Tree-decompositions with bags of small diameter

Nicolas Nisse

Université Côte d'Azur, Inria, CNRS, I3S, France

COATI Christmas seminar, December 2022
joint work with Thomas Dissaux, Guillaume Ducoffe and Simon Nivelle

Tree-Decompositions

[Robertson and Seymour 83]

Tree-decomposition: Representation of a graph as a Tree with connectivity properties

Tree $T+$ family $\mathcal{X}=\left(X_{t}\right)_{t \in V(T)}$ of "bags" (sets of vertices of G) Important: intersection of two adjacent bags $=$ separator of G

Tree-Decompositions

[Robertson and Seymour 83]

Tree-decomposition: Representation of a graph as a Tree with connectivity properties

Tree $T+$ family $\mathcal{X}=\left(X_{t}\right)_{t \in V(T)}$ of "bags" (sets of vertices of G) Important: intersection of two adjacent bags $=$ separator of G

Tree-Decompositions

[Robertson and Seymour 83]

Tree-decomposition: Representation of a graph as a Tree with connectivity properties

Tree $T+$ family $\mathcal{X}=\left(X_{t}\right)_{t \in V(T)}$ of "bags" (sets of vertices of G)
Important: intersection of two adjacent bags $=$ separator of G

- $\bigcup_{t \in V(T)} X_{t}=V(G)$;
- for any $u v \in E(G)$, there exists a bag X_{t} containing u and v;
- for any $v \in V(G),\left\{t \in V(T) \mid v \in X_{t}\right\}$ induces a subtree.

Tree-Decompositions

[Robertson and Seymour 83]

Tree-decomposition: Representation of a graph as a Tree with connectivity properties

Tree $T+$ family $\mathcal{X}=\left(X_{t}\right)_{t \in V(T)}$ of "bags" (sets of vertices of G)
Important: intersection of two adjacent bags $=$ separator of G

Width of (T, \mathcal{X}) : size of largest bag (minus 1)
Treewidth of a graph $G, \operatorname{tw}(G)$: min width over all tree-decompositions.

Path-Decompositions

Path-decomposition: Representation of a graph as a Path with connectivity properties

Sequence $\left(X_{1}, \cdots, X_{q}\right)$ of "bags" (sets of vertices of G) s.t.

- $\bigcup_{1 \leq i \leq q} X_{i}=V(G)$;
- for any $u v \in E(G)$, there exists a bag X_{i} containing u and v;
- for any $1 \leq i \leq j \leq k \leq q, X_{i} \cap X_{k} \subseteq X_{j}$.

Width of (T, \mathcal{X}) : size of largest bag (minus 1)
Pathwidth of a graph $G, p w(G)$: min width over all path-decompositions.

Many important Algorithmic Applications of tw

- cornerstone of Graph Minors Theorem [Robertson and Seymour 1983-2004] \Rightarrow any graph property $(\Pi(G) \leq k)$ that is closed under minor is FPT in k
- problems expressible in MSOL solvable in polynomial time in graphs of bounded treewidth (dynamic programming)
[Courcelle, 90]
any such problem is FPT in $t w$
- design of sub-exponential algorithms in some graph classes (e.g., planar, bounded genus, H -minor-free...) (bi-dimensionality) [Demaine et al. 04]
- design of FPT algorithms (meta-kernelization/protrusions) [Fomin et al. 09]

Main Problem: Computing tree-decomposition

Deciding if $t w(G) \leq k$?

\Rightarrow Very hard!

Exact algorithms

- NP-hard if k part of the input
[Arnborg,Corneil,Prokurowski 87]
- FPT: algorithm in time $O\left(2^{k^{3}} n\right)$
[Bodlaender,Kloks 96]
- "practical" algorithms only for graph with treewidth ≤ 4
e.g., [Sanders 96]
- Branch \& Bound algorithms (for small graphs)
[Bodlaender et al. 12]
[Coudert,Mazauric,N. 14]

Approximation algorithms

- 2-approximation in time $O\left(2^{k} n\right)$
[Korhonen 21]
- $\sqrt{\log O P T}$-approximation in polynomial-time (SDP)
[Feige et al. 05]
- assuming Small Set Expansion Conjecture, no poly-time constant-ratio approximation
[Wu,Austrin,Pitassi,Liu 14]
- 3/2-approximation in planar graphs in time $O\left(n^{3}\right)$

Heuristics

- Mainly based on local complementations of edges (minimum fill-in: perfect elimination ordering of vertices)

Approach: focus on other measure(s)

Two main problems:

What to do when the treewidth is large? how to compute "good" decompositions?

Instead of constraining the size of bags \Rightarrow constraint bags' metric/structural properties

Some examples

- bags' diameter (treelength) [Dourisboure,Gavoille 07, Lokstanov 10, Coudert,Ducoffe,N. 16] PTAS for TSP when bounded treelength, metric dimension FPT in treelength+max. degree...
- bags with short dominating path
[Kosowski,Li,N.,Suchan 15] compact routing in distributed computing
- bags' chromatic number (tree-chromatic number) [Seymour 16]
- bags' radius (treebreadth)
[Dragan,Köhler 14, Ducoffe,Legay,N. 20]
- bags' independence number (tree-independence number) [Dallard,Milanic,Storgel 21]

Maximum Weight Independent Packing problem FPT in tree-indep. number...

In this talk, we focus on bags' diameter

Treelength and pathlength

Length of $(T, \mathcal{X}): \ell(T, \mathcal{X})=\max _{t \in V(T)} \max _{u, v \in X_{t}} \operatorname{dist}_{G}(u, v)$.
Treelength of $G, t \ell(G)$: min. length among all tree-decompositions.

Pathlength of $G, p \ell(G)$: min. length among all path-decompositions. [Dragan,Köhler 14]

Tree/path-length vs. Tree/path-width

Incomparable in general:

- Cliques:
- Cycles:

Tree/path-length vs. Tree/path-width

Incomparable in general:

- Cliques: width arbitrary larger than length $t \ell\left(K_{n}\right)=p \ell\left(K_{n}\right)=1$

$$
t w\left(K_{n}\right)=p w\left(K_{n}\right)=n-1
$$

- Cycles:

Tree/path-length vs. Tree/path-width

Incomparable in general:

- Cliques: width arbitrary larger than length

$$
t \ell\left(K_{n}\right)=p \ell\left(K_{n}\right)=1
$$

$$
t w\left(K_{n}\right)=p w\left(K_{n}\right)=n-1 .
$$

- Cycles:

$$
t w\left(C_{n}\right)=p w\left(C_{n}\right)=2
$$

Tree/path-length vs. Tree/path-width

Incomparable in general:

- Cliques: width arbitrary larger than length

$$
t \ell\left(K_{n}\right)=p \ell\left(K_{n}\right)=1 \quad t w\left(K_{n}\right)=p w\left(K_{n}\right)=n-1
$$

- Cycles: length arbitrary larger than width

$$
t \ell\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil[D G 07] \text { and } p \ell\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor\left[\text { Dissaux, N. 22] } \quad t w\left(C_{n}\right)=p w\left(C_{n}\right)=2\right.
$$

Tree/path-length vs. Tree/path-width

Incomparable in general:

- Cliques: width arbitrary larger than length

$$
t \ell\left(K_{n}\right)=p \ell\left(K_{n}\right)=1 \quad t w\left(K_{n}\right)=p w\left(K_{n}\right)=n-1
$$

- Cycles: length arbitrary larger than width

$$
t \ell\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil\left[\text { DG07] and } p \ell\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor\left[\text { Dissaux,N. 22] } \quad t w\left(C_{n}\right)=p w\left(C_{n}\right)=2\right.\right.
$$

A subgraph H of a graph G is isometric if the distances are "preserved".
That is, if $\operatorname{dist}_{H}(u, v)=\operatorname{dist}_{G}(u, v)$ for every $u, v \in V(H)$.
Tree/path-length closed under taking isometric subgraph
For every isometric subgraph H of $G, t \ell(H) \leq t \ell(G)$ and $p \ell(H) \leq p \ell(G)$.

Tree/path-length vs. Tree/path-width

Incomparable in general:

- Cliques: width arbitrary larger than length

$$
t \ell\left(K_{n}\right)=p \ell\left(K_{n}\right)=1
$$

$$
t w\left(K_{n}\right)=p w\left(K_{n}\right)=n-1 .
$$

- Cycles: length arbitrary larger than width

$$
t \ell\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil[\mathrm{DGO7}] \text { and } p \ell\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor\left[\text { Dissaux,N. 22] } \quad t w\left(C_{n}\right)=p w\left(C_{n}\right)=2\right.
$$

A subgraph H of a graph G is isometric if the distances are "preserved".
That is, if $\operatorname{dist}_{H}(u, v)=\operatorname{dist}_{G}(u, v)$ for every $u, v \in V(H)$.
Tree/path-length closed under taking isometric subgraph
For every isometric subgraph H of $G, t \ell(H) \leq t \ell(G)$ and $p \ell(H) \leq p \ell(G)$.
Let is (G) be the length of a largest isometric cycle in G.
Corollary: For any graph $G,\left\lceil\frac{i s(G)}{3}\right\rceil \leq t \ell(G)$ and $\left\lfloor\frac{i s(G)}{2}\right\rfloor \leq p \ell(G)$.

Tree/path-length vs. Tree/path-width

Incomparable in general:

- Cliques: width arbitrary larger than length

$$
t \ell\left(K_{n}\right)=p \ell\left(K_{n}\right)=1
$$

$$
t w\left(K_{n}\right)=p w\left(K_{n}\right)=n-1
$$

- Cycles: length arbitrary larger than width

$$
t \ell\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil\left[\mathrm{DG07]} \text { and } p \ell\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor\left[\text { Dissaux,N. 22] } \quad t w\left(C_{n}\right)=p w\left(C_{n}\right)=2\right.\right.
$$

A subgraph H of a graph G is isometric if the distances are "preserved". That is, if $\operatorname{dist}_{H}(u, v)=\operatorname{dist}_{G}(u, v)$ for every $u, v \in V(H)$.

Tree/path-length closed under taking isometric subgraph

For every isometric subgraph H of $G, t \ell(H) \leq t \ell(G)$ and $p \ell(H) \leq p \ell(G)$.
Let is (G) be the length of a largest isometric cycle in G.
Corollary: For any graph $G,\left\lceil\frac{i s(G)}{3}\right\rceil \leq t \ell(G)$ and $\left\lfloor\frac{i s(G)}{2}\right\rfloor \leq p \ell(G)$.
Cliques and large isometric cycles are the "single" extreme cases. [Coudert,Ducoffe,N. 16] $t /(G)=\Theta(t w(G))$ in any apex-free graph G with bounded largest isometric cycles.

Computation of tree/path-decompositions

	$\begin{aligned} & \text { Treewidth } \\ & \operatorname{tw}(G) \leq k ? \end{aligned}$	$\begin{aligned} & \text { Pathwidth } \\ & p w(G) \leq k ? \end{aligned}$	$\begin{aligned} & \text { Treelength } \\ & t \ell(G) \leq k ? \end{aligned}$	Pathlength $p \ell(G) \leq k ?$
k part of the input	[Arnborg et al. 87] NP-complete			
exact FPT (parameter k)	in time $2^{O\left(k^{3}\right)} n$ [Bodlaender,Kloks 96]		NP-c for $k=2$ [Lokshtanov 10]	NP-c for $k=2$ [Ducoffe,Legay,N. 20]
approximation	$\begin{aligned} & t w \log ^{\frac{1}{2}}(t w) \\ & \text { in time } \end{aligned}$	$\underset{O(1)}{p w} \log ^{\frac{3}{2}}(p w)$	$3 \cdot t \ell$ in tim	$(n)^{2 \cdot p \ell}$
algorithms (in general graphs)	[Feige et $2 \cdot k$ in time $2^{O(k)} n$ [Korhonen 21]	08]	[Dourisboure,Gavoille 07] no $\frac{3}{2}$-approx unless $P=N P$ [Lokshtanov 10]	[Dragan et al. 17]
planar graphs	Open $\frac{3}{2}$-approx in time $O\left(n^{3}\right)$ [Seymour, Thomas 93]	NP-complete [Monien, [Sudborough 88]	Open	

Computation of tree/path-decompositions

	$\begin{aligned} & \text { Treewidth } \\ & \operatorname{tw}(G) \leq k ? \end{aligned}$	$\begin{aligned} & \text { Pathwidth } \\ & p w(G) \leq k ? \end{aligned}$	$\begin{aligned} & \text { Treelength } \\ & t \ell(G) \leq k ? \end{aligned}$	Pathlength $p \ell(G) \leq k ?$
k part of the input	[Arnborg et al. 87] NP-complete			
exact FPT (parameter k)	in time $2^{O\left(k^{3}\right)} n$ [Bodlaender,Kloks 96]		NP-c for $k=2$ [Lokshtanov 10]	NP-c for $k=2$ [Ducoffe,Legay,N. 20]
approximation	$\begin{aligned} & t w \log ^{\frac{1}{2}}(t w) \\ & \text { in time } \end{aligned}$	$\underset{O(1)}{p w} \log ^{\frac{3}{2}}(p w)$	$3 \cdot t \ell$ in tim	$(n)^{2 \cdot p \ell}$
algorithms (in general graphs)	[Feige et $2 \cdot k$ in time $2^{O(k)} n$ [Korhonen 21]	08]	[Dourisboure,Gavoille 07] no $\frac{3}{2}$-approx unless $P=N P$ [Lokshtanov 10]	[Dragan et al. 17]
planar graphs	Open $\frac{3}{2}$-approx in time $O\left(n^{3}\right)$ [Seymour, Thomas 93]	NP-complete [Monien, [Sudborough 88]	Open	

3 approximation for treelength

Algorithm based on a particular BFS (LexM)

Roughly: 2 vertices are in a same bag if

- they are in the same BFS-level
- there is a path between them with internal vertices further from the root

3 approximation for treelength

Algorithm based on a particular BFS (LexM)

Roughly: 2 vertices are in a same bag if

- they are in the same BFS-level
- there is a path between them with internal vertices further from the root

3 approximation for treelength

Algorithm based on a particular BFS (LexM)

Roughly: 2 vertices are in a same bag if

- they are in the same BFS-level
- there is a path between them with internal vertices further from the root

Better approximation in general graphs? in planar graphs? Use this for treewidth?

Planar graphs: known results

Planar graphs: known results and our contributions

Treelength in Serie-Parallel
[Dissaux,Ducoffe,N.,Nivelle, LAGOS 21]

- $\frac{3}{2}$-approx. in $O\left(n^{2}\right)$-time;
- Exact for melon graphs;
- Characterization of SP graphs G s.t. $t \ell(G) \leq 2$.

Planar graphs: known results and our contributions

Treelength in Serie-Parallel

[Dissaux,Ducoffe,N.,Nivelle, LAGOS 21]

- $\frac{3}{2}$-approx. in $O\left(n^{2}\right)$-time;
- Exact for melon graphs;
- Characterization of SP graphs G s.t. $t \ell(G) \leq 2$.

Pathlength in Outerplanars

 [Dissaux,N., LATIN 22]- $p \ell(T)$ in linear time in trees;
- Cycles: $p l\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$;
- $(+1)$-approximation in poly-time.

Treelength in Serie-Parallel graphs

(2-connected) Serie-Parallel graphs

Serie parallel $=K_{4}$-minor free graphs
G serie-parallel \Leftrightarrow Nested Ear decomposition
Recursive construction:

- Start with graph G_{0} that consists of a cycle E_{0};
- At step $i>0$, obtain G_{i} by adding an ear E_{i} (a path) attached, in a nested way, to a previous ear $E_{j}, j<i$.

(2-connected) Serie-Parallel graphs

Serie parallel $=K_{4}$-minor free graphs
G serie-parallel \Leftrightarrow Nested Ear decomposition
Recursive construction:

- Start with graph G_{0} that consists of a cycle E_{0};
- At step $i>0$, obtain G_{i} by adding an ear E_{i} (a path) attached, in a nested way, to a previous ear $E_{j}, j<i$.

(2-connected) Serie-Parallel graphs

Serie parallel $=K_{4}$-minor free graphs
G serie-parallel \Leftrightarrow Nested Ear decomposition
Recursive construction:

- Start with graph G_{0} that consists of a cycle E_{0};
- At step $i>0$, obtain G_{i} by adding an ear E_{i} (a path) attached, in a nested way, to a previous ear $E_{j}, j<i$.

(2-connected) Serie-Parallel graphs

Serie parallel $=K_{4}$-minor free graphs
G serie-parallel \Leftrightarrow Nested Ear decomposition
Recursive construction:

- Start with graph G_{0} that consists of a cycle E_{0};
- At step $i>0$, obtain G_{i} by adding an ear E_{i} (a path) attached, in a nested way, to a previous ear $E_{j}, j<i$.

(2-connected) Serie-Parallel graphs

Serie parallel $=K_{4}$-minor free graphs
G serie-parallel \Leftrightarrow Nested Ear decomposition
Recursive construction:

- Start with graph G_{0} that consists of a cycle E_{0};
- At step $i>0$, obtain G_{i} by adding an ear E_{i} (a path) attached, in a nested way, to a previous ear $E_{j}, j<i$.

(2-connected) Serie-Parallel graphs

Serie parallel $=K_{4}$-minor free graphs
G serie-parallel \Leftrightarrow Nested Ear decomposition
Recursive construction:

- Start with graph G_{0} that consists of a cycle E_{0};
- At step $i>0$, obtain G_{i} by adding an ear E_{i} (a path) attached, in a nested way, to a previous ear $E_{j}, j<i$.

(2-connected) Serie-Parallel graphs

Serie parallel $=K_{4}$-minor free graphs
G serie-parallel \Leftrightarrow Nested Ear decomposition
Recursive construction:

- Start with graph G_{0} that consists of a cycle E_{0};
- At step $i>0$, obtain G_{i} by adding an ear E_{i} (a path) attached, in a nested way, to a previous ear $E_{j}, j<i$.

(2-connected) Serie-Parallel graphs

Serie parallel $=K_{4}$-minor free graphs
G serie-parallel \Leftrightarrow Nested Ear decomposition
Recursive construction:

- Start with graph G_{0} that consists of a cycle E_{0};
- At step $i>0$, obtain G_{i} by adding an ear E_{i} (a path) attached, in a nested way, to a previous ear $E_{j}, j<i$.

(2-connected) Serie-Parallel graphs

Serie parallel $=K_{4}$-minor free graphs
G serie-parallel \Leftrightarrow Nested Ear decomposition
Recursive construction:

- Start with graph G_{0} that consists of a cycle E_{0};
- At step $i>0$, obtain G_{i} by adding an ear E_{i} (a path) attached, in a nested way, to a previous ear $E_{j}, j<i$.

(2-connected) Serie-Parallel graphs

Serie parallel $=K_{4}$-minor free graphs

G serie-parallel \Leftrightarrow isometric Nested Ear decomposition

Recursive construction:

- Start with graph G_{0} that consists of a largest isometric cycle E_{0};
- At step $i>0$, obtain G_{i}, isometric subgraph, by adding an ear E_{i} (a path) attached, in a nested way, to a previous ear $E_{j}, j<i$.

Forbidden: ears
must be nested

Isometric nested Ear decomposition can be computed in time $O\left(n^{2}\right)$,

$\frac{3}{2}$-approximation for $t \ell$ in Serie-Parallel graphs

Very simple algorithm

Let $\left(E_{0}, \cdots, E_{p}\right)$ an isometric nested ear decomposition of a Serie-parallel graph G

- Start with gone bag B_{0} containing E_{0};
- For $i=1$ to p, add a bag B_{i} containing E_{i} and adjacent to a bag B_{j} that contains an ear $E_{j}, j<i$, to which E_{i} is attached.

Each bag \approx subgraph of an isometric cycle \Rightarrow length $\leq \frac{i s(G)}{2}$. Recall, $\frac{i s(G)}{3} \leq \frac{t}{\underline{\underline{t}}} \ell(G)_{\text {I }}^{\text {In }}$

$\frac{3}{2}$-approximation for $t \ell$ in Serie-Parallel graphs

Very simple algorithm

Let $\left(E_{0}, \cdots, E_{p}\right)$ an isometric nested ear decomposition of a Serie-parallel graph G

- Start with gone bag B_{0} containing E_{0};
- For $i=1$ to p, add a bag B_{i} containing E_{i} and adjacent to a bag B_{j} that contains an ear $E_{j}, j<i$, to which E_{i} is attached.

Each bag \approx subgraph of an isometric cycle \Rightarrow length $\leq \frac{i s(G)}{2}$. Recall, $\frac{i s(G)}{3} \leq \underline{\underline{\underline{t}}} \boldsymbol{l}(G)_{\text {I }}^{\text {I }}$

$\frac{3}{2}$-approximation for $t \ell$ in Serie-Parallel graphs

Very simple algorithm

Let $\left(E_{0}, \cdots, E_{p}\right)$ an isometric nested ear decomposition of a Serie-parallel graph G

- Start with gone bag B_{0} containing E_{0};
- For $i=1$ to p, add a bag B_{i} containing E_{i} and adjacent to a bag B_{j} that contains an ear $E_{j}, j<i$, to which E_{i} is attached.

Each bag \approx subgraph of an isometric cycle \Rightarrow length $\leq \frac{i s(G)}{2}$. Recall, $\frac{i s(G)}{3} \leq \underline{\underline{t}} \ell(G)$.

$\frac{3}{2}$-approximation for $t \ell$ in Serie-Parallel graphs

Very simple algorithm

Let $\left(E_{0}, \cdots, E_{p}\right)$ an isometric nested ear decomposition of a Serie-parallel graph G

- Start with gone bag B_{0} containing E_{0};
- For $i=1$ to p, add a bag B_{i} containing E_{i} and adjacent to a bag B_{j} that contains an ear $E_{j}, j<i$, to which E_{i} is attached.

Each bag \approx subgraph of an isometric cycle \Rightarrow length $\leq \frac{i s(G)}{2}$. Recall, $\frac{i s(G)}{3} \leq \underline{\underline{\underline{t}}} \boldsymbol{l}(G)_{\text {I }}^{\text {In }}$

$\frac{3}{2}$-approximation for $t \ell$ in Serie-Parallel graphs

Very simple algorithm

Let $\left(E_{0}, \cdots, E_{p}\right)$ an isometric nested ear decomposition of a Serie-parallel graph G

- Start with gone bag B_{0} containing E_{0};
- For $i=1$ to p, add a bag B_{i} containing E_{i} and adjacent to a bag B_{j} that contains an ear $E_{j}, j<i$, to which E_{i} is attached.

Each bag \approx subgraph of an isometric cycle \Rightarrow length $\leq \frac{i s(G)}{2}$. Recall, $\frac{i s(G)}{3} \leq \underline{\underline{t}} \ell(G)$.

$\frac{3}{2}$-approximation for $t \ell$ in Serie-Parallel graphs

Very simple algorithm

Let $\left(E_{0}, \cdots, E_{p}\right)$ an isometric nested ear decomposition of a Serie-parallel graph G

- Start with gone bag B_{0} containing E_{0};
- For $i=1$ to p, add a bag B_{i} containing E_{i} and adjacent to a bag B_{j} that contains an ear $E_{j}, j<i$, to which E_{i} is attached.

Each bag \approx subgraph of an isometric cycle \Rightarrow length $\leq \frac{i s(G)}{2}$. Recall, $\frac{i s(G)}{3} \leq \frac{t}{\underline{\underline{t}}}(G)$.

$\frac{3}{2}$-approximation for $t \ell$ in Serie-Parallel graphs

Very simple algorithm

[Dissaux,Ducoffe,N.,Nivelle 21]
Let $\left(E_{0}, \cdots, E_{p}\right)$ an isometric nested ear decomposition of a Serie-parallel graph G

- Start with gone bag B_{0} containing E_{0};
- For $i=1$ to p, add a bag B_{i} containing E_{i} and adjacent to a bag B_{j} that contains an ear $E_{j}, j<i$, to which E_{i} is attached.

Each bag \approx subgraph of an isometric cycle \Rightarrow length $\leq \frac{i s(G)}{2}$. Recall, $\frac{i s(G)}{3} \leq \underline{\underline{\underline{t}}} \boldsymbol{t}(G)_{\text {I }}^{\text {In }}$

$\frac{3}{2}$-approximation for $t \ell$ in Serie-Parallel graphs

Very simple algorithm

[Dissaux,Ducoffe,N.,Nivelle 21]
Let $\left(E_{0}, \cdots, E_{p}\right)$ an isometric nested ear decomposition of a Serie-parallel graph G

- Start with gone bag B_{0} containing E_{0};
- For $i=1$ to p, add a bag B_{i} containing E_{i} and adjacent to a bag B_{j} that contains an ear $E_{j}, j<i$, to which E_{i} is attached.

Each bag \approx subgraph of an isometric cycle \Rightarrow length $\leq \frac{i s(G)}{2}$. Recall, $\frac{i s(G)}{3} \leq \underline{\underline{\underline{t}}} \boldsymbol{t}(G)_{\text {I }}^{\text {In }}$

The simplest (?) subclass of Serie-Parallel graphs

Melon graph: paths linking two vertices

Theorem:
[Dissaux,Ducoffe,N.,Nivelle LAGOS 21]
Let G be a melon graph with paths of lengths $\ell_{1} \geq \cdots \geq \ell_{p}$

- $t \ell(G)=\left\lceil\frac{\ell_{1}+\ell_{p}}{3}\right\rceil=\left\lceil\frac{i s(G)}{3}\right\rceil$ if $\ell_{p} \leq\left\lceil\frac{\ell_{1}+\ell_{p}}{3}\right\rceil$;
- $t \ell(G)=\ell_{p}$ if $\left\lceil\frac{\ell_{1}+\ell_{p}}{3}\right\rceil \leq \ell_{p} \leq\left\lceil\frac{\ell_{1}+\ell_{2}}{3}\right\rceil$;
- $t \ell(G)=\left\lceil\frac{\ell_{1}+\ell_{2}}{3}\right\rceil$ otherwise.

The simplest (?) subclass of Serie-Parallel graphs

Melon graph: paths linking two vertices

Theorem:

Let G be a melon graph with paths of lengths $\ell_{1} \geq \cdots \geq \ell_{p}$

- $t \ell(G)=\left\lceil\frac{\ell_{1}+\ell_{p}}{3}\right\rceil=\left\lceil\frac{i s(G)}{3}\right\rceil$ if $\ell_{p} \leq\left\lceil\frac{\ell_{1}+\ell_{p}}{3}\right\rceil$;
- $t \ell(G)=\ell_{p}$ if $\left\lceil\frac{\ell_{1}+\ell_{p}}{3}\right\rceil \leq \ell_{p} \leq\left\lceil\frac{\ell_{1}+\ell_{2}}{3}\right\rceil$;
- $t \ell(G)=\left\lceil\frac{\ell_{1}+\ell_{2}}{3}\right\rceil$ otherwise.

$\ell 1$. \geq. $\ell 2 \geq \ell 3$
Case: $\operatorname{ceil}\left(\frac{\ell 1+\ell 3}{3}\right) \leq \ell 3 \leq \operatorname{ceil}\left(\frac{\ell 2+\ell 3}{3}\right)$

$\ell 1 . \geq . \ell 2 \geq \ell 3$
Case: $\operatorname{ceil}\left(\frac{\ell 2+\ell 3}{3}\right) \leq \ell 3$

Deciding if $t \ell(G) \leq 2$ in Serie-Parallel graphs

Characterization by forbidden isometric subgraphs

Let G be a Serie-Parallel graphs. Then, $t \ell(G) \leq 2$ if and only if is $(G) \leq 6$ and G has no Dumbo graph as isometric subgraph.

Polynomial-time algorithm that, given G Serie-parallel:

- either returns an isometric cycle larger than 6 or an isometric Dumbo subgraph;
- or compute a tree-decomposition of G of length at most 2 .

Dumbo graph:

Deciding if $t \ell(G) \leq 2$ in Serie-Parallel graphs

Characterization by forbidden isometric subgraphs

Let G be a Serie-Parallel graphs. Then, $t \ell(G) \leq 2$ if and only if is $(G) \leq 6$ and G has no Dumbo graph as isometric subgraph.

Polynomial-time algorithm that, given G Serie-parallel:

- either returns an isometric cycle larger than 6 or an isometric Dumbo subgraph;
- or compute a tree-decomposition of G of length at most 2 .

Dumbo graph:

Proof:

- by induction on the number of Ears;
- must ensure that: if a forthcoming ear is attached to two vertices x and y, then there is a bag containing them;
- tedious case analysis depending on the length of the ears.

Pathlength in Outerplanar graphs

Pathlength of trees

Linear time algorithm for any tree T

Pathlength of trees

Linear time algorithm for any tree T
Let $D=\left(v_{1}, \cdots, v_{d}\right)$ be a diameter.

17/25

Pathlength of trees

Linear time algorithm for any tree T
Let $D=\left(v_{1}, \cdots, v_{d}\right)$ be a diameter.

Pathlength of trees

Linear time algorithm for any tree T
Let $D=\left(v_{1}, \cdots, v_{d}\right)$ be a diameter. Start with one bag $\left\{v_{1}, v_{2}\right\}$.

(2)

Pathlength of trees

Linear time algorithm for any tree T
Let $D=\left(v_{1}, \cdots, v_{d}\right)$ be a diameter. Start with one bag $\left\{v_{1}, v_{2}\right\}$.
When arriving at a bag $\left\{v_{i-1}, v_{i}\right\}$:

- order the leaves "around" v_{i} in any DFS manner;
- \forall path P_{f} from v_{i} to a leaf f "around" it, in the DFS order, add a bag $V\left(P_{f}\right)$
- then, add one bag $\left\{v_{i}, v_{i+1}\right\}$.

(2)

Pathlength of trees

Linear time algorithm for any tree T
Let $D=\left(v_{1}, \cdots, v_{d}\right)$ be a diameter. Start with one bag $\left\{v_{1}, v_{2}\right\}$.
When arriving at a bag $\left\{v_{i-1}, v_{i}\right\}$:

- order the leaves "around" v_{i} in any DFS manner;
- \forall path P_{f} from v_{i} to a leaf f "around" it, in the DFS order, add a bag $V\left(P_{f}\right)$
- then, add one bag $\left\{v_{i}, v_{i+1}\right\}$.

Pathlength of trees

Linear time algorithm for any tree T
Let $D=\left(v_{1}, \cdots, v_{d}\right)$ be a diameter. Start with one bag $\left\{v_{1}, v_{2}\right\}$.
When arriving at a bag $\left\{v_{i-1}, v_{i}\right\}$:

- order the leaves "around" v_{i} in any DFS manner;
- \forall path P_{f} from v_{i} to a leaf f "around" it, in the DFS order, add a bag $V\left(P_{f}\right)$
- then, add one bag $\left\{v_{i}, v_{i+1}\right\}$.

Pathlength of trees

Linear time algorithm for any tree T
Let $D=\left(v_{1}, \cdots, v_{d}\right)$ be a diameter. Start with one bag $\left\{v_{1}, v_{2}\right\}$.
When arriving at a bag $\left\{v_{i-1}, v_{i}\right\}$:

- order the leaves "around" v_{i} in any DFS manner;
- \forall path P_{f} from v_{i} to a leaf f "around" it, in the DFS order, add a bag $V\left(P_{f}\right)$
- then, add one bag $\left\{v_{i}, v_{i+1}\right\}$.

Pathlength of trees

Linear time algorithm for any tree T
Let $D=\left(v_{1}, \cdots, v_{d}\right)$ be a diameter. Start with one bag $\left\{v_{1}, v_{2}\right\}$.
When arriving at a bag $\left\{v_{i-1}, v_{i}\right\}$:

- order the leaves "around" v_{i} in any DFS manner;
- \forall path P_{f} from v_{i} to a leaf f "around" it, in the DFS order, add a bag $V\left(P_{f}\right)$
- then, add one bag $\left\{v_{i}, v_{i+1}\right\}$.

Pathlength of trees

Linear time algorithm for any tree T
Let $D=\left(v_{1}, \cdots, v_{d}\right)$ be a diameter. Start with one bag $\left\{v_{1}, v_{2}\right\}$.
When arriving at a bag $\left\{v_{i-1}, v_{i}\right\}$:

- order the leaves "around" v_{i} in any DFS manner;
- \forall path P_{f} from v_{i} to a leaf f "around" it, in the DFS order, add a bag $V\left(P_{f}\right)$
- then, add one bag $\left\{v_{i}, v_{i+1}\right\}$.

Pathlength of trees

Linear time algorithm for any tree T
Let $D=\left(v_{1}, \cdots, v_{d}\right)$ be a diameter. Start with one bag $\left\{v_{1}, v_{2}\right\}$.
When arriving at a bag $\left\{v_{i-1}, v_{i}\right\}$:

- order the leaves "around" v_{i} in any DFS manner;
- \forall path P_{f} from v_{i} to a leaf f "around" it, in the DFS order, add a bag $V\left(P_{f}\right)$
- then, add one bag $\left\{v_{i}, v_{i+1}\right\}$.

Pathlength of trees

Linear time algorithm for any tree T
Let $D=\left(v_{1}, \cdots, v_{d}\right)$ be a diameter. Start with one bag $\left\{v_{1}, v_{2}\right\}$.
When arriving at a bag $\left\{v_{i-1}, v_{i}\right\}$:

- order the leaves "around" v_{i} in any DFS manner;
- \forall path P_{f} from v_{i} to a leaf f "around" it, in the DFS order, add a bag $V\left(P_{f}\right)$
- then, add one bag $\left\{v_{i}, v_{i+1}\right\}$.

Pathlength of trees

Linear time algorithm for any tree T
Let $D=\left(v_{1}, \cdots, v_{d}\right)$ be a diameter. Start with one bag $\left\{v_{1}, v_{2}\right\}$.
When arriving at a bag $\left\{v_{i-1}, v_{i}\right\}$:

- order the leaves "around" v_{i} in any DFS manner;
- \forall path P_{f} from v_{i} to a leaf f "around" it, in the DFS order, add a bag $V\left(P_{f}\right)$
- then, add one bag $\left\{v_{i}, v_{i+1}\right\}$.

Pathlength of trees

Linear time algorithm for any tree T
Let $D=\left(v_{1}, \cdots, v_{d}\right)$ be a diameter. Start with one bag $\left\{v_{1}, v_{2}\right\}$.
When arriving at a bag $\left\{v_{i-1}, v_{i}\right\}$:

- order the leaves "around" v_{i} in any DFS manner;
- \forall path P_{f} from v_{i} to a leaf f "around" it, in the DFS order, add a bag $V\left(P_{f}\right)$
- then, add one bag $\left\{v_{i}, v_{i+1}\right\}$.

Pathlength of trees

Linear time algorithm for any tree T
Let $D=\left(v_{1}, \cdots, v_{d}\right)$ be a diameter. Start with one bag $\left\{v_{1}, v_{2}\right\}$.
When arriving at a bag $\left\{v_{i-1}, v_{i}\right\}$:

- order the leaves "around" v_{i} in any DFS manner;
- \forall path P_{f} from v_{i} to a leaf f "around" it, in the DFS order, add a bag $V\left(P_{f}\right)$
- then, add one bag $\left\{v_{i}, v_{i+1}\right\}$.

Pathlength of trees

Linear time algorithm for any tree T
Let $D=\left(v_{1}, \cdots, v_{d}\right)$ be a diameter. Start with one bag $\left\{v_{1}, v_{2}\right\}$.
When arriving at a bag $\left\{v_{i-1}, v_{i}\right\}$:

- order the leaves "around" v_{i} in any DFS manner;
- \forall path P_{f} from v_{i} to a leaf f "around" it, in the DFS order, add a bag $V\left(P_{f}\right)$
- then, add one bag $\left\{v_{i}, v_{i+1}\right\}$.

Pathlength of trees

Linear time algorithm for any tree T
Let $D=\left(v_{1}, \cdots, v_{d}\right)$ be a diameter. Start with one bag $\left\{v_{1}, v_{2}\right\}$.
When arriving at a bag $\left\{v_{i-1}, v_{i}\right\}$:

- order the leaves "around" v_{i} in any DFS manner;
- \forall path P_{f} from v_{i} to a leaf f "around" it, in the DFS order, add a bag $V\left(P_{f}\right)$
- then, add one bag $\left\{v_{i}, v_{i+1}\right\}$.

Pathlength of trees

Linear time algorithm for any tree T
Let $D=\left(v_{1}, \cdots, v_{d}\right)$ be a diameter. Start with one bag $\left\{v_{1}, v_{2}\right\}$.
When arriving at a bag $\left\{v_{i-1}, v_{i}\right\}$:

- order the leaves "around" v_{i} in any DFS manner;
- \forall path P_{f} from v_{i} to a leaf f "around" it, in the DFS order, add a bag $V\left(P_{f}\right)$
- then, add one bag $\left\{v_{i}, v_{i+1}\right\}$.

Pathlength of trees

Linear time algorithm for any tree T
Let $D=\left(v_{1}, \cdots, v_{d}\right)$ be a diameter. Start with one bag $\left\{v_{1}, v_{2}\right\}$.
When arriving at a bag $\left\{v_{i-1}, v_{i}\right\}$:

- order the leaves "around" v_{i} in any DFS manner;
- \forall path P_{f} from v_{i} to a leaf f "around" it, in the DFS order, add a bag $V\left(P_{f}\right)$
- then, add one bag $\left\{v_{i}, v_{i+1}\right\}$.

Pathlength of trees

Linear time algorithm for any tree T
Let $D=\left(v_{1}, \cdots, v_{d}\right)$ be a diameter. Start with one bag $\left\{v_{1}, v_{2}\right\}$.
When arriving at a bag $\left\{v_{i-1}, v_{i}\right\}$:

- order the leaves "around" v_{i} in any DFS manner;
- \forall path P_{f} from v_{i} to a leaf f "around" it, in the DFS order, add a bag $V\left(P_{f}\right)$
- then, add one bag $\left\{v_{i}, v_{i+1}\right\}$.

Pathlength of trees

Linear time algorithm for any tree T
Let $D=\left(v_{1}, \cdots, v_{d}\right)$ be a diameter. Start with one bag $\left\{v_{1}, v_{2}\right\}$.
When arriving at a bag $\left\{v_{i-1}, v_{i}\right\}$:

- order the leaves "around" v_{i} in any DFS manner;
- \forall path P_{f} from v_{i} to a leaf f "around" it, in the DFS order, add a bag $V\left(P_{f}\right)$
- then, add one bag $\left\{v_{i}, v_{i+1}\right\}$.

Pathlength of trees

Linear time algorithm for any tree T
Let $D=\left(v_{1}, \cdots, v_{d}\right)$ be a diameter. Start with one bag $\left\{v_{1}, v_{2}\right\}$.
When arriving at a bag $\left\{v_{i-1}, v_{i}\right\}$:

- order the leaves "around" v_{i} in any DFS manner;
- \forall path P_{f} from v_{i} to a leaf f "around" it, in the DFS order, add a bag $V\left(P_{f}\right)$
- then, add one bag $\left\{v_{i}, v_{i+1}\right\}$.

Length:

$$
\begin{array}{r}
k=\max _{v \in V(T)} \operatorname{dist}(v, D) \\
\text { so } p \ell(T) \leq k
\end{array}
$$

Pathlength of trees

Linear time algorithm for any tree T
Let $D=\left(v_{1}, \cdots, v_{d}\right)$ be a diameter. Start with one bag $\left\{v_{1}, v_{2}\right\}$.
When arriving at a bag $\left\{v_{i-1}, v_{i}\right\}$:

- order the leaves "around" v_{i} in any DFS manner;
- \forall path P_{f} from v_{i} to a leaf f "around" it, in the DFS order, add a bag $V\left(P_{f}\right)$
- then, add one bag $\left\{v_{i}, v_{i+1}\right\}$.

Length:

$$
\begin{array}{r}
k=\max _{v \in V(T)} \operatorname{dist}(v, D) \\
\text { so } p \ell(T) \leq k
\end{array}
$$

T contains the star S_{k} with 3 branches of length k as isometric subgraph.

$$
\begin{equation*}
p \ell\left(S_{k}\right)=k \tag{DG07}
\end{equation*}
$$

So, $p \ell(T) \geq k$.

Pathlength of trees

Linear time algorithm for any tree T
Let $D=\left(v_{1}, \cdots, v_{d}\right)$ be a diameter. Start with one bag $\left\{v_{1}, v_{2}\right\}$.
When arriving at a bag $\left\{v_{i-1}, v_{i}\right\}$:

- order the leaves "around" v_{i} in any DFS manner;
- \forall path P_{f} from v_{i} to a leaf f "around" it, in the DFS order, add a bag $V\left(P_{f}\right)$
- then, add one bag $\left\{v_{i}, v_{i+1}\right\}$.

Length:

$$
\begin{array}{r}
k=\max _{v \in V(T)} \operatorname{dist}(v, D) \\
\text { so } p \ell(T) \leq k
\end{array}
$$

T contains the star S_{k} with 3 branches of length k as isometric subgraph.
$p \ell\left(S_{k}\right)=k$
So, $p \ell(T) \geq k$.
$\Rightarrow p \ell(T)=k$.

Pathlength of Outerplanar graphs

Outerplanar: $K_{4}, K_{2,3}$ minor-free $\Leftrightarrow \exists$ planar embedding with all vertices on outer-face
Example of 2-connected outerplanar:

Pathlength of Outerplanar graphs

Outerplanar: $K_{4}, K_{2,3}$ minor-free $\Leftrightarrow \exists$ planar embedding with all vertices on outer-face

Let $k \geq 0$. There exists an algorithm that:
given an outerplanar graph G, in time $O\left(n^{3}\left(n+k^{2}\right)\right)$,

- either returns a path-decomposition of length $\leq k+1$,
- or states that $p \ell(G)>k$.

Two steps:
(1) Show that, for every $k \geq p \ell(G)$, there exists a path-decomposition of length $\leq k+1$ with "good" properties;
(2) Compute such a decomposition in polynomial-time.

Open: Does there exist an exact polynomial-time algorithm?

Pathlength of Outerplanar graphs: use the dual

Weak dual of outerplanar graph G is a tree G^{*}
Idea: "Mimic" the strategy on trees: follow a diameter, add "branches" in this order.

Pathlength of Outerplanar graphs: use the dual

Weak dual of outerplanar graph G is a tree G^{*}
Idea: "Mimic" the strategy on trees: follow a diameter, add "branches" in this order. Problem: no relation between diameters of G and G^{*}

Which "main" path to follow?

Pathlength of Outerplanar graphs: use the dual

Weak dual of outerplanar graph G is a tree G^{*}
Idea: "Mimic" the strategy on trees: follow a diameter, add "branches" in this order. Problem: no relation between diameters of G and G^{*}

Which "main" path to follow? We will try them all!

(x, y)-Path-Decomposition

Let $x, y \in E(G) .(x, y)$-Path-Decomposition: x in the first bag, y in the last bag. $p \ell(G, x, y)$: minimum length of a (x, y)-Path-Decomposition of G.

Lemma: $p \ell(G)=\min _{x, y \in E(G)} p \ell(G, x, y)$.

We will try to compute an optimal (x, y)-Path-Decomposition for every $x, y \in E(G)$. ("only" $O\left(n^{2}\right)$ possibilities).

(x, x)-Path-Decomposition: greedy algorithm

Computation of (x, y)-Path-Decomposition: Case $x=y=\{a, s\}$.
Greedy algorithm: add the vertices in the path-decomposition P in a DFS ordering (from x) guided by the outer-face.

Lemma: length $(P)=\max _{v \in V(G)} \max \{\operatorname{dist}(a, v), \operatorname{dist}(s, v)\} \leq p \ell(G, x, x)$.

(x, y)-Path-Decomposition: x, y not in a same face

$x \neq y \in E(G) \Rightarrow$ define a path in the dual

(x, y)-Path-Decomposition: x, y not in a same face

$x \neq y \in E(G) \Rightarrow$ define a path in the dual
Case $x \neq y \in E(G)$, and there are e_{1}, \cdots, e_{q} edge separators of x and y.

(x, y)-Path-Decomposition: x, y not in a same face

$x \neq y \in E(G) \Rightarrow$ define a path in the dual
Case $x \neq y \in E(G)$, and there are e_{1}, \cdots, e_{q} edge separators of x and y.

Lemma: If $x, y \in E(G)$ not in the same face, there exists an (x, y)-Path-Decomposition with length $p \ell(G, x, y)$ which is "well separated".

(x, y)-Path-Decomposition: x, y in a same face

$x \neq y \in E(F)$ for some face F.
Components of $G \backslash F$: "branches".

(x, y)-Path-Decomposition: x, y in a same face

$x \neq y \in E(F)$ for some face F.
Components of $G \backslash F$: "branches".

(x, y)-Path-Decomposition: x, y in a same face

$x \neq y \in E(F)$ for some face F.
Components of $G \backslash F$: "branches".
Lemma: If $x, y \in E(F)$, there exists an (x, y)-Path-Decomposition with length $p \ell(G, x, y)+1$ which "proceeds branch by branch".
Moreover, for each branch G_{i}, it is a greedy $\left(e_{i}, e_{i}\right)$-path-decomposition.
Can we guess the ordering of the "branches"?

(x, y)-Path-Decomposition: x, y in a same face

$x \neq y \in E(F)$ for some face F.
Components of $G \backslash F$: "branches".

Lemma: If $x, y \in E(F)$, there exists an (x, y)-Path-Decomposition with length $p \ell(G, x, y)+1$ which "proceeds branch by branch", from left to right. Moreover, for each branch G_{i}, it is a greedy $\left(e_{i}, e_{i}\right)$-path-decomposition.

(x, y)-Path-Decomposition: x, y in a same face

$x \neq y \in E(F)$ for some face F.
Components of $G \backslash F$: "branches".
Lemma: If $x, y \in E(F)$, there exists an (x, y)-Path-Decomposition with length $p \ell(G, x, y)+1$ which "proceeds branch by branch".
Moreover, for each branch G_{i}, it is a greedy $\left(e_{i}, e_{i}\right)$-path-decomposition.
By dynamic programming, in time $O\left(n+|F|^{2}\right) \leq n+i s(G)^{2}=O\left(n+p \ell(G)^{2}\right)$.

Pathlength of Outerplanar graphs

Let $k \geq 0$. There exists an algorithm that:
given an outerplanar graph G, in time $O\left(n^{3}\left(n+k^{2}\right)\right)$,

- either returns a path-decomposition of length $\leq k+1$,
- or states that $p \ell(G)>k$.

Remark: the +1 cannot be avoided in our algorithm.

Further work

Treelength:

- Complexity in Serie-parallel graphs?
- Complexity in Planar graphs?
- Complexity in bouded treewidth graphs?
- New algorithmic applications?

Pathlength:

- Complexity in Outerplanar graphs?
- Complexity in Serie-parallel graphs?
- Complexity in Planar graphs?
- Complexity in bouded treewidth graphs?
- New algorithmic applications?

Treewidth:

- Complexity in Planar graphs?

In general, better practical approximation algorithms?

Further work

Treelength:

- Complexity in Serie-parallel graphs?
- Complexity in Planar graphs?
- Complexity in bouded treewidth graphs?
- New algorithmic applications?

Pathlength:

- Complexity in Outerplanar graphs?
- Complexity in Serie-parallel graphs?
- Complexity in Planar graphs?
- Complexity in bouded treewidth graphs?
- New algorithmic applications?

Treewidth:

- Complexity in Planar graphs?

In general, better practical approximation algorithms?

Thank you!

