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Tree-Decompositions [Robertson and Seymour 83]

Tree-decomposition: Representation of a graph as a Tree with connectivity properties
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Tree T + family X = (Xt)t∈V (T ) of “bags” (sets of vertices of G)
Important: intersection of two adjacent bags = separator of G
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Tree T + family X = (Xt)t∈V (T ) of “bags” (sets of vertices of G)
Important: intersection of two adjacent bags = separator of G⋃

t∈V (T ) Xt = V (G);

for any uv ∈ E(G), there exists a bag Xt containing u and v ;

for any v ∈ V (G), {t ∈ V (T ) | v ∈ Xt} induces a subtree.
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Tree-Decompositions [Robertson and Seymour 83]

Tree-decomposition: Representation of a graph as a Tree with connectivity properties
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Tree T + family X = (Xt)t∈V (T ) of “bags” (sets of vertices of G)
Important: intersection of two adjacent bags = separator of G

Width of (T ,X ): size of largest bag (minus 1)
Treewidth of a graph G , tw(G): min width over all tree-decompositions.
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Path-Decompositions [Robertson and Seymour 83]

Path-decomposition: Representation of a graph as a Path with connectivity properties
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Sequence (X1, · · · ,Xq) of “bags” (sets of vertices of G) s.t.⋃
1≤i≤q Xi = V (G);

for any uv ∈ E(G), there exists a bag Xi containing u and v ;

for any 1 ≤ i ≤ j ≤ k ≤ q, Xi ∩ Xk ⊆ Xj .

Width of (T ,X ): size of largest bag (minus 1)
Pathwidth of a graph G , pw(G): min width over all path-decompositions.

Nicolas Nisse Tree-decompositions with bags of small diameter



3/25

Many important Algorithmic Applications of tw

cornerstone of Graph Minors Theorem [Robertson and Seymour 1983-2004]

⇒ any graph property (Π(G) ≤ k) that is closed under minor is FPT in k

problems expressible in MSOL solvable in polynomial time in graphs
of bounded treewidth (dynamic programming) [Courcelle, 90]

any such problem is FPT in tw

design of sub-exponential algorithms in some graph classes (e.g.,

planar, bounded genus, H-minor-free...) (bi-dimensionality) [Demaine et al. 04]

design of FPT algorithms (meta-kernelization/protrusions) [Fomin et al. 09]
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Main Problem: Computing tree-decomposition

Deciding if tw(G ) ≤ k? ⇒ Very hard!

Exact algorithms

NP-hard if k part of the input [Arnborg,Corneil,Prokurowski 87]

FPT: algorithm in time O(2k
3
n) [Bodlaender,Kloks 96]

“practical” algorithms only for graph with treewidth ≤ 4 e.g., [Sanders 96]

Branch & Bound algorithms (for small graphs) [Bodlaender et al. 12]

[Coudert,Mazauric,N. 14]

Approximation algorithms

2-approximation in time O(2kn) [Korhonen 21]
√

log OPT -approximation in polynomial-time (SDP) [Feige et al. 05]

assuming Small Set Expansion Conjecture,
no poly-time constant-ratio approximation [Wu,Austrin,Pitassi,Liu 14]

3/2-approximation in planar graphs in time O(n3) [Seymour,Thomas 93]

Heuristics

Mainly based on local complementations of edges (minimum fill-in: perfect
elimination ordering of vertices) [Bodlaender et al.]
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Approach: focus on other measure(s)

Two main problems:

What to do when the treewidth is large? how to compute “good” decompositions?

Instead of constraining the size of bags ⇒ constraint bags’ metric/structural properties

Some examples

bags’ diameter (treelength) [Dourisboure,Gavoille 07, Lokstanov 10, Coudert,Ducoffe,N. 16]

PTAS for TSP when bounded treelength, metric dimension FPT in treelength+max. degree...

bags with short dominating path [Kosowski,Li,N.,Suchan 15]

compact routing in distributed computing

bags’ chromatic number (tree-chromatic number) [Seymour 16]

bags’ radius (treebreadth) [Dragan,Köhler 14, Ducoffe,Legay,N. 20]

bags’ independence number (tree-independence number) [Dallard,Milanic,Storgel 21]

Maximum Weight Independent Packing problem FPT in tree-indep. number...

In this talk, we focus on bags’ diameter
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Treelength and pathlength

Length of (T ,X ): `(T ,X ) = max
t∈V (T )

max
u,v∈Xt

distG (u, v). [Dourisboure,Gavoille 07]

Treelength of G , t`(G): min. length among all tree-decompositions.

Pathlength of G , p`(G): min. length among all path-decompositions. [Dragan,Köhler 14]
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Tree/path-length vs. Tree/path-width

Incomparable in general:

Cliques:

width arbitrary larger than length
t`(Kn) = p`(Kn) = 1 tw(Kn) = pw(Kn) = n − 1.

Cycles:

length arbitrary larger than width
t`(Cn) = d n

3
e [DG07] and p`(Cn) = b n

2
c [Dissaux,N. 22] tw(Cn) = pw(Cn) = 2.
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A subgraph H of a graph G is isometric if the distances are “preserved”.
That is, if distH(u, v) = distG (u, v) for every u, v ∈ V (H).

Tree/path-length closed under taking isometric subgraph [Dourisboure,Gavoile 07]

For every isometric subgraph H of G , t`(H) ≤ t`(G) and p`(H) ≤ p`(G).
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For every isometric subgraph H of G , t`(H) ≤ t`(G) and p`(H) ≤ p`(G).

Let is(G) be the length of a largest isometric cycle in G .

Corollary: For any graph G , d is(G)
3
e ≤ t`(G) and b is(G)

2
c ≤ p`(G).

Cliques and large isometric cycles are the “single” extreme cases. [Coudert,Ducoffe,N. 16]

tl(G) = Θ(tw(G)) in any apex-free graph G with bounded largest isometric cycles.
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Computation of tree/path-decompositions

Treewidth Pathwidth Treelength Pathlength
tw(G) ≤ k? pw(G) ≤ k? t`(G) ≤ k? p`(G) ≤ k?

k part of NP-complete
the input [Arnborg et al. 87]

exact FPT in time 2O(k3)n NP-c for k = 2 NP-c for k = 2
(parameter k) [Bodlaender,Kloks 96] [Lokshtanov 10] [Ducoffe,Legay,N. 20]

tw log
1
2 (tw) pw log

3
2 (pw) 3 · t` 2 · p`

approximation in time nO(1) in time O(n)
algorithms [Feige et al. 08] [Dourisboure,Gavoille 07] [Dragan et al. 17]

(in general 2 · k in time no 3
2

-approx

graphs) 2O(k)n unless P = NP
[Korhonen 21] [Lokshtanov 10]

Open
planar NP-complete
graphs 3

2
-approx [Monien, Open

in time O(n3) [Sudborough 88]

[Seymour,Thomas 93]
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3 approximation for treelength [Dourisboure,Gavoille 07]

Algorithm based on a particular BFS (LexM)

Roughly: 2 vertices are in a same bag if

they are in the same BFS-level

there is a path between them with internal vertices further from the root
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3 approximation for treelength [Dourisboure,Gavoille 07]

Algorithm based on a particular BFS (LexM)

Roughly: 2 vertices are in a same bag if

they are in the same BFS-level

there is a path between them with internal vertices further from the root

Better approximation in general graphs? in planar graphs? Use this for treewidth?

Nicolas Nisse Tree-decompositions with bags of small diameter



10/25

Planar graphs: known results

Pathlength in Outerplanars
[Dissaux,N., LATIN 22]

p`(T ) in linear time in
trees;

Cycles: pl(Cn) = b n
2
c;

(+1)-approximation in
poly-time.
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Planar graphs: known results and our contributions

Treelength in Serie-Parallel
[Dissaux,Ducoffe,N.,Nivelle, LAGOS 21]

3
2

-approx. in O(n2)-time;

Exact for melon graphs;

Characterization of SP
graphs G s.t. t`(G) ≤ 2.

Pathlength in Outerplanars
[Dissaux,N., LATIN 22]

p`(T ) in linear time in
trees;

Cycles: pl(Cn) = b n
2
c;

(+1)-approximation in
poly-time.
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Treelength in Serie-Parallel graphs
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(2-connected) Serie-Parallel graphs
Serie parallel = K4-minor free graphs

G serie-parallel ⇔ Nested Ear decomposition [Eppstein 92]

Recursive construction:

Start with graph G0 that consists of a cycle E0;

At step i > 0, obtain Gi by adding an ear Ei (a path) attached, in a nested way,
to a previous ear Ej , j < i .
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(2-connected) Serie-Parallel graphs
Serie parallel = K4-minor free graphs

G serie-parallel ⇔ isometric Nested Ear decomposition [Dissaux,Ducoffe,N.,Nivelle 21]

Recursive construction:

Start with graph G0 that consists of a largest isometric cycle E0;

At step i > 0, obtain Gi , isometric subgraph, by adding an ear Ei (a path)
attached, in a nested way, to a previous ear Ej , j < i .

Isometric nested Ear decomposition can be computed in time O(n2).
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3
2-approximation for t` in Serie-Parallel graphs

Very simple algorithm [Dissaux,Ducoffe,N.,Nivelle 21]

Let (E0, · · · ,Ep) an isometric nested ear decomposition of a Serie-parallel graph G

Start with gone bag B0 containing E0;

For i = 1 to p, add a bag Bi containing Ei and adjacent to a bag Bj that
contains an ear Ej , j < i , to which Ei is attached.

Each bag ≈ subgraph of an isometric cycle ⇒ length ≤ is(G)
2

. Recall, is(G)
3
≤ t`(G).
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contains an ear Ej , j < i , to which Ei is attached.

Each bag ≈ subgraph of an isometric cycle ⇒ length ≤ is(G)
2

. Recall, is(G)
3
≤ t`(G).
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The simplest (?) subclass of Serie-Parallel graphs

Melon graph: paths
linking two vertices

Theorem: [Dissaux,Ducoffe,N.,Nivelle LAGOS 21]

Let G be a melon graph with paths of lengths `1 ≥ · · · ≥ `p

t`(G) = d `1+`p
3
e = d is(G)

3
e if `p ≤ d

`1+`p
3
e;

t`(G) = `p if d `1+`p
3
e ≤ `p ≤ d `1+`2

3
e;

t`(G) = d `1+`2
3
e otherwise.
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Deciding if t`(G ) ≤ 2 in Serie-Parallel graphs

.

Characterization by forbidden isometric subgraphs [Dissaux,Ducoffe,N.,Nivelle LAGOS 21]

Let G be a Serie-Parallel graphs. Then, t`(G) ≤ 2 if and only if is(G) ≤ 6 and G has
no Dumbo graph as isometric subgraph.

Polynomial-time algorithm that, given G Serie-parallel:

either returns an isometric cycle larger than 6 or an isometric Dumbo subgraph;

or compute a tree-decomposition of G of length at most 2.

Dumbo graph:

Proof:

by induction on the number of Ears;

must ensure that: if a forthcoming
ear is attached to two vertices x and
y , then there is a bag containing
them;

tedious case analysis depending on
the length of the ears.
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Pathlength in Outerplanar graphs
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Pathlength of trees

Linear time algorithm for any tree T [Dissaux,N. LATIN 22]

Let D = (v1, · · · , vd ) be a diameter. Start with one bag {v1, v2}

.

When arriving at a bag {vi−1, vi}:
order the leaves “around” vi in any DFS manner;

∀ path Pf from vi to a leaf f “around” it, in the DFS order, add a bag V (Pf )

then, add one bag {vi , vi+1}.

Length:
k = maxv∈V (T ) dist(v ,D)

so p`(T ) ≤ k

T contains the star Sk
with 3 branches of length
k as isometric subgraph.

p`(Sk ) = k [DG 07]

So, p`(T ) ≥ k.

⇒ p`(T ) = k.
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Pathlength of Outerplanar graphs

Outerplanar: K4,K2,3 minor-free ⇔ ∃ planar embedding with all vertices on outer-face

Example of 2-connected outerplanar:
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Pathlength of Outerplanar graphs

Outerplanar: K4,K2,3 minor-free ⇔ ∃ planar embedding with all vertices on outer-face

Let k ≥ 0. There exists an algorithm that: [Dissaux,N. LATIN 22]

given an outerplanar graph G , in time O(n3(n + k2)),

either returns a path-decomposition of length ≤ k + 1,

or states that p`(G) > k.

Two steps:

1 Show that, for every k ≥ p`(G), there exists a path-decomposition of length
≤ k + 1 with “good” properties;

2 Compute such a decomposition in polynomial-time.

Open: Does there exist an exact polynomial-time algorithm?

Nicolas Nisse Tree-decompositions with bags of small diameter



19/25

Pathlength of Outerplanar graphs: use the dual

Weak dual of outerplanar graph G is a tree G∗

Idea: “Mimic” the strategy on trees: follow a diameter, add “branches” in this order.
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Pathlength of Outerplanar graphs: use the dual

Weak dual of outerplanar graph G is a tree G∗

Idea: “Mimic” the strategy on trees: follow a diameter, add “branches” in this order.
Problem: no relation between diameters of G and G∗

Which “main” path to follow?
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Pathlength of Outerplanar graphs: use the dual

Weak dual of outerplanar graph G is a tree G∗

Idea: “Mimic” the strategy on trees: follow a diameter, add “branches” in this order.
Problem: no relation between diameters of G and G∗

Which “main” path to follow? We will try them all!
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(x , y)-Path-Decomposition
Let x , y ∈ E(G). (x , y)-Path-Decomposition: x in the first bag, y in the last bag.
p`(G , x , y): minimum length of a (x , y)-Path-Decomposition of G .

Lemma: p`(G) = min
x,y∈E(G)

p`(G , x , y).

We will try to compute an optimal (x , y)-Path-Decomposition for every x , y ∈ E(G).
(“only” O(n2) possibilities).
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(x , x)-Path-Decomposition: greedy algorithm

Computation of (x , y)-Path-Decomposition: Case x = y = {a, s}.

Greedy algorithm: add the vertices in the path-decomposition P in a DFS ordering
(from x) guided by the outer-face.

Lemma: length(P) = maxv∈V (G) max{dist(a, v), dist(s, v)} ≤ p`(G , x , x).
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(x , y)-Path-Decomposition: x , y not in a same face

x 6= y ∈ E(G)⇒ define a path in the dual

Case x 6= y ∈ E(G), and there are e1, · · · , eq edge separators of x and y .

Lemma: If x , y ∈ E(G) not in the same face, there exists an
(x , y)-Path-Decomposition with length p`(G , x , y) which is “well separated”.
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Case x 6= y ∈ E(G), and there are e1, · · · , eq edge separators of x and y .

Lemma: If x , y ∈ E(G) not in the same face, there exists an
(x , y)-Path-Decomposition with length p`(G , x , y) which is “well separated”.
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(x , y)-Path-Decomposition: x , y in a same face

x 6= y ∈ E(F ) for some face F .
Components of G \ F : “branches”.

Lemma: If x , y ∈ E(F ), there exists an (x , y)-Path-Decomposition with length which
“proceeds branch by branch”.
Moreover, for each branch Gi , it is a greedy (ei , ei )-path-decomposition.
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Components of G \ F : “branches”.

Lemma: If x , y ∈ E(F ), there exists an (x , y)-Path-Decomposition with length which
“proceeds branch by branch”.
Moreover, for each branch Gi , it is a greedy (ei , ei )-path-decomposition.
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(x , y)-Path-Decomposition: x , y in a same face
x 6= y ∈ E(F ) for some face F .
Components of G \ F : “branches”.

Lemma: If x , y ∈ E(F ), there exists an (x , y)-Path-Decomposition with length
p`(G , x , y) + 1 which “proceeds branch by branch”.
Moreover, for each branch Gi , it is a greedy (ei , ei )-path-decomposition.

Can we guess the ordering of the “branches”?
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(x , y)-Path-Decomposition: x , y in a same face

x 6= y ∈ E(F ) for some face F .
Components of G \ F : “branches”.

Lemma: If x , y ∈ E(F ), there exists an (x , y)-Path-Decomposition with length
p`(G , x , y) + 1 which “proceeds branch by branch”, from left to right.
Moreover, for each branch Gi , it is a greedy (ei , ei )-path-decomposition.
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(x , y)-Path-Decomposition: x , y in a same face
x 6= y ∈ E(F ) for some face F .
Components of G \ F : “branches”.

Lemma: If x , y ∈ E(F ), there exists an (x , y)-Path-Decomposition with length
p`(G , x , y) + 1 which “proceeds branch by branch”.
Moreover, for each branch Gi , it is a greedy (ei , ei )-path-decomposition.

By dynamic programming, in time O(n + |F |2) ≤ n + is(G)2 = O(n + p`(G)2).
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Pathlength of Outerplanar graphs

Let k ≥ 0. There exists an algorithm that: [Dissaux,N. LATIN 22]

given an outerplanar graph G , in time O(n3(n + k2)),

either returns a path-decomposition of length ≤ k + 1,

or states that p`(G) > k.

Remark: the +1 cannot be avoided in our algorithm.

11

3 3

6

66

6
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Further work

Treelength:

Complexity in Serie-parallel graphs?

Complexity in Planar graphs?

Complexity in bouded treewidth graphs?

New algorithmic applications?

Pathlength:

Complexity in Outerplanar graphs?

Complexity in Serie-parallel graphs?

Complexity in Planar graphs?

Complexity in bouded treewidth graphs?

New algorithmic applications?

Treewidth:

Complexity in Planar graphs?

In general, better practical approximation algorithms?

Thank you!
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Complexity in Planar graphs?
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