Brief Introduction to Parameterized Algorithms

Nicolas Nisse

Université Côte d'Azur, Inria, CNRS, I3S, France

TADaaM seminar, October 12th, 2021

N. Nisse Brief introduction to parameterized algorithms

How to face NP-hard problems?

- Exact exponential algorithms
- Approximation algorithms, heuristics
- Particular instances

 $O(c^{n}), c > 1$

(but not only)

2/17

not always possible/desired.

e.g., bipartite graphs, planar graphs...

- ...
- Parameterized Complexity: "Refined" analysis of the complexity depending not only on the size of the instance but on some "parameter" describing the "structure" of the instance.

How to face NP-hard problems?

- Exact exponential algorithms
- Approximation algorithms, heuristics
- Particular instances

 $O(c^n), c > 1$

(but not only)

2/17

not always possible/desired.

e.g., bipartite graphs, planar graphs...

- ...
- Parameterized Complexity: "Refined" analysis of the complexity depending not only on the size of the instance but on some "parameter" describing the "structure" of the instance.

Two very nice books:

M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh: Parameterized Algorithms. Springer 2015.

F.V. Fomin, D. Lokshtanov, S. Saurabh, M. Zehavi:

Kernelization. Theory of Parameterized Preprocessing. Cambridge University Press 2019.

Parameterized Complexity in a nutshell

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

VERTEX COVER:

Inputs: a graph G = (V, E), and $k \in \mathbb{N}$;

Output: does there exist $Q \subseteq V$, $|Q| \leq k$, $\forall e \in E$, $Q \cap e \neq \emptyset$?

best known O(1.2114ⁿ) [Bourgeois et al., 12], 2-approximation (maximal matching)

CLIQUE:

Inputs: a graph G = (V, E), and $k \in \mathbb{N}$;

Output: does there exist $Q \subseteq V$, $|Q| \ge k$, $\forall u, v \in Q$, $\{u, v\} \in E$?

best known $O(1.1888^n)$ [Robson et al., 01], $O(n(loglogn)^2/log^3n)$ -approximation [Feige 04]

PROPER COLORING:

Inputs: a graph G = (V, E), and $k \in \mathbb{N}$;

Output: $\chi(G) \leq k$?, i.e., is there a proper coloring $c: V \rightarrow \{1, \dots, k\}$?

イロン イヨン イヨン イヨン

Some well known NP-hard problems

What if the size k of the solution is a fixed parameter?

k-VERTEX COVER:

Input: a graph G = (V, E);

Output: does there exist $Q \subseteq V$, $|Q| \leq k$, $\forall e \in E$, $Q \cap e \neq \emptyset$?

k-CLIQUE:

Input: a graph G = (V, E);

Output: does there exist $Q \subseteq V$, $|Q| \ge k$, $\forall u, v \in Q$, $\{u, v\} \in E$?

Polynomial-time solvable!: try $n^{O(k)}$ possibilities.

k-Proper Coloring:

Input: a graph G = (V, E);

Output: $\chi(G) \leq k$?, i.e., is there a proper coloring $c: V \rightarrow \{1, \dots, k\}$?

Still NP-hard for any fixed $k \ge 3$! (constant-time in planar graphs if $k \ge 4$)

4/17

Parameter

A parameter is given by a polynomial-time computable function, which maps instances of our problem to natural numbers.

e.g., size of the solution, genus, treewidth, number of vertices to be removed to obtain a bipartite graph, *etc.*

$\mathsf{Class}\ \mathrm{XP}$

A problem is in XP parameterized by k if there exists an algorithm which solves the problem in time $O(n^{f(k)})$ for some function f.

If the parameter k is the size of the solution:

- *k*-VERTEX-COVER and *k*-CLIQUE are in XP.
- *k*-COLORING \notin XP for any $k \ge 3$.

・ロット (日本) (日本) (日本)

Let's go further: example of k-VERTEX-COVER

Vertex Cover of G = (V, E): set $Q \subseteq V$ s.t., $\forall e \in E$, $e \cap Q \neq \emptyset$.

Trivial lemmas: let Q be a Vertex Cover of G, then

- for all $\{u, v\} \in E$, $u \in Q$ or $v \in Q$ or both.
- if $|Q| \leq k$, then $|E| \leq k|V|$.

イロト イポト イヨト イヨト

Let's go further: example of k-VERTEX-COVER

Vertex Cover of G = (V, E): set $Q \subseteq V$ s.t., $\forall e \in E$, $e \cap Q \neq \emptyset$.

Trivial lemmas: let Q be a Vertex Cover of G, then

- for all $\{u, v\} \in E$, $u \in Q$ or $v \in Q$ or both.
- if $|Q| \leq k$, then $|E| \leq k|V|$.

Branch & Bound Algorithm (BB) for deciding if $vc(G) \le k$

If |E| > 0 and k = 0, Return ∞ . Else if |E| = 0, Return 0. Else if |E| = 1, Return 1 Else Let $\{u, v\} \in E$, Return min $\{BB(G \setminus u, k-1), BB(G \setminus v, k-1)\} + 1$

Limited recursion depth + bounded # of edges \Rightarrow Complexity : $O(k2^k \cdot |V|)$ linear in |V|, |V| and k are "separated"

Fixed Parameter Tractable (FPT) algorithms

FPT Problem

A problem is fixed parameter tractable (FPT) parameterized by a parameter k if there exists an algorithm which solves the problem in time $f(k) \cdot n^{O(1)}$.

VERTEX-COVER is FPT parameterized by the size of the solution.

Which problems are FPT?

7/17

Э

Fixed Parameter Tractable (FPT) algorithms

FPT Problem

A problem is fixed parameter tractable (FPT) parameterized by a parameter k if there exists an algorithm which solves the problem in time $f(k) \cdot n^{O(1)}$.

VERTEX-COVER is FPT parameterized by the size of the solution.

Which problems are FPT?

The W-Hierarchy

 $FPT \subseteq W[1] \subseteq W[2] \subseteq \cdots$.

It is strongly believed that $FPT \neq W[1]$.

W[] defined using weft of Boolean circuits

- *k*-CLIQUE is *W*[1]-complete
- *k*-DOMINATING SET, *k*-SET COVER, *k*-HITTING SET are *W*[2]-complete.

but... k-CLIQUE FPT in planar graphs

・ロト ・回ト ・ヨト ・ヨト

Let's go even further: example of k-VERTEX-COVER

Simple lemmas: let Q be a Vertex Cover of G = (V, E) of size $\leq k$, then

- if $v \in V$ has degree > k, then $v \in Q$;
- if no vertex with degree > k, then $|E| \le k^2$.

・ロト ・回ト ・ヨト ・ヨト

Let's go even further: example of k-VERTEX-COVER

Simple lemmas: let Q be a Vertex Cover of G = (V, E) of size $\leq k$, then

- if $v \in V$ has degree > k, then $v \in Q$;
- if no vertex with degree > k, then $|E| \le k^2$.

Kernelization Algorithm (Ker) for deciding if $vc(G) \le k$

Remove isolated vertices If |E| = 0, Return TRUE. Else if k = 0, Return FALSE Else if no vertex of degree > k and $|E| > k^2$, Return FALSE Else if v is a vertex of degree > k. Return Ker($G \setminus v, k - 1$). Else Return BB(G, k)

Complexity: $O(2^k k^3 + |V|^2)$

polynomial-time "data-reduction" to an instance of order k^2 .

Kernelization vs. FPT

Kernelization

A kernelization for a parameterized problem Π is an algorithm that takes an instance (x, k) and maps it in time polynomial in |x| and k to an instance (x', k') s.t.

- $(x,k) \in \Pi \Leftrightarrow (x',k') \in \Pi$,
- $k' + |x'| \le g(k)$ where g is a function called the size of the kernel.

"Preprocessing" algorithm that reduces to an instance of size \leq a function only of k.

・ロト ・回ト ・ヨト ・ヨト

9/17

3

Kernelization vs. FPT

Kernelization

A kernelization for a parameterized problem Π is an algorithm that takes an instance (x, k) and maps it in time polynomial in |x| and k to an instance (x', k') s.t.

- $(x,k) \in \Pi \Leftrightarrow (x',k') \in \Pi$,
- $k' + |x'| \le g(k)$ where g is a function called the size of the kernel.

"Preprocessing" algorithm that reduces to an instance of size \leq a function only of k.

$\mathsf{Kernelization} \Leftrightarrow \mathsf{FPT}$

 \Rightarrow $n^{O(1)}$ "data-reduction" + brute force on instance of size dependent only on k

- \Leftarrow . Assume there exists an algorithm solving the problem in time $f(k)n^{O(1)}$.
 - if $n \leq f(k)$, nothing to be done;
 - else, $f(k)n^c \le n^{c+1}$ and the algorithm is polynomial in *n*. Apply it and return a trivial *Yes* or *No* instance.

(日) (四) (三) (三) (三) (三)

Kernelization vs. FPT

Kernelization

A kernelization for a parameterized problem Π is an algorithm that takes an instance (x, k) and maps it in time polynomial in |x| and k to an instance (x', k') s.t.

- $(x,k) \in \Pi \Leftrightarrow (x',k') \in \Pi$,
- $k' + |x'| \le g(k)$ where g is a function called the size of the kernel.

"Preprocessing" algorithm that reduces to an instance of size \leq a function only of k.

$\mathsf{Kernelization} \Leftrightarrow \mathsf{FPT}$

 $\Rightarrow n^{O(1)}$ "data-reduction" + brute force on instance of size dependent only on k

 \Leftarrow . Assume there exists an algorithm solving the problem in time $f(k)n^{O(1)}$.

- if $n \leq f(k)$, nothing to be done;
- else, $f(k)n^c \le n^{c+1}$ and the algorithm is polynomial in *n*. Apply it and return a trivial *Yes* or *No* instance.

Can we always get a kernel of polynomial size?

- OK for *k*-Vertex-Cover, *k*-Feedback Vertex-Set, *k*-Planar Dominating Set...
- NOK for *k*-PATH...

(method of compositionability) 9/17

・ロト ・回ト ・ヨト ・ヨト

Linear Kernel for *k*-VERTEX-COVER

Fractional relaxation (LP) for Vertex Cover:

Theorem: Optimal solution: $(x_v)_{v \in V}$

Let $V_1 = \{v \in V \mid x_v > 1/2\}$ and $V_{1/2} = \{v \in V \mid x_v = 1/2\}.$ Then, \exists optimal (Integral) Vertex-Cover Q such that $V_1 \subseteq Q \subseteq V_1 \cup V_{1/2}$

イロト イヨト イヨト イヨト

Linear Kernel for *k*-VERTEX-COVER

Fractional relaxation (LP) for Vertex Cover:

$$\begin{array}{rcl} \mathsf{Min.} & \sum_{v \in V} x_v \\ \mathsf{s.t.:} & x_v + x_u & \geq & 1 & \forall \{u, v\} \in E \\ x_v & \geq & 0 & \forall v \in V \end{array}$$

Theorem: Optimal solution: $(x_v)_{v \in V}$

Let $V_1 = \{v \in V \mid x_v > 1/2\}$ and $V_{1/2} = \{v \in V \mid x_v = 1/2\}.$ Then, \exists optimal (Integral) Vertex-Cover Q such that $V_1 \subseteq Q \subseteq V_1 \cup V_{1/2}$

Linear Kernel (LK) for deciding if $vc(G) \leq k$

If |E| = 0, Return TRUE Remove isolated vertices Let $(x_v)_{v \in V}$ be an optimal solution obtained by LP If optimal fractional solution > k, Return FALSE Else let $V_1 = \{v \in V \mid x_v > 1/2\}$. If $V_1 \neq \emptyset$ then Return LK($G \setminus V_1, k - |V_1|$).

Else Return BB(G, k)

When $V_1 = \emptyset$, $x_v = 1/2$ for all $v \in V$, and so $|V| \le 2k$

kernel of linear size.

イロト イヨト イヨト イヨト

A bit on scheduling

・ロト ・回ト ・ヨト ・ヨト ・ヨ

A bit of Scheduling from parameterized point of view

"Surprisingly", scheduling problems have received "few" attention in the context of parameterized complexity until the last 5 years.

"Reason": "Many numerical input data, which alone render many problems NP-hard" [Mnich,Wiese 15]

Some	known	results	on	Mak	espan	minimization
------	-------	---------	----	-----	-------	--------------

according to different parameters

12/17

- on identical machines: FPT parameterized by the size of the solution [Alon et al. 98]
- without preemption: FPT parameterized by the maximum processing time of a job [Mnich,Wiese 15]
- unrelated machines: FPT parameterized by the # of distinct processing times and the # of machines [Mnich,Wiese 15]
- unrelated machines: FPT parameterized by the treewidth of the primal graph [Jansen,Maack,Solis-Oba 20]

...

Efficient Polynomial Time Appoximation Scheme (EPTAS)

For all $\epsilon > 1$, ϵ -approximation algorithm running in time $f(\frac{1}{\epsilon})n^{O(1)}$.

Theorem: $EPTAS \Rightarrow FPT$ parameterized by the size of the solution [Bazgan 95]

Proof for minimization problem:

Apply the EPTAS for $\epsilon = \frac{1}{k+1}$.

If the obtained solution has value $\leq k$, then *TRUE*.

Else, $OPT \ge Value(Sol)/(1+\frac{1}{k+1}) \ge (k+1)/(1+\frac{1}{k+1}) > k$, then FALSE.

イロン スピン スヨン

A simple example: width of dependency DAG

Inputs: set T of n tasks, unit length, with individual deadlines d(t) and precedence constraints (partial order P).

Output: Is there a schedule of T with at most k late task?

Theorem: above problem is W[1]-hard parameterized by k

[Fellows,McCartin 03]

14/17

A simple example: width of dependency DAG

Inputs: set T of n tasks, unit length, with individual deadlines d(t) and precedence constraints (partial order P).

Output: Is there a schedule of T with at most k late task?

Theorem: above problem is W[1]-hard parameterized by k

[Fellows,McCartin 03]

[Fellows,McCartin 03]

width of P: $w(P) = \min$. # of chains forming a partition of P

Theorem: above problem is FPT in w(P) and k

- Compute (in time O(n^{2,5})) a partition of P into w(P) chains [Brightwell 94];
- If a maximal element e has deadline $\geq n$, put it in last position and recurse on $T \setminus \{e\}$;
- Else branch on the at most w(P) maximal elements

(any maximal element put in last position will be late).

Limited recursion depth \Rightarrow Complexity $O(w(P)^{k+1}n + n^{2,5})$.

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

Powerfull Meta-Theorems for FPT algorithms

Several powerfull Meta-Theorems for FPT (in graphs)

Minor Graph Theorem

Every minor-closed property is recognizable in time $O(n^3)$ time.

(Finite number of minimal obstructions and $O(f(|V(H)|)n^3)$ algorithm for deciding if an *n*-node graph admits *H* as minor.)

(but very, very,... huge constants and non-constructive algorithm)

Courcelle's Theorem

Every graph property definable in the monadic second-order logic of graphs can be decided in linear time on graphs of bounded treewidth.

Bi-dimensionnality theory

FPT and EPTAS algorithms in bounded genus graphs for many problems. (Based on the Grid-Minor Theorem and on Courcelle's Theorem.)

Meta-Kernelization

Linear Kernels for huge family of graph's problems.

[Bodlaender et al. 16]

16/17

Э

[Courcelle 90]

[Robertson, Seymour 04]

イロン イヨン イヨン イヨン

[Demaine, Hajiaghavi 08]

Conclusion

FPT in P: Not only NP-hard problems are concerned, e.g.:

Radius and Diameter can be solved in 2^{O(k log k)} n^{1+O(1)}-time, where k is treewidth. [Abboud,Vassilevska Williams,Wang 16]

(sub-cubic algorithms are unexpected in general graphs)

• Maximum Matching can be solved in $O(k^4n + m)$ -time where k is either the modular-width or the P_4 -sparseness. [Coudert,Ducoffe,Popa 19]

Scheduling, many open problems:

M. Mnich, R. Bevern: Parameterized complexity of machine scheduling: 15 open problems. Comput. Oper. Res. 100: 254-261 (2018)

Bring Parameterized algorithms to practice

E.g., last three Meta-theorems of previous slide are based on the computation of "good" tree-decompositions.

Computing treewidth: NP-hard, not-approximable, FPT (but not practical), $O(2^{O(k)}n)$ algorithm that decides if a graph has treewidth at most 5k + 4.

Practical exact or approximation algorithms?

・ロト ・日ト ・ヨト ・ヨト

Conclusion

FPT in P: Not only NP-hard problems are concerned, e.g.:

Radius and Diameter can be solved in 2^{O(k log k)}n^{1+O(1)}-time, where k is treewidth.
[Abboud,Vassilevska Williams,Wang 16]

(sub-cubic algorithms are unexpected in general graphs)

Maximum Matching can be solved in O(k⁴n + m)-time where k is either the modular-width or the P₄-sparseness. [Coudert,Ducoffe,Popa 19]

Scheduling, many open problems:

M. Mnich, R. Bevern: Parameterized complexity of machine scheduling: 15 open problems. Comput. Oper. Res. 100: 254-261 (2018)

Bring Parameterized algorithms to practice

E.g., last three Meta-theorems of previous slide are based on the computation of "good" tree-decompositions.

Computing treewidth: NP-hard, not-approximable, FPT (but not practical), $O(2^{O(k)}n)$ algorithm that decides if a graph has treewidth at most 5k + 4.

Practical exact or approximation algorithms?

(ロ) (四) (三) (三)

Merci !