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Domination in Graphs

Dominating set in G = (V ,E)

D ⊆ V such that N[D] = V N[S]: closed neighborhood of S

i.e., for all v ∈ V , v ∈ D or ∃w ∈ D with vw ∈ E .
γ(G): minimum size of a dominating set in G .

Computation of γ(G): NP-complete [Karp 72], W[2]-hard, no c log n-approximation (for
some c < 1) [Alon et al. 06]

Graph classes:γ(Pn) = d n
3
e, γ(Cn) = d n

3
e, γ(Pn � Pm) = d n

3
edm

3
e

γ(Pn�Pm) = b (n+2)(m+2)
5

c − 4 (16 ≤ n ≤ m) [Gonçalves al. 11]

Vizing conjecture: γ(G�H) ≥ γ(G)γ(H)

best known: γ(G�H) ≥ 1
2
γ(G)γ(H) [Clark,Suen 00]
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Eternal Domination (one guard move) [Burger et al. 2004]

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn

1 Attacker attacks one vertex v

2 Defender moves one guard from w ∈ N[v ] to v .

If no Guard occupies the (closed) neighborhood of the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.

γ∞(G): minimum k ensuring guards to win in G .
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γ∞(G): minimum k ensuring guards to win in G .

For any graph G , γ(G) ≤ α(G) ≤ γ∞(G) ≤ θ(G) [Burger et al. 2004]

γ(G): min. size of dominating set
α(G): min. size of independent set

θ(G): min. size of clique cover
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F. Mc Inerney, N. Nisse, S. Pérennes Eternal Domination in Grid-like Graphs



3/26

Eternal Domination (one guard move) [Burger et al. 2004]

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn

1 Attacker attacks one vertex v

2 Defender moves one guard from w ∈ N[v ] to v .

If no Guard occupies the (closed) neighborhood of the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.

γ∞(G): minimum k ensuring guards to win in G .

For any graph G , γ(G) ≤ α(G) ≤ γ∞(G) ≤ θ(G) [Burger et al. 2004]

If < α(G) guards, sequentially attack
vertices of a stable max.

γ(G): min. size of dominating set
α(G): min. size of independent set

θ(G): min. size of clique cover
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Eternal Domination (all guards move) [Goddard et al. 2005]

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn

1 Attacker attacks one vertex v

2 Each guard may move to some neighbor.

If no guard reaches the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.

γ∞all (G): minimum k ensuring guards to win in G .

For any graph G , γ(G) ≤ γ∞all (G) ≤ α(G) ≤ γ∞(G) ≤ θ(G) [Burger et al. 2004]

γ∞all (G) ≤ α(G): nice induction proof [Goddard et al. 2005]
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F. Mc Inerney, N. Nisse, S. Pérennes Eternal Domination in Grid-like Graphs



6/26

Eternal Domination (all guards move) [Goddard et al. 2005]

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn

1 Attacker attacks one vertex v

2 Each guard may move to some neighbor.

If no guard reaches the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.

γ∞all (G): minimum k ensuring guards to win in G .

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1 1

1

1

1

1

1

1

Guards win! (with 2γ(Pn � Pm) guards)

F. Mc Inerney, N. Nisse, S. Pérennes Eternal Domination in Grid-like Graphs



6/26

Eternal Domination (all guards move) [Goddard et al. 2005]

Two Player Game

Defender first places its k guards at vertices of the graph. Then, turn-by-turn

1 Attacker attacks one vertex v

2 Each guard may move to some neighbor.

If no guard reaches the attacked vertex, Attacker wins.
If Defender can react to any infinite sequence of attacks, Guards win.

γ∞all (G): minimum k ensuring guards to win in G .

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1 1

1

1

1

1

1

1

Guards win! (with 2γ(Pn � Pm) guards)
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State of the art

Paths, cycles: γ∞all (Pn) = d n
2
e > γ(Pn) = d n

3
e, γ∞all (Cn) = d n

3
e = γ(Cn)

Deciding whether γ∞all (G ) ≤ k is NP-hard [Bard et al. 2017]

Linear-time algorithm for trees [Klostermeyer, MacGillivray, 2009]

γ∞all (G ) = α(G ) for all proper interval graphs G [Braga et al. 2015]

Linear-time algorithm for all interval graphs [Rinemberg, Soulignac, 2018]
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Cartesian Grids

γ∞all (P2�Pn) = d2n
3 e [Goldwasser et al. 2013]

d4n
5 e+ 1 ≤ γ∞all (P3�Pn) ≤ d4n

5 e+ 5 [Messinger, 2017]

γ∞all (P4�Pn) is known [Beaton et al. 2014]

Bounds for γ∞all (P5�Pn) [van Bommel et al. 2016]

Theorem [Lamprou et al. 2017]

γ∞all (Pn�Pm) = γ(Pn�Pm) + O(n + m).
(Pn�Pm = dmn

5
e)

Pictures from [Lamprou et al. 2017]
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Eternal Domination in Strong Grids [Mc Inerney, N., Pérennes, 2018]

Note that γ(Pn � Pm) = dm3 ed
n
3e and α(G ) = dm2 ed

n
2e and so⌈m

3

⌉ ⌈n
3

⌉
≤ γ∞all (Pn � Pm) ≤

⌈m
2

⌉ ⌈n
2

⌉
.

Theorem [Mc Inerney, N., Pérennes, 2018]

For all m ≥ n,
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≤ γ∞all (Pn � Pm) ≤

⌈m
2

⌉ ⌈n
2

⌉
.

Theorem [Mc Inerney, N., Pérennes, 2018]

For all m ≥ n,

bm
3
cbn

3
c+ Ω(n + m) = γ∞all (Pn � Pm) = dm

3
edn

3
e+ O(m

√
n)
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Eternal Domination in Strong Grids [Mc Inerney, N., Pérennes, 2018]

Note that γ(Pn � Pm) = dm3 ed
n
3e and α(G ) = dm2 ed

n
2e and so⌈m

3

⌉ ⌈n
3

⌉
≤ γ∞all (Pn � Pm) ≤

⌈m
2

⌉ ⌈n
2

⌉
.

Theorem [Mc Inerney, N., Pérennes, 2018]

For all m ≥ n,

γ(Pn�Pm)+Ω(n+m) = γ∞all (Pn�Pm) = γ(Pn�Pm)+O(m
√
n)
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Eternal Domination in Strong Grids [Mc Inerney, N., Pérennes, 2018]

Note that γ(Pn � Pm) = dm3 ed
n
3e and α(G ) = dm2 ed

n
2e and so⌈m

3

⌉ ⌈n
3

⌉
≤ γ∞all (Pn � Pm) ≤

⌈m
2

⌉ ⌈n
2

⌉
.

Theorem [Mc Inerney, N., Pérennes, 2018]

For all m ≥ n,

γ(Pn�Pm)+Ω(n+m) = γ∞all (Pn�Pm) = γ(Pn�Pm)+O(m
√
n)

Recursive approach: not based on local patterns but on
global movements.
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Eternal domination in the torus Cn � Cm

γ∞all (Cn � Cm) = γ(Cn � Cm) = γ(Pn � Pm) =
⌈m

3

⌉ ⌈n
3

⌉

Easy in the torus because we can wrap around → impossible in the grid!
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F. Mc Inerney, N. Nisse, S. Pérennes Eternal Domination in Grid-like Graphs



10/26

Eternal domination in the torus Cn � Cm

γ∞all (Cn � Cm) = γ(Cn � Cm) = γ(Pn � Pm) =
⌈m

3

⌉ ⌈n
3

⌉

Easy in the torus because we can wrap around → impossible in the grid!
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Back to the Grid: Key Lemma

Teleportation (case of one guard)

If there is one guard on each border vertex, then one guard
may “teleport” using the borders of the grid.
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Back to the Grid: Key Lemma

Teleportation

If there are α guards on each border vertex, then β ≤ α
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Upper Bound Overview γ∞all (Pn � Pm) = γ(Pn � Pm) + O(m
√
n)

Configuration

Multi-set C = {vi | 1 ≤ i ≤ k} giving the positions of the k guards.

Configurations of the winning strategy: SetWinConf

Set of configurations that dominate the grid.

Attacks split into 3 types: Horizontal, Vertical, and Diagonal.

We show: for any attack at a vertex v ∈ V (Pn � Pm), the guards
can move from a configuration C ∈ SetWinConf to a configuration
C ′ ∈ SetWinConf where v ∈ C ′.
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Configuration C ∈ SetWinConf

b1
b2 b3

a1
1

a2
3 a3

2

√
n

√
n

√
n

m

n

1 guard on vertices in light gray.

O(
√
n) guards on vertices in dark gray.

γ(Pn � Pm) + O(m
√
n) guards total.
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Block of Configuration C ∈ SetWinConf

b1

a1
1

√
n
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Horizontal Attacks

Horizontal attacks may only occur at vertices in red.
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Horizontal Attacks - attack at red vertex

Only guards in same row and block move (except borders maybe).
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Vertical Attacks

Vertical attacks may only occur at vertices in red.
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Vertical Attacks - attack at red vertex

Only guards in same block move (except borders maybe).
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Diagonal attacks

Diagonal attacks may only occur at vertices in red.
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Diagonal Attacks - attack at red vertex

Guards in closest row (and block) move like in Horizontal and

Vertical case at once and the rest in the same block move like in

Vertical case.
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At most 1 guard at each vertex

u4 u3 u2

u1

w1

w2 w3 w4
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Lower Bound Idea of Proof γ∞all (Pn � Pm) = γ(Pn � Pm) + Ω(m + n)

At least 2 guards needed in each 4× 5 subgrid on the border.

Vertices dominated by > 1 guard, and/or some guards
dominate ≤ 6 vertices
Double counting argument leads to result.
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Further Work

Tighten bounds for strong grids.

All-guards move model is NP-hard but unknown if in NP .

Is it PSPACE -complete? EXPTIME -complete?

For all Cayley graphs G obtainable from abelian groups,
γ∞all (G ) = γ(G ) [Goddard et al. 2005].

Prove γ∞all (H) = γ(H) + o(γ(H)) for truncated Cayley
graphs H obtained from abelian groups by generalizing
our technique.
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Gen. tech. - Cartesian Grid γ∞all (Pn�Pn) = γ(Pn�Pn) + O(n
5
3 )

n
2
3

n
1
3

n
2
3 g’s

n
1
3 g’s

1 g
n

2
3 g’s

Dom. set

Horiz. attack: move only

in small rectangle.

Vert. attack: move only

in red rectangle.
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Thanks!
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