neighbor.

If no guard reaches the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma_{\text {all }}^{\infty}(G):$ minimum k ensuring guards to win in G.

Eternal Domination (all guards move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn

(1) Attacker attacks one vertex v
(2) Each guard may move to some neighbor.

If no guard reaches the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma_{\text {all }}^{\infty}(G):$ minimum k ensuring guards to win in G.

Eternal Domination (all guards move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn

(1) Attacker attacks one vertex v
(2) Each guard may move to some neighbor.

If no guard reaches the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma_{\text {all }}^{\infty}(G):$ minimum k ensuring guards to win in G.

Eternal Domination (all guards move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn

(1) Attacker attacks one vertex v
(2) Each guard may move to some neighbor.

If no guard reaches the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma_{\text {all }}^{\infty}(G):$ minimum k ensuring guards to win in G.

Eternal Domination (all guards move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn

(1) Attacker attacks one vertex v
(2) Each guard may move to some neighbor.

If no guard reaches the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma_{\text {all }}^{\infty}(G)$: minimum k ensuring guards to win in G.

Attacker wins!

Eternal Domination (all guards move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Each guard may move to some neighbor.

If no guard reaches the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma_{\text {all }}^{\infty}(G):$ minimum k ensuring guards to win in G.

F. Mc Inerney, N. Nisse, S. Pérennes

Eternal Domination (all guards move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Each guard may move to some neighbor.

If no guard reaches the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma_{\text {all }}^{\infty}(G):$ minimum k ensuring guards to win in G.

Eternal Domination (all guards move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Each guard may move to some neighbor.

If no guard reaches the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma_{\text {all }}^{\infty}(G):$ minimum k ensuring guards to win in G.

Eternal Domination (all guards move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Each guard may move to some neighbor.

If no guard reaches the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma_{\text {all }}^{\infty}(G):$ minimum k ensuring guards to win in G.

Eternal Domination (all guards move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Each guard may move to some neighbor.

If no guard reaches the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma_{\text {all }}^{\infty}(G):$ minimum k ensuring guards to win in G.

Eternal Domination (all guards move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Each guard may move to some neighbor.

If no guard reaches the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma_{\text {all }}^{\infty}(G):$ minimum k ensuring guards to win in G.

Eternal Domination (all guards move)

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn
(1) Attacker attacks one vertex v
(2) Each guard may move to some neighbor.

If no guard reaches the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.
$\gamma_{\text {all }}^{\infty}(G):$ minimum k ensuring guards to win in G.

State of the art

- Paths, cycles: $\gamma_{\text {all }}^{\infty}\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil>\gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil, \gamma_{\text {all }}^{\infty}\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil=\gamma\left(C_{n}\right)$

State of the art

- Paths, cycles: $\gamma_{\text {all }}^{\infty}\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil>\gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil, \gamma_{\text {all }}^{\infty}\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil=\gamma\left(C_{n}\right)$

State of the art

- Paths, cycles: $\gamma_{\text {all }}^{\infty}\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil>\gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil, \gamma_{\text {all }}^{\infty}\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil=\gamma\left(C_{n}\right)$

State of the art

- Paths, cycles: $\gamma_{\text {all }}^{\infty}\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil>\gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil, \gamma_{\text {all }}^{\infty}\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil=\gamma\left(C_{n}\right)$

Attacker wins!

State of the art

- Paths, cycles: $\gamma_{\text {all }}^{\infty}\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil>\gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil, \gamma_{\text {all }}^{\infty}\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil=\gamma\left(C_{n}\right)$

State of the art

- Paths, cycles: $\gamma_{\text {all }}^{\infty}\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil>\gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil, \gamma_{\text {all }}^{\infty}\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil=\gamma\left(C_{n}\right)$

State of the art

- Paths, cycles: $\gamma_{\text {all }}^{\infty}\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil>\gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil, \gamma_{\text {all }}^{\infty}\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil=\gamma\left(C_{n}\right)$

State of the art

- Paths, cycles: $\gamma_{\text {all }}^{\infty}\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil>\gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil, \gamma_{\text {all }}^{\infty}\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil=\gamma\left(C_{n}\right)$

State of the art

- Paths, cycles: $\gamma_{\text {all }}^{\infty}\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil>\gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil, \gamma_{\text {all }}^{\infty}\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil=\gamma\left(C_{n}\right)$

Attacker wins! because of " ${ }^{\prime}$ SIDE EFFECTS"

State of the art

- Paths, cycles: $\gamma_{\text {all }}^{\infty}\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil>\gamma\left(P_{n}\right)=\left\lceil\frac{n}{3}\right\rceil, \gamma_{\text {all }}^{\infty}\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil=\gamma\left(C_{n}\right)$

Attacker wins! because of " ${ }^{\text {SIDE EFFECTS" }}$

- Deciding whether $\gamma_{\text {all }}^{\infty}(G) \leq k$ is NP-hard
[Bard et al. 2017]
- Linear-time algorithm for trees
[Klostermeyer, MacGillivray, 2009]
- $\gamma_{a l l}^{\infty}(G)=\alpha(G)$ for all proper interval graphs G
[Braga et al. 2015]
- Linear-time algorithm for all interval graphs

Cartesian Grids

- $\gamma_{\text {all }}^{\infty}\left(P_{2} \square P_{n}\right)=\left\lceil\frac{2 n}{3}\right\rceil$
- $\left\lceil\frac{4 n}{5}\right\rceil+1 \leq \gamma_{\text {all }}^{\infty}\left(P_{3} \square P_{n}\right) \leq\left\lceil\frac{4 n}{5}\right\rceil+5$
- $\gamma_{\text {all }}^{\infty}\left(P_{4} \square P_{n}\right)$ is known
- Bounds for $\gamma_{a l l}^{\infty}\left(P_{5} \square P_{n}\right)$
[Messinger, 2017]
[Beaton et al. 2014]
[Goldwasser et al. 2013]
[van Bommel et al. 2016]

Theorem

[Lamprou et al. 2017]
$\gamma_{\text {all }}^{\infty}\left(P_{n} \square P_{m}\right)=\gamma\left(P_{n} \square P_{m}\right)+O(n+m)$.

$$
\left(P_{n} \square P_{m}=\left\lceil\frac{m n}{5}\right\rceil\right)
$$

Eternal Domination in Strong Grids

Note that $\gamma\left(P_{n} \boxtimes P_{m}\right)=\left\lceil\frac{m}{3}\right\rceil\left\lceil\frac{n}{3}\right\rceil$ and $\alpha(G)=\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil$ and so

$$
\left\lceil\frac{m}{3}\right\rceil\left\lceil\frac{n}{3}\right\rceil \leq \gamma_{a l l}^{\infty}\left(P_{n} \boxtimes P_{m}\right) \leq\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil .
$$

Eternal Domination in Strong Grids

Note that $\gamma\left(P_{n} \boxtimes P_{m}\right)=\left\lceil\frac{m}{3}\right\rceil\left\lceil\frac{n}{3}\right\rceil$ and $\alpha(G)=\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil$ and so

$$
\left\lceil\frac{m}{3}\right\rceil\left\lceil\frac{n}{3}\right\rceil \leq \gamma_{a l l}^{\infty}\left(P_{n} \boxtimes P_{m}\right) \leq\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil .
$$

Theorem

For all $m \geq n$,
$\left\lfloor\frac{m}{3}\right\rfloor\left\lfloor\frac{n}{3}\right\rfloor+\Omega(n+m)=\gamma_{\text {all }}^{\infty}\left(P_{n} \boxtimes P_{m}\right)=\left\lceil\frac{m}{3}\right\rceil\left\lceil\frac{n}{3}\right\rceil+O(m \sqrt{n})$

Eternal Domination in Strong Grids

Note that $\gamma\left(P_{n} \boxtimes P_{m}\right)=\left\lceil\frac{m}{3}\right\rceil\left\lceil\frac{n}{3}\right\rceil$ and $\alpha(G)=\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil$ and so

$$
\left\lceil\frac{m}{3}\right\rceil\left\lceil\frac{n}{3}\right\rceil \leq \gamma_{\text {all }}^{\infty}\left(P_{n} \boxtimes P_{m}\right) \leq\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil .
$$

Theorem

[Mc Inerney, N., Pérennes, 2018]

For all $m \geq n$,
$\gamma\left(P_{n} \boxtimes P_{m}\right)+\Omega(n+m)=\gamma_{a l l}^{\infty}\left(P_{n} \boxtimes P_{m}\right)=\gamma\left(P_{n} \boxtimes P_{m}\right)+O(m \sqrt{n})$

Eternal Domination in Strong Grids

Note that $\gamma\left(P_{n} \boxtimes P_{m}\right)=\left\lceil\frac{m}{3}\right\rceil\left\lceil\frac{n}{3}\right\rceil$ and $\alpha(G)=\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil$ and so

$$
\left\lceil\frac{m}{3}\right\rceil\left\lceil\frac{n}{3}\right\rceil \leq \gamma_{a l l}^{\infty}\left(P_{n} \boxtimes P_{m}\right) \leq\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil .
$$

Theorem

For all $m \geq n$,
$\gamma\left(P_{n} \boxtimes P_{m}\right)+\Omega(n+m)=\gamma_{a l l}^{\infty}\left(P_{n} \boxtimes P_{m}\right)=\gamma\left(P_{n} \boxtimes P_{m}\right)+O(m \sqrt{n})$

Recursive approach: not based on local patterns but on global movements.

Eternal domination in the torus $C_{n} \boxtimes C_{m}$

$$
\gamma_{a l l}^{\infty}\left(C_{n} \boxtimes C_{m}\right)=\gamma\left(C_{n} \boxtimes C_{m}\right)=\gamma\left(P_{n} \boxtimes P_{m}\right)=\left\lceil\frac{m}{3}\right\rceil\left\lceil\frac{n}{3}\right\rceil
$$

Eternal domination in the torus $C_{n} \boxtimes C_{m}$

$$
\gamma_{a l l}^{\infty}\left(C_{n} \boxtimes C_{m}\right)=\gamma\left(C_{n} \boxtimes C_{m}\right)=\gamma\left(P_{n} \boxtimes P_{m}\right)=\left\lceil\frac{m}{3}\right\rceil\left\lceil\frac{n}{3}\right\rceil
$$

Eternal domination in the torus $C_{n} \boxtimes C_{m}$

$$
\gamma_{a l l}^{\infty}\left(C_{n} \boxtimes C_{m}\right)=\gamma\left(C_{n} \boxtimes C_{m}\right)=\gamma\left(P_{n} \boxtimes P_{m}\right)=\left\lceil\frac{m}{3}\right\rceil\left\lceil\frac{n}{3}\right\rceil
$$

Eternal domination in the torus $C_{n} \boxtimes C_{m}$

$$
\gamma_{a l l}^{\infty}\left(C_{n} \boxtimes C_{m}\right)=\gamma\left(C_{n} \boxtimes C_{m}\right)=\gamma\left(P_{n} \boxtimes P_{m}\right)=\left\lceil\frac{m}{3}\right\rceil\left\lceil\frac{n}{3}\right\rceil
$$

Eternal domination in the torus $C_{n} \boxtimes C_{m}$

$$
\gamma_{\text {all }}^{\infty}\left(C_{n} \boxtimes C_{m}\right)=\gamma\left(C_{n} \boxtimes C_{m}\right)=\gamma\left(P_{n} \boxtimes P_{m}\right)=\left\lceil\frac{m}{3}\right\rceil\left\lceil\frac{n}{3}\right\rceil
$$

Eternal domination in the torus $C_{n} \boxtimes C_{m}$

$$
\gamma_{a l l}^{\infty}\left(C_{n} \boxtimes C_{m}\right)=\gamma\left(C_{n} \boxtimes C_{m}\right)=\gamma\left(P_{n} \boxtimes P_{m}\right)=\left\lceil\frac{m}{3}\right\rceil\left\lceil\frac{n}{3}\right\rceil
$$

Eternal domination in the torus $C_{n} \boxtimes C_{m}$

$$
\gamma_{a l l}^{\infty}\left(C_{n} \boxtimes C_{m}\right)=\gamma\left(C_{n} \boxtimes C_{m}\right)=\gamma\left(P_{n} \boxtimes P_{m}\right)=\left\lceil\frac{m}{3}\right\rceil\left\lceil\frac{n}{3}\right\rceil
$$

Eternal domination in the torus $C_{n} \boxtimes C_{m}$

$$
\gamma_{a l l}^{\infty}\left(C_{n} \boxtimes C_{m}\right)=\gamma\left(C_{n} \boxtimes C_{m}\right)=\gamma\left(P_{n} \boxtimes P_{m}\right)=\left\lceil\frac{m}{3}\right\rceil\left\lceil\frac{n}{3}\right\rceil
$$

Eternal domination in the torus $C_{n} \boxtimes C_{m}$

$$
\gamma_{a l l}^{\infty}\left(C_{n} \boxtimes C_{m}\right)=\gamma\left(C_{n} \boxtimes C_{m}\right)=\gamma\left(P_{n} \boxtimes P_{m}\right)=\left\lceil\frac{m}{3}\right\rceil\left\lceil\frac{n}{3}\right\rceil
$$

Eternal domination in the torus $C_{n} \boxtimes C_{m}$

$$
\gamma_{a l l}^{\infty}\left(C_{n} \boxtimes C_{m}\right)=\gamma\left(C_{n} \boxtimes C_{m}\right)=\gamma\left(P_{n} \boxtimes P_{m}\right)=\left\lceil\frac{m}{3}\right\rceil\left\lceil\frac{n}{3}\right\rceil
$$

Easy in the torus because we can wrap around \rightarrow impossible in the grid!

Back to the Grid: Key Lemma

Teleportation (case of one guard)

If there is one guard on each border vertex, then one guard may "teleport" using the borders of the grid.

Back to the Grid: Key Lemma

Teleportation

If there are α guards on each border vertex, then $\beta \leq \alpha$ guards may teleport using the borders of the grid.

Upper Bound Overview $\gamma_{\text {all }}^{\infty}\left(P_{n} \boxtimes P_{m}\right)=\gamma\left(P_{n} \boxtimes P_{m}\right)+O(m \sqrt{n})$

Configuration

Multi-set $C=\left\{v_{i} \mid 1 \leq i \leq k\right\}$ giving the positions of the k guards.

Configurations of the winning strategy: SetWinConf
Set of configurations that dominate the grid.
Attacks split into 3 types: Horizontal, Vertical, and Diagonal.
We show: for any attack at a vertex $v \in V\left(P_{n} \boxtimes P_{m}\right)$, the guards can move from a configuration $C \in \operatorname{SetWinConf}$ to a configuration $C^{\prime} \in$ SetWinConf where $v \in C^{\prime}$.

Configuration $C \in$ SetWinConf

1 guard on vertices in light gray.
$O(\sqrt{n})$ guards on vertices in dark gray.
$\gamma\left(P_{n} \boxtimes P_{m}\right)+O(m \sqrt{n})$ guards total.

Block of Configuration $C \in$ SetWinConf

Horizontal Attacks

Horizontal attacks may only occur at vertices in red.

Horizontal Attacks - attack at red vertex

Only guards in same row and block move (except borders maybe).

Vertical Attacks

Vertical attacks may only occur at vertices in red.

Vertical Attacks - attack at red vertex

Only guards in same block move (except borders maybe).

Diagonal attacks

Diagonal attacks may only occur at vertices in red.

Diagonal Attacks - attack at red vertex

Guards in closest row (and block) move like in Horizontal and Vertical case at once and the rest in the same block move like in Vertical case.

At most 1 guard at each vertex

Lower Bound Idea of Proof $\left.\gamma_{\underset{\sim}{\otimes}\left(P_{n} \boxtimes P_{m}\right)=\gamma\left(P_{n} \mathbb{Q}\right.} P_{m}\right)+\Omega(m+n)$

At least 2 guards needed in each 4×5 subgrid on the border.

Lower Bound Idea of Proof $\gamma_{\underset{\sim}{\infty}\left(P_{n} \boxtimes P_{m}\right)=\gamma\left(P_{n} \boxtimes P_{m}\right)+\Omega(m+n)}$

At least 2 guards needed in each 4×5 subgrid on the border.

Lower Bound Idea of Proof $\gamma_{\underset{\sim}{\infty}\left(P_{n} \boxtimes P_{m}\right)=\gamma\left(P_{n} \boxtimes P_{m}\right)+\Omega(m+n)}$

At least 2 guards needed in each 4×5 subgrid on the border.

Lower Bound Idea of Proof $\gamma_{\underset{\sim}{\infty}\left(P_{n} \boxtimes P_{m}\right)=\gamma\left(P_{n} \boxtimes P_{m}\right)+\Omega(m+n)}$

At least 2 guards needed in each 4×5 subgrid on the border.

Lower Bound Idea of Proof $\gamma_{\underset{\sim}{\infty}\left(P_{n} \boxtimes P_{m}\right)=\gamma\left(P_{n} \boxtimes P_{m}\right)+\Omega(m+n)}$

At least 2 guards needed in each 4×5 subgrid on the border.

Lower Bound Idea of Proof $\left.\gamma_{\underset{\sim}{\otimes}\left(P_{n} \boxtimes P_{m}\right)=\gamma\left(P_{n} \mathbb{Q}\right.} P_{m}\right)+\Omega(m+n)$

At least 2 guards needed in each 4×5 subgrid on the border.

Vertices dominated by >1 guard, and/or some guards dominate ≤ 6 vertices
Double counting argument leads to result.

Further Work

- Tighten bounds for strong grids.
- All-guards move model is NP-hard but unknown if in NP.
- Is it PSPACE-complete? EXPTIME-complete?
- For all Cayley graphs G obtainable from abelian groups, $\gamma_{\text {all }}^{\infty}(G)=\gamma(G)$ [Goddard et al. 2005].
- Prove $\gamma_{\text {all }}^{\infty}(H)=\gamma(H)+o(\gamma(H))$ for truncated Cayley graphs H obtained from abelian groups by generalizing our technique.

Gen. tech. - Cartesian Grid $\gamma_{\hat{\sim}}^{\infty}\left(P_{n} \square P_{n}\right)=\gamma\left(P_{n} \square P_{n}\right)+O\left(n^{\frac{5}{3}}\right)$

Thanks!

