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How to face NP-hard problems? (but not only)

Exact exponential algorithms O(cn), c > 1

Approximation algorithms, heuristics not always possible/desired.

Particular instances e.g., bipartite graphs, planar graphs...

...

Parameterized Complexity: “Refined” analysis of the complexity
depending not only on the size of the instance but on some “parameter”
describing the “structure” of the instance.

Two very nice books:

M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh:

Parameterized Algorithms. Springer 2015.

F.V. Fomin, D. Lokshtanov, S. Saurabh, M. Zehavi:

Kernelization. Theory of Parameterized Preprocessing. Cambridge University Press 2019.
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Parameterized Complexity in a nutshell
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Some well known NP-hard problems

What if the size k of the solution is a fixed parameter?

Vertex Cover:

Inputs: a graph G = (V ,E), and k ∈ N;

Output: does there exist Q ⊆ V , |Q| ≤ k, ∀e ∈ E , Q ∩ e 6= ∅?
best known O(1.2114n) [Bourgeois et al., 12], 2-approximation (maximal matching)

Clique:

Inputs: a graph G = (V ,E), and k ∈ N;

Output: does there exist Q ⊆ V , |Q| ≥ k, ∀u, v ∈ Q, {u, v} ∈ E?

best known O(1.1888n) [Robson et al., 01], O(n(loglogn)2/log3n)-approximation [Feige 04]

Proper Coloring:

Inputs: a graph G = (V ,E), and k ∈ N;

Output: χ(G) ≤ k?, i.e., is there a proper coloring c : V → {1, · · · , k}?
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Some well known NP-hard problems

What if the size k of the solution is a fixed parameter?

k-Vertex Cover:

Input: a graph G = (V ,E);

Output: does there exist Q ⊆ V , |Q| ≤ k, ∀e ∈ E , Q ∩ e 6= ∅?

k-Clique:

Input: a graph G = (V ,E);

Output: does there exist Q ⊆ V , |Q| ≥ k, ∀u, v ∈ Q, {u, v} ∈ E?

Polynomial-time solvable!: try nO(k) possibilities.

k-Proper Coloring:

Input: a graph G = (V ,E);

Output: χ(G) ≤ k?, i.e., is there a proper coloring c : V → {1, · · · , k}?

Still NP-hard for any fixed k ≥ 3 ! (constant-time in planar graphs if k ≥ 4)
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The class XP

Parameter

A parameter is given by a polynomial-time computable function, which maps
instances of our problem to natural numbers.

e.g., size of the solution, genus, treewidth, number of vertices to be removed to
obtain a bipartite graph, etc.

Class XP

A problem is in XP parameterized by k if there exists an algorithm which

solves the problem in time O(nf (k)) for some function f .

If the parameter k is the size of the solution:

k-Vertex-Cover and k-Clique are in XP.

k-Coloring /∈ XP for any k ≥ 3.
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Let’s go further: example of k-Vertex-Cover

Vertex Cover of G = (V ,E): set Q ⊆ V s.t., ∀e ∈ E , e ∩ Q 6= ∅.

Trivial lemmas: let Q be a Vertex Cover of G , then

for all {u, v} ∈ E , u ∈ Q or v ∈ Q or both.

if |Q| ≤ k, then |E | ≤ k|V |.

Branch & Bound Algorithm (BB) for deciding if vc(G) ≤ k

If |E | > 0 and k = 0, Return ∞. Else if |E | = 0, Return 0.
Else if |E | = 1, Return 1
Else Let {u, v} ∈ E , Return min{BB(G \ u, k − 1),BB(G \ v , k − 1)}+ 1
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Limited recursion depth + bounded # of edges ⇒ Complexity : O(k2k · |V |)
linear in |V |, |V | and k are “separated”
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Fixed Parameter Tractable (FPT) algorithms

FPT Problem

A problem is fixed parameter tractable (FPT) parameterized by a parameter k if there
exists an algorithm which solves the problem in time f (k) · nO(1).

Vertex-Cover is FPT parameterized by the size of the solution.

Which problems are FPT?

The W-Hierarchy

FPT ⊆W [1] ⊆W [2] ⊆ · · · . W [] defined using weft of Boolean circuits

It is strongly believed that FPT 6= W [1].

k-Clique is W [1]-complete

k-Dominating Set, k-Set Cover, k-Hitting Set are W [2]-complete.

but... k-Clique FPT in planar graphs
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Let’s go even further: example of k-Vertex-Cover

Simple lemmas: let Q be a Vertex Cover of G = (V ,E) of size ≤ k, then

if v ∈ V has degree > k, then v ∈ Q;

if no vertex with degree > k, then |E | ≤ k2.

Kernelization Algorithm (Ker) for deciding if vc(G) ≤ k

Remove isolated vertices
If |E | = 0, Return TRUE . Else if k = 0, Return FALSE
Else if no vertex of degree > k and |E | > k2, Return FALSE
Else if v is a vertex of degree > k. Return Ker(G \ v , k − 1).
Else Return BB(G , k)

Complexity: O(2kk3 + |V |2)
polynomial-time “data-reduction” to an instance of order k2.
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Kernelization vs. FPT

Kernelization

A kernelization for a parameterized problem Π is an algorithm that takes an instance
(x , k) and maps it in time polynomial in |x | and k to an instance (x ′, k ′) s.t.

(x , k) ∈ Π⇔ (x ′, k ′) ∈ Π,

k ′ + |x ′| ≤ g(k) where g is a function called the size of the kernel.

“Preprocessing” algorithm that reduces to an instance of size ≤ a function only of k.

Kernelization ⇔ FPT

⇒ nO(1) “data-reduction” + brute force on instance of size dependent only on k

⇐. Assume there exists an algorithm solving the problem in time f (k)nO(1).

if n ≤ f (k), nothing to be done;

else, f (k)nc ≤ nc+1 and the algorithm is polynomial in n. Apply it and return a
trivial Yes or No instance.

Can we always get a kernel of polynomial size?

OK for k-Vertex-Cover, k-Feedback Vertex-Set, k-Planar Dominating
Set...

NOK for k-Path... (method of compositionability)
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Linear Kernel for k-Vertex-Cover

Fractional relaxation (LP) for Vertex Cover:

Min.
∑
v∈V

xv

s.t.: xv + xu ≥ 1 ∀{u, v} ∈ E
xv ≥ 0 ∀v ∈ V

Theorem: Optimal solution: (xv )v∈V

Let V1 = {v ∈ V | xv > 1/2} and
V1/2 = {v ∈ V | xv = 1/2}.
Then, ∃ optimal (Integral) Vertex-Cover
Q such that V1 ⊆ Q ⊆ V1 ∪ V1/2

Linear Kernel (LK) for deciding if vc(G) ≤ k

If |E | = 0, Return TRUE
Remove isolated vertices
Let (xv )v∈V be an optimal solution obtained by LP
If optimal fractional solution > k, Return FALSE

Else let V1 = {v ∈ V | xv > 1/2}.
If V1 6= ∅ then Return LK(G \ V1, k − |V1|).
Else Return BB(G , k)

When V1 = ∅, xv = 1/2 for all v ∈ V , and so |V | ≤ 2k kernel of linear size.
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A bit on scheduling
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A bit of Scheduling from parameterized point of view

“Surprisingly”, scheduling problems have received “few” attention in the context of
parameterized complexity until the last 5 years.

“Reason”: “Many numerical input data, which alone render many problems NP-hard”
[Mnich,Wiese 15]

Some known results on Makespan minimization...
according to different parameters

on identical machines: FPT parameterized by the size of the solution [Alon et al. 98]

without preemption: FPT parameterized by the maximum processing time of a
job [Mnich,Wiese 15]

unrelated machines: FPT parameterized by the # of distinct processing times
and the # of machines [Mnich,Wiese 15]

unrelated machines: FPT parameterized by the treewidth of the primal graph
[Jansen,Maack,Solis-Oba 20]

...
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Parameterized Complexity vs. Approximation

Efficient Polynomial Time Appoximation Scheme (EPTAS)

For all ε > 1, ε-approximation algorithm running in time f ( 1
ε

)nO(1).

Theorem: EPTAS ⇒ FPT parameterized by the size of the solution [Bazgan 95]

Proof for minimization problem:

Apply the EPTAS for ε = 1
k+1

.

If the obtained solution has value ≤ k, then TRUE .

Else, OPT ≥ Value(Sol)/(1 + 1
k+1

) ≥ (k + 1)/(1 + 1
k+1

) > k, then FALSE .
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A simple example: width of dependency DAG

Inputs: set T of n tasks, unit length, with individual deadlines d(t) and
precedence constraints (partial order P).

Output: Is there a schedule of T with at most k late task?

Theorem: above problem is W [1]-hard parameterized by k [Fellows,McCartin 03]

width of P: w(P) = min. # of chains forming a partition of P

Theorem: above problem is FPT in w(P) and k [Fellows,McCartin 03]

Compute (in time O(n2,5)) a partition of P into w(P) chains [Brightwell 94];

If a maximal element e has deadline ≥ n, put it in last position and recurse on
T \ {e};
Else branch on the at most w(P) maximal elements

(any maximal element put in last position will be late).

Limited recursion depth ⇒ Complexity O(w(P)k+1n + n2,5).
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Powerfull Meta-Theorems for FPT algorithms

N. Nisse Brief introduction to parameterized algorithms



16/17

Several powerfull Meta-Theorems for FPT (in graphs)

Minor Graph Theorem [Robertson, Seymour 04]

Every minor-closed property is recognizable in time O(n3) time.

(Finite number of minimal obstructions and O(f (|V (H)|)n3) algorithm for deciding if
an n-node graph admits H as minor.)

(but very, very,... huge constants and non-constructive algorithm)

Courcelle’s Theorem [Courcelle 90]

Every graph property definable in the monadic second-order logic of graphs can be
decided in linear time on graphs of bounded treewidth.

Bi-dimensionnality theory [Demaine,Hajiaghayi 08]

FPT and EPTAS algorithms in bounded genus graphs for many problems.
(Based on the Grid-Minor Theorem and on Courcelle’s Theorem.)

Meta-Kernelization [Bodlaender et al. 16]

Linear Kernels for huge family of graph’s problems.
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Conclusion

FPT in P: Not only NP-hard problems are concerned, e.g.:

Radius and Diameter can be solved in 2O(k log k)n1+O(1)-time, where k is
treewidth. [Abboud,Vassilevska Williams,Wang 16]

(sub-cubic algorithms are unexpected in general graphs)

Maximum Matching can be solved in O(k4n + m)-time where k is either the
modular-width or the P4-sparseness. [Coudert,Ducoffe,Popa 19]

Scheduling, many open problems:

M. Mnich, R. Bevern: Parameterized complexity of machine scheduling: 15 open
problems. Comput. Oper. Res. 100: 254-261 (2018)

Bring Parameterized algorithms to practice

E.g., last three Meta-theorems of previous slide are based on the computation of
“good” tree-decompositions.

Computing treewidth: NP-hard, not-approximable, FPT (but not practical),
O(2O(k)n) algorithm that decides if a graph has treewidth at most 5k + 4.

Practical exact or approximation algorithms?
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Computing treewidth: NP-hard, not-approximable, FPT (but not practical),
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Practical exact or approximation algorithms? Merci !
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