Pathwidth and Graph Searching Games

Nicolas Nisse

Inria, France

Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, Sophia Antipolis, France

COATI seminar

October 8th 2014

Let's compute a maximum independent set of this graph **Brute-force:** check all subsets

 2^{15}

・ 同 ト ・ ヨ ト ・ ヨ ト

Brute-force: check all subsets **better idea** (?): combine IS of G_1 and G_2

(ロ) (同) (E) (E) (E)

For any indep. set I of the Separator $(G_1 \cap G_2)$, find:

- one MIS compatible with I in G_1
- one MIS compatible with I in G_2
- combine them

25

 2^7

Going further: decompose G into more parts $\Rightarrow \# \text{ of part } * 2^{O(\text{size of largest part})}$

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Representation of a graph G = (V, E) as a Path preserving connectivity properties

Sequence $\mathcal{X} = (X_1, \dots, X_r)$ of "bags" (set of vertices of *G*) **Important**: intersection of two adjacent bags = separator of *G*

・ロン ・回 と ・ ヨ と ・ ヨ と

Path-Decomposition and Pathwidth

Representation of a graph G = (V, E) as a Path preserving connectivity properties

Sequence $\mathcal{X} = (X_1, \dots, X_r)$ of "bags" (set of vertices of *G*) **Important**: intersection of two adjacent bags = separator of *G*

•
$$\bigcup_{i \le r} X_i = V$$

• for any $e = uv \in E$, there is $i \le r$ such that $u, v \in X_i$
• for any $i \le i \le k \le r$, $X_i \cap X_i \subset X_i$

Path-Decomposition and Pathwidth

Representation of a graph G = (V, E) as a Path preserving connectivity properties

Sequence $\mathcal{X} = (X_1, \dots, X_r)$ of "bags" (set of vertices of *G*) **Important**: intersection of two adjacent bags = separator of *G*

Width of $(\mathcal{T}, \mathcal{X})$: max $_{i \leq r} |X_i| - 1 \approx$ size of largest bag Pathwidth of a graph \overline{G} , $pw(\overline{G})$: min width over all path-decompositions.

・ロト ・同ト ・ヨト ・ヨト

Path-Decomposition and Pathwidth

Representation of a graph G = (V, E) as a Path preserving connectivity properties

Equivalent definition: Ordering of nodes (v_1, v_2, \dots, v_n) minimizing $\max_{1 \le i \le n} |\{j \le i \mid v_i v_j \in E\}|$.

Algorithmic Applications and Complexity

Dynamic programming on path decomposition

MSOL Problems: "local" problems are FPT in pw [Courcelle'90] e.g., coloring, independent set: $O(2^{pw}n^{O(1)})$; dominating set $O(4^{pw}n^{O(1)})$...

huge constants may be hidden (at least exponential in *pw*) "good" decompositions must be computed

・ロン ・回 と ・ ヨン ・ ヨン

Algorithmic Applications and Complexity

Complexity to compute path-decompositions

- NP-complete to compute pw
 - in planar cubic graphs [Monien, Sudborough'88]
 - in chordal graphs [Gustedt'93]
- Not approximable up to additive constant (unless P=NP)

[Deo, Krishnamoorthy, Langston'87]

(D) (A) (A) (A) (A)

- FPT-algorithm [Bodlaender, Kloks'96]
- Polyomial or Linear in
 - trees [Skodinis'00],
 - cographs [Bodlaender, Möhring'93],
 - split graphs [Gustedt'93], etc.
- Exponential exact algorithm [Coudert, Mazauric, N.'14]

Team of Searchers

to Capture an invisible fugitive / Clear a contaminated graph

Rule	s of Graph Searching [Parsons'76]
Allowed moves	
٩	Place a searcher at a node
٩	Remove a searcher from a node
٩	Slide a searcher along an edge
Clearing edges	
٩	when a searcher slides along it
Recontamination	
•	if no searcher on a path from a clear edge to a contaminated one
Goal: Minimize the number of searchers needed	

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

<ロ> (日) (日) (日) (日) (日)

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

<ロ> (日) (日) (日) (日) (日)

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(g),

・ロン ・回 と ・ ヨ と ・ ヨ と

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(g), P(g),

・ロン ・回 と ・ ヨ と ・ ヨ と

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(g), P(g), P(h),

・ロン ・回 と ・ ヨ と ・ ヨ と

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(g), P(g), P(h), S(gh),

イロン イヨン イヨン イヨン

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(g), P(g), P(h), S(gh), S(hj),

<ロ> (日) (日) (日) (日) (日)

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(g), P(g), P(h), S(gh), S(hj), S(ji),

<ロ> (日) (日) (日) (日) (日)

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(g), P(g), P(h), S(gh), S(hj), S(ji), S(ih),

<ロ> (日) (日) (日) (日) (日)

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(g), P(g), P(h), S(gh), S(hj), S(ji), S(ih), S(gf),

(日) (同) (三) (三)

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(g), P(g), P(h), S(gh), S(hj), S(ji), S(ih), S(gf), R(g),

イロン イヨン イヨン イヨン

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(g), P(g), P(h), S(gh), S(hj), S(ji), S(ih), S(gf), R(g), P(a),

(日) (同) (三) (三)

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(g), P(g), P(h), S(gh), S(hj), S(ji), S(ih), S(gf), R(g), P(a), S(hd),

イロン イヨン イヨン イヨン

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(g), P(g), P(h), S(gh), S(hj), S(ji), S(ih), S(gf), R(g), P(a), S(hd), Recontamination, let's start again

・ロン ・回 と ・ ヨ と ・ ヨ と

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(c), P(c), P(e),

・ロン ・回 と ・ ヨ と ・ ヨ と

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(c), P(c), P(e), S(ca),

イロン イヨン イヨン イヨン

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(c), P(c), P(e), S(ca), S(ab),

<ロ> (日) (日) (日) (日) (日)

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(c), P(c), P(e), S(ca), S(ab), S(ed),

<ロ> (日) (日) (日) (日) (日)

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(c), P(c), P(e), S(ca), S(ab), S(ed), S(bc),

・ロト ・ 同ト ・ ヨト ・ ヨト

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(c), P(c), P(e), S(ca), S(ab), S(ed), S(bc), S(cd),

(日) (同) (三) (三)

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(c), P(c), P(e), S(ca), S(ab), S(ed), S(bc), S(cd), S(df),

(日) (同) (三) (三)

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(c), P(c), P(e), S(ca), S(ab), S(ed), S(bc), S(cd), S(df), S(cf),

<ロ> (日) (日) (日) (日) (日)

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(c), P(c), P(e), S(ca), S(ab), S(ed), S(bc), S(cd), S(df), S(cf), S(dh),

イロン イヨン イヨン イヨン

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(c), P(c), P(e), S(ca), S(ab), S(ed), S(bc), S(cd), S(df), S(cf), S(dh), P(h),

<ロ> (日) (日) (日) (日) (日)
Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

 $\mathsf{P(c)},\ \mathsf{P(c)},\ \mathsf{P(e)},\ \mathsf{S(ca)},\ \mathsf{S(ab)},\ \mathsf{S(ed)},\ \mathsf{S(cd)},\ \mathsf{S(cf)},\ \mathsf{S(dh)},\ \mathsf{P(h)},\ \mathsf{S(hj)},$

<ロ> (日) (日) (日) (日) (日)

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(c), P(c), P(e), S(ca), S(ab), S(ed), S(bc), S(cd), S(df), S(cf), S(dh), P(h), S(hj), S(ji),

<ロ> (日) (日) (日) (日) (日)

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(c), P(c), P(e), S(ca), S(ab), S(ed), S(bc), S(cd), S(df), S(cf), S(dh), P(h), S(hj), S(ji), S(ig),

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(c), P(c), P(e), S(ca), S(ab), S(ed), S(bc), S(cd), S(df), S(cf), S(dh), P(h), S(hj), S(ji), S(ig), S(fh),

<ロ> (日) (日) (日) (日) (日)

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(c), P(c), P(e), S(ca), S(ab), S(ed), S(bc), S(cd), S(df), S(cf), S(dh), P(h), S(hj), S(ji), S(ig), S(fh), S(hg),

<ロ> (日) (日) (日) (日) (日)

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

P(c), P(c), P(e), S(ca), S(ab), S(ed), S(bc), S(cd), S(df), S(cf), S(dh), P(h), S(hj), S(ji), S(ig), S(fh), S(hg), S(gf),

<ロ> (日) (日) (日) (日) (日)

Allowed moves: Place P(v), Remove R(v), Slide S(e)**Clearing edges:** when a searcher slides along it **Recontamination:** if no searcher on a path from a clear edge to a contaminated one

 $\begin{array}{lll} \mathsf{P}(c), \ \mathsf{P}(c), \ \mathsf{P}(e), \ \mathsf{S}(ca), \ \mathsf{S}(ab), \ \mathsf{S}(ed), \ \mathsf{S}(bc), \ \mathsf{S}(cd), \ \mathsf{S}(df), \ \mathsf{S}(dh), \ \mathsf{P}(h), \ \mathsf{S}(hj), \\ \mathsf{S}(ji), \ \mathsf{S}(ig), \ \mathsf{S}(fh), \ \mathsf{S}(hg), \ \mathsf{S}(gf), \ \mathsf{S}(hk), \ \mathsf{S}(fl), \ \mathsf{etc.} \end{array} \Rightarrow 4 \ \mathsf{searchers are sufficient} \end{array}$

<ロ> (日) (日) (日) (日) (日)

 $\begin{array}{l} \mathsf{P(c), P(c), P(e), S(ca), S(ab), S(ed), S(bc), S(cd), S(df), S(cf), S(dh), P(h), S(hj), \\ \mathsf{S(ji), S(ig), S(fh), S(hg), S(gf), S(hk), S(fl), etc.} \end{array} \Rightarrow 4 \text{ searchers are sufficient} \end{array}$

Relationship with path-decomposition

Induces an sequence on vertices: each time a **contaminated** node becomes occupied $(c, e, a, b, d, f, h, j, i, g, k, l \cdots)$

イロン イヨン イヨン イヨン

 $\begin{array}{l} \mathsf{P(c), P(c), P(e), S(ca), S(ab), S(ed), S(bc), S(cd), S(df), S(cf), S(dh), P(h), S(hj), \\ \mathsf{S(ji), S(ig), S(fh), S(hg), S(gf), S(hk), S(fl), etc.} \end{array} \Rightarrow 4 \text{ searchers are sufficient} \end{array}$

Relationship with path-decomposition Induces an sequence on vertices: each time a **contaminated** node becomes occupied $(c, e, a, b, d, f, h, j, i, g, k, l \cdots)$ If there is no recontamination: It is an ordering, i.e., a path-decomposition 6/17

[Edge-Search	Node-Search	Mixed Search
		[Parsons'76]	[Kirousis-Papdimitriou'86]	[Bienstock, Seymour'91]
Allowed	Place	yes	yes	yes
moves Remove		yes	yes	yes
Slide		yes	no	yes
Clearing	Slide	yes	no	yes
moves 2 ends occupied		no	yes	yes
Min. $\#$ of searchers		<i>es</i> (<i>G</i>)	ns(G)	s(G)

(ロ) (同) (E) (E) (E)

[Edge-Search	Node-Search	Mixed Search
		[Parsons'76]	[Kirousis-Papdimitriou'86]	[Bienstock, Seymour'91]
Allowed	Place	yes	yes	yes
moves Remove		yes	yes	yes
	Slide	yes	no	yes
Clearing	Slide	yes	no	yes
moves 2 ends occupied		no	yes	yes
Min. # of searchers		es(G)	ns(G)	s(G)

Theorem	[Bienstock, Seymour'91]
Three previous variants are monotone i.e., there always exists an optimal stratege Consequence: for any graph G , $ns(G) = pw(G) + 1$.	gy without recontamination

◆□> ◆□> ◆豆> ◆豆> ・豆

ĺ		Edge-Search	Node-Search	Mixed Search
		[Parsons'76]	[Kirousis-Papdimitriou'86]	[Bienstock, Seymour'91]
Allowed	Place	yes	yes	yes
moves Remove		yes	yes	yes
	Slide	yes	no	yes
Clearing	Slide	yes	no	yes
moves 2 ends occupied		no	yes	yes
Min. $\#$ of searchers		<i>es</i> (<i>G</i>)	ns(G)	s(G)

		Edge-Search	Node-Search	Mixed Search
		[Parsons'76]	[Kirousis-Papdimitriou'86]	[Bienstock, Seymour'91]
Allowed	Place	yes	yes	yes
moves Remove		yes	yes	yes
	Slide	yes	no	yes
Clearing	Slide	yes	no	yes
moves 2 ends occupied		no	yes	yes
Min. $\#$ of searchers		<i>es</i> (<i>G</i>)	ns(G)	s(G)

Complexity issues

	pathwidth <i>pw</i>	edge-search	mixed-search	
	(node-search <i>ns</i>)	es	5	
planar graphs				
with bounded	NP-complete			
maximum degree	[Monien, Sudborough'88]			
split graphs	Р	Р	linear	
	[Gustedt'93]	[Peng et al'00]	[FominHM10]	
star-like graphs with				
\geq 2 peripheral nodes	NP-complete	?	?	
per peripheral clique	[Gustedt'93]			
cographs	Р	linear	Р	
	[Bodlaender, M'93]	[GolovachHM12]	[Heggernes, Mihai'08]	

Open Problems
Graph class where complexity differs ?
Complexity of deciding if *pw*(*G*)/*es*(*G*)/*s*(*G*) dif

Complexity issues

	pathwidth <i>pw</i>	edge-search	mixed-search
	(node-search <i>ns</i>)	es	5
planar graphs			
with bounded	NP-complete		
maximum degree	[Monien, Sudborough'88]		
split graphs	Р	Р	linear
	[Gustedt'93]	[Peng et al'00]	[FominHM10]
star-like graphs with			
\geq 2 peripheral nodes	NP-complete	?	?
per peripheral clique	[Gustedt'93]		
cographs	P	linear	Р
	[Bodlaender, M'93]	[GolovachHM12]	[Heggernes, Mihai'08]

Open Problems

- Graph class where complexity differs ?
- Complexity of deciding if pw(G)/es(G)/s(G) differ ?

Study new variants of Graph Searching to understand/approximate Pathwidth ?

- Connected Graph Searching
- Exclusive Graph Searching

Connected Graph Searching

Connected Graph Searching

[Barriere et al.'02]

"cleared" area must be always connected Connected search number cs(G): # min of Cops

10/17

example of non-connected step

・ロン ・回 と ・ ヨ と ・ ヨ と

Connected Graph Searching

Connected Graph Searching

"cleared" area must be always connected Connected search number cs(G): # min of Cops

 \forall graph G, $cs(G) \leq 2pw(G) + O(1)$ [Dereniowski'12]

not monotone [Yang, Dyer, Alspach DM'09]

- open question: in NP?
- open question: FPT?

10/17

example of non-connected step

・ロン ・回 と ・ ヨ と ・ ヨ と

[Barriere et al.'02]

Connected Graph Searching

Connected Graph Searching

"cleared" area must be always connected Connected search number cs(G): # min of Cops

 \forall graph G, $cs(G) \leq 2pw(G) + O(1)$ [Dereniowski'12]

not monotone [Yang, Dyer, Alspach DM'09]

- open question: in NP?
- open question: FPT?

10/17

example of non-connected step

・ロン ・回 と ・ ヨ と ・ ヨ と

Approximate Pathwidth via connected Search?		
pw is NP-hard in weighted trees [Mihai, Todinca FAW'09]		
3-approximation for cs in weighted trees	[Dereniowski TCS'12]	
Other graph classes (chordal,) ?		

[Barriere et al.'02]

Exclusive Graph Searching

New Constraint

Exclusivity: at most one searcher per node

Allowed moves

- Only initially: place some searchers on distinct nodes
- then, only slide is allowed (in particular: no searchers may be added)

Clearing edges

when a searcher slides along it OR if both ends occupied

Recontamination: if no searcher on a path from a clear edge to a contaminated one

・ロン ・回 と ・ ヨ と ・ ヨ と

[Burman.Blin.N.'12]

Exclusive Graph Searching	[Burman,Blin,N.'12]
New Constraint	
• Exclusivity: at most one search	er per node
Allowed moves	
 Only initially: place some searc 	hers on distinct nodes
then, only slide is allowed	(in particular: no searchers may be added)
Clearing edges	
 when a searcher slides along it 	OR if both ends occupied
Recontamination: if no searcher on a	path from a clear edge to a contaminated one
\sim \sim	

・ロン ・回 と ・ ヨ と ・ ヨ と …

Exclusive Graph Searching [Burma	n,Blin,N.'12]
New Constraint	
• Exclusivity: at most one searcher per node	
Allowed moves	
• Only initially: place some searchers on distinct nodes	
• then, only slide is allowed (in particular: no searchers may b	be added)
Clearing edges	
when a searcher slides along it OR if both ends occupied	
Recontamination: if no searcher on a path from a clear edge to a contamina	ted one

・ロン ・回 と ・ ヨン ・ ヨン

11/17

Exclusive Graph Searching	[Burman,Blin,N.'12]
New Constraint	
• Exclusivity: at most one searcher per	node
Allowed moves	
 Only initially: place some searchers o 	n distinct nodes
then, only slide is allowed	(in particular: no searchers may be added)
Clearing edges	
when a searcher slides along it OR if	both ends occupied
Recontamination: if no searcher on a path	from a clear edge to a contaminated one

・ロン ・回 と ・ ヨン ・ ヨン

11/17

Exclusive Graph Searching	[Burman,Blin,N.'12]
New Constraint	
Exclusivity: at most one search	er per node
Allowed moves	
Only initially: place some searc	hers on distinct nodes
then, only slide is allowed	(in particular: no searchers may be added)
Clearing edges	
when a searcher slides along it	OR if both ends occupied
Recontamination: if no searcher on a	path from a clear edge to a contaminated one
*	

・ロン ・回 と ・ ヨン ・ ヨン

Exclusive Graph Searching [Burman,Blin,N.'12]
New Constraint
• Exclusivity: at most one searcher per node
Allowed moves
 Only initially: place some searchers on distinct nodes
• then, only slide is allowed (in particular: no searchers may be added)
Clearing edges
• when a searcher slides along it OR if both ends occupied
Recontamination: if no searcher on a path from a clear edge to a contaminated one

・ロン ・回 と ・ ヨ と ・ ヨ と

11/17

Exclusive Graph Searching	[Burman,Blin,N.'12]
New Constraint	
Exclusivity: at most one searcher per node	
Allowed moves	
• Only initially: place some searchers on distinct nodes	
• then, only slide is allowed (in particular: no sea	archers may be added)
Clearing edges	
• when a searcher slides along it OR if both ends occupied	
Recontamination: if no searcher on a path from a clear edge to a contaminated one	

・ロン ・回 と ・ ヨ と ・ ヨ と

11/17

Exclusive Graph Searching	[Burman,Blin,N.'12]
New Constraint	
Exclusivity: at most one searcher per node	
Allowed moves	
 Only initially: place some searchers on distinct 	nodes
• then, only slide is allowed (in partic	cular: no searchers may be added)
Clearing edges	
• when a searcher slides along it OR if both end	ls occupied
$\ensuremath{\textbf{Recontamination:}}$ if no searcher on a path from a clear edge to a contaminated one	

・ロン ・回 と ・ ヨ と ・ ヨ と

2

 $xs(star) = \Delta - 1$

Exclusive Graph Searching	[Burman,Blin,N.'12]
New Constraint	
Exclusivity: at most one searche	er per node
Allowed moves	
Only initially: place some search	ners on distinct nodes
then, only slide is allowed	(in particular: no searchers may be added)
Clearing edges	
when a searcher slides along it	OR if both ends occupied
Recontamination: if no searcher on a path from a clear edge to a contaminated one	

 $xs(star) = \Delta - 1$

Exclusive Graph Searching	[Burman,Blin,N.'12]
New Constraint	
• Exclusivity: at most one searche	er per node
Allowed moves	
 Only initially: place some search 	ners on <mark>distinct</mark> nodes
then, only slide is allowed	(in particular: no searchers may be added)
Clearing edges	
when a searcher slides along it	OR if both ends occupied
Recontamination: if no searcher on a	path from a clear edge to a contaminated one

< □ > < □ > < □ > < □ > < □ > < □ > = □

Exclusive Graph Searching	[Burman,Blin,N.'12]	
New Constraint		
Exclusivity: at most one searche	er per node	
Allowed moves		
 Only initially: place some search 	ners on distinct nodes	
then, only slide is allowed	(in particular: no searchers may be added)	
Clearing edges		
when a searcher slides along it (DR if both ends occupied	
Recontamination: if no searcher on a path from a clear edge to a contaminated one		

 $s(star) = \Delta - 1$ 11/17

Exclusive Graph Searching	[Burman,Blin,N.'12]
New Constraint	
• Exclusivity: at most one searche	er per node
Allowed moves	
 Only initially: place some search 	hers on distinct nodes
then, only slide is allowed	(in particular: no searchers may be added)
Clearing edges	
when a searcher slides along it	OR if both ends occupied
Recontamination: if no searcher on a	path from a clear edge to a contaminated one

Exclusive Graph Searching	[Burman,Blin,N.'12]
New Constraint	
Exclusivity: at most one searche	er per node
Allowed moves	
 Only initially: place some search 	ners on distinct nodes
then, only slide is allowed	(in particular: no searchers may be added)
Clearing edges	
when a searcher slides along it (DR if both ends occupied
Recontamination: if no searcher on a path from a clear edge to a contaminated one	

 $ss(star) = \Delta - 1$ 11/17

Exclusive Graph Searching	[Burman,Blin,N.'12]
New Constraint	
Exclusivity: at most one searcher per node	
Allowed moves	
• Only initially: place some searchers on distinct nodes	
• then, only slide is allowed (in particular: no search	ers may be added)
Clearing edges	
• when a searcher slides along it OR if both ends occupied	
Recontamination: if no searcher on a path from a clear edge to a c	ontaminated one
\circ	<u>.</u>

 $s(star) = \Delta - 1$ Recontamination! 11/17 recontamination!
<math display="block">11/17

 $xs(star) = \Delta - 1$

Exclusive Graph Searching	[Burman,Blin,N.'12]
New Constraint	
• Exclusivity: at most one searcher per node	
Allowed moves	
• Only initially: place some searchers on distinct	nodes
• then, only slide is allowed (in particu	llar: no searchers may be added)
Clearing edges	
• when a searcher slides along it OR if both ends	occupied
Recontamination: if no searcher on a path from a clear edge to a contaminated one	

(ロ) (同) (E) (E) (E)

Exclusive Graph Searching		[Burman,Blin,N.'12]
New Constraint		
• Exclusivity: at most one searcher p	oer node	
Allowed moves		
Only initially: place some searchers	s on <mark>distinct</mark> nodes	
then, only slide is allowed	(in particular: no	searchers may be added)
Clearing edges		
• when a searcher slides along it OR	if both ends occupie	ed
Recontamination: if no searcher on a pat	th from a clear edge	to a contaminated one
QQ	\bigcirc	A

No optimal monotone strategy :(

◆□> ◆圖> ◆国> ◆国> -

Results on Exclusive Graph Searching

Exclusive Graph Searching

new constraint: at most one Cop per node at every step [Blin,Burman,N.'13] (Cops can slide along edges)

xs(G): min # of Cops

 $m \times s(G)$: min # of Cops for monotone strategies

・ロト ・日ト ・ヨト ・ヨト

12/17

E
Results on Exclusive Graph Searching

Exclusive Graph Searching

new constraint: at most one Cop per node at every step [Blin,Burman,N.'13] (Cops can slide along edges)

xs(G): min # of Cops

 $m \times s(G)$: min # of Cops for monotone strategies

variant not monotone (xs(G) may differ from mxs(G)) [Blin,Burman,N.'13] For any graph G with max. degree Δ , $s(G) \le xs(G) \le (\Delta - 1)(s(G) + 1)$

・ロン ・回 と ・ ヨ と ・ ヨ と

Results on Exclusive Graph Searching

Exclusive Graph Searching

new constraint: at most one Cop per node at every step [Blin,Burman,N.'13] (Cops can slide along edges)

xs(G): min # of Cops

 $m \times s(G)$: min # of Cops for monotone strategies

variant not monotone (xs(G) may differ from mxs(G)) [Blin,Burman,N.'13] For any graph G with max. degree Δ , $s(G) \le xs(G) \le (\Delta - 1)(s(G) + 1)$

About complexity: Computing xs is	
• NP-hard in planar graphs with max degree 3	[Markou,N.,Pérennes]
 polynomial in trees 	[Blin,Burman,N.'13]
Iinear in cographs	[Markou, N., Pérennes]

	pathwidth	monotone exclusive-search	
	[Gustedt'93]	[Markou, N., Pérennes]	
split graphs	Р	NP-complete	
star-like graphs with ≥ 2	NP-complete	Р	
peripheral nodes per clique			

Exclusive Graph Searching in trees

Gives a polynomial-time algorithm using dynamic programming

N. Nisse Pathwidth and Graph Searching Games

Exclusive Graph Searching in Cograph

Reminder: a graph is a cograph if

- single vertex, or
- disjoint union $G_1 \bigcup G_2$ of 2 cographs, or
- join $G_1 \otimes G_2$ of 2 cographs (add complete bipartite between G_1 and G_2)

The decomposition can be obtained in linear time

[Corneil, Perl, Steward'85]

Exclusive Graph Searching in Cograph

Reminder: a graph is a cograph if

- single vertex, or
- disjoint union $G_1 \bigcup G_2$ of 2 cographs, or
- join $G_1 \otimes G_2$ of 2 cographs (add complete bipartite between G_1 and G_2)

The decomposition can be obtained in linear time

[Corneil, Perl, Steward'85]

Split Graph: $G = (I \cup C, E)$ if C induces a clique and I induces an independent set

・ロト ・日ト ・ヨト ・ヨト

Split Graph: $G = (I \cup C, E)$ if C induces a clique and I induces an independent set

・ロト ・同ト ・ヨト ・ヨト

Split Graph: $G = (I \cup C, E)$ if C induces a clique and I induces an independent set

Split Graph: $G = (I \cup C, E)$ if C induces a clique and I induces an independent set

・ロト ・同ト ・ヨト ・ヨト

Split Graph: $G = (I \cup C, E)$ if C induces a clique and I induces an independent set

・ロト ・同ト ・ヨト ・ヨト

Split Graph: $G = (I \cup C, E)$ if C induces a clique and I induces an independent set

・ロト ・同ト ・ヨト ・ヨト

Split Graph: $G = (I \cup C, E)$ if C induces a clique and I induces an independent set

・ロト ・同ト ・ヨト ・ヨト

Split Graph: $G = (I \cup C, E)$ if C induces a clique and I induces an independent set

・ロト ・同ト ・ヨト ・ヨト

Split Graph: $G = (I \cup C, E)$ if C induces a clique and I induces an independent set

・ロン ・回 と ・ ヨン ・ ヨン

Split Graph: $G = (I \cup C, E)$ if C induces a clique and I induces an independent set

Charaterization of monotone strategies

 $mxs(G) \leq k \Leftrightarrow$ it exists a particular strategy

- slide along a matching from $X \subseteq I$ to C
- may slide along ONE edge in C
- slide along a matching from C to $Y \subseteq I \setminus X$

・ロン ・回 と ・ ヨン ・ ヨン

Split Graph: $G = (I \cup C, E)$ if C induces a clique and I induces an independent set

Charaterization of monotone strategies

 $mxs(G) \leq k \Leftrightarrow$ it exists a particular strategy

- slide along a matching from $X \subseteq I$ to C
- may slide along ONE edge in C
- slide along a matching from C to $Y \subseteq I \setminus X$

Split Graph: $G = (I \cup C, E)$ if C induces a clique and I induces an independent set

Charaterization of monotone strategies

 $mxs(G) \leq k \Leftrightarrow$ it exists a particular strategy

- slide along a matching from $X \subseteq I$ to C
- may slide along ONE edge in C
- slide along a matching from C to $Y \subseteq I \setminus X$

Split Graph: $G = (I \cup C, E)$ if C induces a clique and I induces an independent set

Charaterization of monotone strategies

 $mxs(G) \leq k \Leftrightarrow$ it exists a particular strategy

- slide along a matching from $X \subseteq I$ to C
- may slide along ONE edge in C
- slide along a matching from C to $Y \subseteq I \setminus X$

Split Graph: $G = (I \cup C, E)$ if C induces a clique and I induces an independent set

Charaterization of monotone strategies

 $mxs(G) \leq k \Leftrightarrow$ it exists a particular strategy

- slide along a matching from $X \subseteq I$ to C
- may slide along ONE edge in C
- slide along a matching from C to $Y \subseteq I \setminus X$

Split Graph: $G = (I \cup C, E)$ if C induces a clique and I induces an independent set

Charaterization of monotone strategies $mxs(G) \le k \Leftrightarrow$ it exists a particular strategy • slide along a matching from $X \subseteq I$ to C • may slide along ONE edge in C • slide along a matching from C to $Y \subseteq I \setminus X$ It uses k = |V| - |X| - |Y| (-1) searchers

・ロト ・日ト ・ヨト ・ヨト

Split Graph: $G = (I \cup C, E)$ if C induces a clique and I induces an independent set

$$X = \{x_1, \cdots, x_r\}$$
 and $N(x_i) \setminus \bigcup_{j < i} N(x_j) \neq \emptyset$.

・ロト ・日ト ・ヨト ・ヨト

Split Graph: $G = (I \cup C, E)$ if C induces a clique and I induces an independent set

Charaterization of monotone strategies

 $mxs(G) \leq k \Leftrightarrow$ it exists a particular strategy

- slide along a matching from $X \subseteq I$ to C
- may slide along ONE edge in C
- slide along a matching from C to $Y \subseteq I \setminus X$

It uses k = |V| - |X| - |Y| (-1) searchers

New problem:

input: { S_1, \dots, S_n } subsets of ground set A**output:** a sequence (S_{i_1}, \dots, S_{i_r}) such that $(\bigcup_{j \leq k} S_{i_j})_k$ strictly increasing and r is maximum

NP-hard (reduction from MIN-SAT)

(ロ) (同) (E) (E) (E)

Split Graph: $G = (I \cup C, E)$ if C induces a clique and I induces an independent set

Computing *mxs* is NP-complete in split graphs (contrary to pathwidth)

(日) (종) (종) (종) (종)

Star-like: One Central clique C_0 and Peripheral cliques intersecting only in C_0

Theorem: Strategies are very constrained

[Markou, N., Pérennes]

16/17

G a star-like graph with each peripheral clique has at least two peripheral nodes.

Either there is an edge of C_0 that does not belong to any peripheral clique, and mxs(G) = |V(G)| - r - 1,

2 or
$$mxs(G) = |V(G)| - r$$
.

Perspectives on Exclusive Graph Searching

- Are there graph classes where pw is NP-complete and xs (mxs) in P and provide good approximation of pw? (or vice-versa)
- Can xs (or mxs) be approximated?
- xs in NP?
- xs (or mxs) FPT?
- xs = mxs in split graphs?
- ...

イロン イヨン イヨン イヨン