Tree-decompositions with bags of small diameter

Nicolas Nisse

Université Côte d'Azur, Inria, CNRS, I3S, France

COATI Christmas seminar, December 2022

joint work with Thomas Dissaux, Guillaume Ducoffe and Simon Nivelle

Nicolas Nisse Tree-decompositions with bags of small diameter

2/25

Tree-decomposition: Representation of a graph as a Tree with connectivity properties

Tree T + family $\mathcal{X} = (X_t)_{t \in V(T)}$ of "bags" (sets of vertices of G) Important: intersection of two adjacent bags = separator of G

イロト イヨト イヨト イヨト 三日

2/25

Tree-decomposition: Representation of a graph as a Tree with connectivity properties

Tree T + family $\mathcal{X} = (X_t)_{t \in V(T)}$ of "bags" (sets of vertices of G) Important: intersection of two adjacent bags = separator of G

イロト イヨト イヨト イヨト 三日

Tree-Decompositions

2/25

Tree-decomposition: Representation of a graph as a **Tree** with connectivity properties

Tree T + family $\mathcal{X} = (X_t)_{t \in V(T)}$ of "bags" (sets of vertices of G) Important: intersection of two adjacent bags = separator of G

- $\bigcup_{t\in V(T)} X_t = V(G);$
- for any $uv \in E(G)$, there exists a bag X_t containing u and v;
- for any $v \in V(G)$, $\{t \in V(T) \mid v \in X_t\}$ induces a subtree.

Tree-Decompositions

2/25

Tree-decomposition: Representation of a graph as a **Tree** with connectivity properties

Tree T + family $\mathcal{X} = (X_t)_{t \in V(T)}$ of "bags" (sets of vertices of G) Important: intersection of two adjacent bags = separator of G

Width of (T, X): size of largest bag (minus 1) Treewidth of a graph *G*, tw(G): min width over all tree-decompositions.

(I) < ((i) <

Path-Decompositions

2/25

Э

Path-decomposition: Representation of a graph as a Path with connectivity properties

Sequence (X_1, \dots, X_q) of "bags" (sets of vertices of G) s.t.

- $\bigcup_{1\leq i\leq q} X_i = V(G);$
- for any $uv \in E(G)$, there exists a bag X_i containing u and v;
- for any $1 \le i \le j \le k \le q$, $X_i \cap X_k \subseteq X_j$.

Width of (T, X): size of largest bag (minus 1) Pathwidth of a graph *G*, pw(G): min width over all path-decompositions.

Many important Algorithmic Applications of tw

- cornerstone of Graph Minors Theorem [Robertson and Seymour 1983-2004] \Rightarrow any graph property ($\Pi(G) \le k$) that is closed under minor is FPT in k
- problems expressible in MSOL solvable in polynomial time in graphs of bounded treewidth (dynamic programming) [Courcelle, 90]
 - any such problem is FPT in tw

- design of sub-exponential algorithms in some graph classes (e.g., planar, bounded genus, H-minor-free...) (bi-dimensionality) [Demaine et al. 04]
- design of FPT algorithms (meta-kernelization/protrusions) [Fomin et al. 09]

Main Problem: Computing tree-decomposition

Deciding if $tw(G) \leq k$?

Exact algorithms

н

- NP-hard if k part of the input
- FPT: algorithm in time $O(2^{k^3}n)$
- "practical" algorithms only for graph with treewidth \leq 4
- Branch & Bound algorithms (for small graphs)

Approximation algorithms

	6					
٩	2-approximation in time $O(2^k n)$	[Korhonen 21]				
٩	$\sqrt{\log OPT}$ -approximation in polynomial-time (SDP)	[Feige et al. 05]				
٩	assuming Small Set Expansion Conjecture, no poly-time constant-ratio approximation	[Wu,Austrin,Pitassi,Liu 14]				
٩	$3/2$ -approximation in planar graphs in time $O(n^3)$	[Seymour,Thomas 93]				
euristics						
٩	Mainly based on local complementations of edges (m	inimum fill-in: perfect				
	elimination ordering of vertices)	[Bodlaender <i>et al.</i>]				
_	4	ロンスロンスロンスロン				

\Rightarrow Very hard!

[Arnborg,Corneil,Prokurowski 87]

[Bodlaender.Kloks 96]

[Bodlaender *et al.* 12] [Coudert,Mazauric,N. 14]

e.g., [Sanders 96]

Approach: focus on other measure(s)

Two main problems:

What to do when the treewidth is large? how to compute "good" decompositions?

Instead of constraining the size of bags \Rightarrow constraint bags' metric/structural properties

Some examples

- bags' diameter (treelength) [Dourisboure,Gavoille 07, Lokstanov 10, Coudert,Ducoffe,N. 16]
 PTAS for TSP when bounded treelength, metric dimension FPT in treelength+max. degree...
- bags with short dominating path

compact routing in distributed computing

イロン イヨン イヨン イヨン

[Kosowski,Li,N,,Suchan 15]

[Sevmour 16]

bags' chromatic number (tree-chromatic number)

Nicolas Nisse

- bags' radius (treebreadth) [Dragan,Köhler 14, Ducoffe,Legay,N. 20]
- bags' independence number (tree-independence number) [Dallard,Milanic,Storgel 21] Maximum Weight Independent Packing problem FPT in tree-indep. number...

In this talk, we focus on bags' diameter

Treelength and pathlength

Length of (T, \mathcal{X}) : $\ell(T, \mathcal{X}) = \max_{t \in V(T)} \max_{u, v \in X_t} dist_G(u, v).$ [Dourisboure,Gavoille 07] Treelength of G, $t\ell(G)$: min. length among all tree-decompositions.

Pathlength of G, $p\ell(G)$: min. length among all path-decompositions. [Dragan.Köhler 14]

Nicolas Nisse

Tree-decompositions with bags of small diameter

Incomparable in general:

Cliques:

Occupies:

Nicolas Nisse Tree-decompositions with bags of small diameter

(日) (四) (三) (三) (三) (三)

Incomparable in general:

 Cliques: width arbitrary larger than length tℓ(K_n) = pℓ(K_n) = 1

$$tw(K_n) = pw(K_n) = n - 1.$$

(日) (四) (三) (三) (三) (三)

7/25

Occupies:

Incomparable in general:

 Cliques: width arbitrary larger than length tℓ(K_n) = pℓ(K_n) = 1

• Cycles:

$$tw(C_n) = pw(C_n) = 2.$$

.

Incomparable in general:

 Cliques: width arbitrary larger than length tl(K_n) = pl(K_n) = 1

- $tw(K_n) = pw(K_n) = n 1.$
- **Cycles:** length arbitrary larger than width $t\ell(C_n) = \lceil \frac{n}{3} \rceil$ [DG07] and $p\ell(C_n) = \lfloor \frac{n}{2} \rfloor$ [Dissaux,N. 22] $tw(C_n) = pw(C_n) = 2$.

Nicolas Nisse

Tree-decompositions with bags of small diameter

Incomparable in general:

- **Cliques:** width arbitrary larger than length $t\ell(K_n) = p\ell(K_n) = 1$
- **Cycles:** length arbitrary larger than width $t\ell(C_n) = \lfloor \frac{n}{3} \rfloor$ [DG07] and $p\ell(C_n) = \lfloor \frac{n}{2} \rfloor$ [Dissaux,N. 22] t

$$tw(C_n) = pw(C_n) = 2.$$

7/25

 $tw(K_n) = pw(K_n) = n - 1.$

(日) (四) (三) (三) (三) (三)

A subgraph H of a graph G is **isometric** if the distances are "preserved". That is, if $dist_H(u, v) = dist_G(u, v)$ for every $u, v \in V(H)$.

Tree/path-length closed under taking isometric subgraph	[Dourisboure,Gavoile 07]
For every isometric subgraph H of G, $t\ell(H) \leq t\ell(G)$ and $p\ell(H) \leq$	<i>pℓ(G)</i> .

Incomparable in general:

- Cliques: width arbitrary larger than length $t\ell(K_n) = p\ell(K_n) = 1$
- Cycles: length arbitrary larger than width $t\ell(C_n) = \lceil \frac{n}{2} \rceil$ [DG07] and $p\ell(C_n) = \lfloor \frac{n}{2} \rfloor$ [Dissaux, N. 22] $tw(C_n) = pw(C_n) = 2.$

$$t_{W}(C) = t_{W}(C) = 2$$

7/25

 $tw(K_n) = pw(K_n) = n - 1.$

(日) (四) (三) (三) (三) (三)

A subgraph H of a graph G is **isometric** if the distances are "preserved". That is, if $dist_H(u, v) = dist_G(u, v)$ for every $u, v \in V(H)$.

Tree/path-length closed under taking isometric subgraph [Dourisboure,Gavoile 07] For every isometric subgraph H of G, $t\ell(H) \leq t\ell(G)$ and $p\ell(H) \leq p\ell(G)$.

Let is(G) be the length of a largest isometric cycle in G. **Corollary:** For any graph G, $\lceil \frac{is(G)}{2} \rceil \leq t\ell(G)$ and $\lceil \frac{is(G)}{2} \rceil \leq p\ell(G)$.

Incomparable in general:

- Cliques: width arbitrary larger than length t l(K_n) = p l(K_n) = 1
- Cycles: length arbitrary larger than width $t\ell(C_n) = \lceil \frac{n}{3} \rceil$ [DG07] and $p\ell(C_n) = \lfloor \frac{n}{2} \rfloor$ [Dissaux,N. 22] $tw(C_n) = pw(C_n) = 2$.

A subgraph H of a graph G is **isometric** if the distances are "preserved". That is, if $dist_H(u, v) = dist_G(u, v)$ for every $u, v \in V(H)$.

Tree/path-length closed under taking isometric subgraph

[Dourisboure,Gavoile 07]

 $tw(K_n) = pw(K_n) = n - 1.$

(日) (四) (三) (三) (三) (三)

For every isometric subgraph H of G, $t\ell(H) \leq t\ell(G)$ and $p\ell(H) \leq p\ell(G)$.

Let is(G) be the length of a largest isometric cycle in G.

Corollary: For any graph
$$G$$
, $\lceil \frac{is(G)}{3} \rceil \leq t\ell(G)$ and $\lfloor \frac{is(G)}{2} \rfloor \leq p\ell(G)$.

Cliques and large isometric cycles are the "single" extreme cases. [Coudert,Ducoffe,N. 16] $tl(G) = \Theta(tw(G))$ in any apex-free graph G with bounded largest isometric cycles.

Computation of tree/path-decompositions

	Treewidth	Pathwidth	Treelength	Pathlength
	$tw(G) \leq k?$	$pw(G) \leq k?$	$t\ell(G) \leq k?$	$p\ell(G) \leq k?$
k part of	NP-complete			
the input	[Arnborg et al. 87]			
exact FPT	in time $2^{O(k^3)}n$		NP-c for $k = 2$	NP-c for $k = 2$
(parameter k)	[Bodlaender,Kloks 96]		[Lokshtanov 10]	[Ducoffe,Legay,N. 20]
	$tw \log^{\frac{1}{2}}(tw)$	$pw \log^{\frac{3}{2}}(pw)$	$3 \cdot t\ell$	2 · <i>p</i> ℓ
approximation	in time $n^{O(1)}$ [Feige et al. 08]		in time $O(n)$	
algorithms			[Dourisboure,Gavoille 07]	[Dragan et al. 17]
(in general	2 · k in time		no $\frac{3}{2}$ -approx	
graphs)	2 ^{O(k)} n		unless $P = NP$	
	[Korhonen 21]		[Lokshtanov 10]	
	Open			
planar		NP-complete		
graphs	$\frac{3}{2}$ -approx	[Monien,	Open	
	in time $O(n^3)$	[Sudborough 88]		
	[Seymour, Thomas 93]			

Nicolas Nisse Tree-decompositions with bags of small diameter

(日) (四) (三) (三) (三) (三)

Computation of tree/path-decompositions

	Treewidth	Pathwidth	Treelength	Pathlength
	$tw(G) \leq k?$	$pw(G) \leq k?$	$t\ell(G) \leq k?$	$p\ell(G) \leq k?$
k part of	NP-complete			
the input	[Arnborg et al. 87]			
exact FPT	in time $2^{O(k^3)}n$		NP-c for $k = 2$	NP-c for $k = 2$
(parameter k)	[Bodlaender,Kloks 96]		[Lokshtanov 10]	[Ducoffe,Legay,N. 20]
	$tw \log^{\frac{1}{2}}(tw)$	$pw \log^{\frac{3}{2}}(pw)$	$3 \cdot t\ell$	2 · <i>p</i> ℓ
approximation	in time $n^{O(1)}$ [Feige et al. 08]		in time $O(n)$	
algorithms			[Dourisboure,Gavoille 07]	[Dragan et al. 17]
(in general	2 · k in time		no $\frac{3}{2}$ -approx	
graphs)	2 ^{O(k)} n		unless $P = NP$	
	[Korhonen 21]		[Lokshtanov 10]	
	Open			
planar	_	NP-complete		
graphs	$\frac{3}{2}$ -approx	[Monien,	Open	
	in time $O(n^3)$	[Sudborough 88]		
	[Seymour, Thomas 93]			

Nicolas Nisse Tree-decompositions with bags of small diameter

(日) (四) (三) (三) (三) (三)

3 approximation for treelength

9/25

Algorithm based on a particular BFS (LexM)

Roughly: 2 vertices are in a same bag if

- they are in the same BFS-level
- there is a path between them with internal vertices further from the root

3 approximation for treelength

9/25

Algorithm based on a particular BFS (LexM)

Roughly: 2 vertices are in a same bag if

- they are in the same BFS-level
- there is a path between them with internal vertices further from the root

(I) < ((i) <

3 approximation for treelength

9/25

Algorithm based on a particular BFS (LexM)

Roughly: 2 vertices are in a same bag if

- they are in the same BFS-level
- there is a path between them with internal vertices further from the root

Better approximation in general graphs? in planar graphs? Use this for treewidth?

(日) (四) (三) (三) (三) (三)

Planar graphs: known results

Nicolas Nisse Tree-decompositions with bags of small diameter

(日)

Planar graphs: known results and our contributions

Treelength in Serie-Parallel

[Dissaux, Ducoffe, N., Nivelle, LAGOS 21]

- $\frac{3}{2}$ -approx. in $O(n^2)$ -time;
- Exact for melon graphs;
- Characterization of SP graphs G s.t. tℓ(G) ≤ 2.

イロト イヨト イヨト イヨト 三日

Planar graphs: known results and our contributions

Treelength in Serie-Parallel [Dissaux.Ducoffe.N..Nivelle. LAGOS 21]

[Dissaux,Ducoffe,N.,Nivelle, LAGOS 21]

- $\frac{3}{2}$ -approx. in $O(n^2)$ -time;
- Exact for melon graphs;
- Characterization of SP graphs G s.t. tℓ(G) ≤ 2.

Pathlength in Outerplanars

[Dissaux, N., LATIN 22]

10/25

- *pl(T)* in linear time in trees;
- Cycles: $pl(C_n) = \lfloor \frac{n}{2} \rfloor;$
- (+1)-approximation in poly-time.

イロト イヨト イヨト イヨト 三日

Treelength in Serie-Parallel graphs

Serie parallel = K_4 -minor free graphs

G serie-parallel \Leftrightarrow Nested Ear decomposition

[Eppstein 92]

12/25

Recursive construction:

- Start with graph G_0 that consists of a cycle E_0 ;
- At step i > 0, obtain G_i by adding an ear E_i (a path) attached, in a nested way, to a previous ear E_i, j < i.

Nicolas Nisse Tree-decompositions with bags of small diameter

イロト イヨト イヨト イヨト

Serie parallel = K_4 -minor free graphs

G serie-parallel \Leftrightarrow Nested Ear decomposition

[Eppstein 92]

12/25

Recursive construction:

- Start with graph G_0 that consists of a cycle E_0 ;
- At step i > 0, obtain G_i by adding an ear E_i (a path) attached, in a nested way, to a previous ear E_i, j < i.

イロト イヨト イヨト イヨト

Serie parallel = K_4 -minor free graphs

G serie-parallel \Leftrightarrow Nested Ear decomposition

[Eppstein 92]

12/25

Recursive construction:

- Start with graph G_0 that consists of a cycle E_0 ;
- At step i > 0, obtain G_i by adding an ear E_i (a path) attached, in a nested way, to a previous ear E_i, j < i.

Serie parallel = K_4 -minor free graphs

G serie-parallel \Leftrightarrow Nested Ear decomposition

[Eppstein 92]

12/25

Recursive construction:

- Start with graph G_0 that consists of a cycle E_0 ;
- At step i > 0, obtain G_i by adding an ear E_i (a path) attached, in a nested way, to a previous ear E_i, j < i.

Serie parallel = K_4 -minor free graphs

G serie-parallel \Leftrightarrow Nested Ear decomposition

[Eppstein 92]

12/25

Recursive construction:

- Start with graph G_0 that consists of a cycle E_0 ;
- At step i > 0, obtain G_i by adding an ear E_i (a path) attached, in a nested way, to a previous ear E_i, j < i.

Serie parallel = K_4 -minor free graphs

G serie-parallel \Leftrightarrow Nested Ear decomposition

[Eppstein 92]

12/25

Recursive construction:

- Start with graph G_0 that consists of a cycle E_0 ;
- At step i > 0, obtain G_i by adding an ear E_i (a path) attached, in a nested way, to a previous ear E_i, j < i.

Serie parallel = K_4 -minor free graphs

G serie-parallel \Leftrightarrow Nested Ear decomposition

[Eppstein 92]

Recursive construction:

- Start with graph G_0 that consists of a cycle E_0 ;
- At step i > 0, obtain G_i by adding an ear E_i (a path) attached, in a nested way, to a previous ear E_i, j < i.

12/25

Serie parallel = K_4 -minor free graphs

G serie-parallel \Leftrightarrow Nested Ear decomposition

[Eppstein 92]

Recursive construction:

- Start with graph G_0 that consists of a cycle E_0 ;
- At step i > 0, obtain G_i by adding an ear E_i (a path) attached, in a nested way, to a previous ear E_i, j < i.

・ 同 ト ・ ヨ ト ・ ヨ ト

Serie parallel = K_4 -minor free graphs

G serie-parallel \Leftrightarrow Nested Ear decomposition

[Eppstein 92]

Recursive construction:

- Start with graph G_0 that consists of a cycle E_0 ;
- At step i > 0, obtain G_i by adding an ear E_i (a path) attached, in a nested way, to a previous ear E_i, j < i.

Serie parallel = K_4 -minor free graphs

G serie-parallel \Leftrightarrow isometric Nested Ear decomposition[Dissaux,Ducoffe,N.,Nivelle 21]Recursive construction:• Start with graph G_0 that consists of a largest isometric cycle E_0 ;

• At step i > 0, obtain G_i , isometric subgraph, by adding an ear E_i (a path) attached, in a nested way, to a previous ear E_i , j < i.

Isometric nested Ear decomposition can be computed in time $O(n^2)$.

Very simple algorithm

[Dissaux,Ducoffe,N.,Nivelle 21]

Let (E_0, \dots, E_p) an isometric nested ear decomposition of a Serie-parallel graph G

- Start with gone bag B₀ containing E₀;
- For i = 1 to p, add a bag B_i containing E_i and adjacent to a bag B_j that contains an ear E_i , j < i, to which E_i is attached.

Very simple algorithm

[Dissaux,Ducoffe,N.,Nivelle 21]

Let (E_0, \dots, E_p) an isometric nested ear decomposition of a Serie-parallel graph G

- Start with gone bag B₀ containing E₀;
- For i = 1 to p, add a bag B_i containing E_i and adjacent to a bag B_j that contains an ear E_i , j < i, to which E_i is attached.

Very simple algorithm

[Dissaux,Ducoffe,N.,Nivelle 21]

Let (E_0, \dots, E_p) an isometric nested ear decomposition of a Serie-parallel graph G

- Start with gone bag B₀ containing E₀;
- For i = 1 to p, add a bag B_i containing E_i and adjacent to a bag B_j that contains an ear E_i , j < i, to which E_i is attached.

Very simple algorithm

[Dissaux, Ducoffe, N., Nivelle 21]

Let (E_0, \dots, E_p) an isometric nested ear decomposition of a Serie-parallel graph G

- Start with gone bag B₀ containing E₀;
- For i = 1 to p, add a bag B_i containing E_i and adjacent to a bag B_j that contains an ear E_i , j < i, to which E_i is attached.

Very simple algorithm

[Dissaux,Ducoffe,N.,Nivelle 21]

Let (E_0, \dots, E_p) an isometric nested ear decomposition of a Serie-parallel graph G

- Start with gone bag B₀ containing E₀;
- For i = 1 to p, add a bag B_i containing E_i and adjacent to a bag B_j that contains an ear E_i , j < i, to which E_i is attached.

Very simple algorithm

[Dissaux,Ducoffe,N.,Nivelle 21]

Let (E_0, \dots, E_p) an isometric nested ear decomposition of a Serie-parallel graph G

- Start with gone bag B₀ containing E₀;
- For i = 1 to p, add a bag B_i containing E_i and adjacent to a bag B_j that contains an ear E_i , j < i, to which E_i is attached.

Very simple algorithm

[Dissaux,Ducoffe,N.,Nivelle 21]

Let (E_0, \dots, E_p) an isometric nested ear decomposition of a Serie-parallel graph G

- Start with gone bag B₀ containing E₀;
- For i = 1 to p, add a bag B_i containing E_i and adjacent to a bag B_j that contains an ear E_i , j < i, to which E_i is attached.

Very simple algorithm

[Dissaux,Ducoffe,N.,Nivelle 21]

Let (E_0, \dots, E_p) an isometric nested ear decomposition of a Serie-parallel graph G

- Start with gone bag B₀ containing E₀;
- For i = 1 to p, add a bag B_i containing E_i and adjacent to a bag B_j that contains an ear E_i , j < i, to which E_i is attached.

The simplest (?) subclass of Serie-Parallel graphs

Melon graph: paths linking two vertices

Theorem:

[Dissaux, Ducoffe, N., Nivelle LAGOS 21]

14/25

Let G be a melon graph with paths of lengths $\ell_1 \geq \cdots \geq \ell_p$

•
$$t\ell(G) = \lceil \frac{\ell_1 + \ell_p}{3} \rceil = \lceil \frac{is(G)}{3} \rceil$$
 if $\ell_p \leq \lceil \frac{\ell_1 + \ell_p}{3} \rceil$;

•
$$t\ell(G) = \ell_p$$
 if $\lceil \frac{\ell_1 + \ell_p}{3} \rceil \le \ell_p \le \lceil \frac{\ell_1 + \ell_2}{3} \rceil;$

•
$$t\ell(G) = \lceil \frac{\ell_1 + \ell_2}{3} \rceil$$
 otherwise.

The simplest (?) subclass of Serie-Parallel graphs

Melon graph: paths linking two vertices

Theorem:

[Dissaux, Ducoffe, N., Nivelle LAGOS 21]

14/25

Let G be a melon graph with paths of lengths $\ell_1 \geq \cdots \geq \ell_p$

•
$$t\ell(G) = \lceil \frac{\ell_1 + \ell_p}{3} \rceil = \lceil \frac{is(G)}{3} \rceil$$
 if $\ell_p \leq \lceil \frac{\ell_1 + \ell_p}{3} \rceil$;

•
$$t\ell(G) = \ell_p$$
 if $\lceil \frac{\ell_1 + \ell_p}{3} \rceil \le \ell_p \le \lceil \frac{\ell_1 + \ell_2}{3} \rceil;$

•
$$t\ell(G) = \lceil \frac{\ell_1 + \ell_2}{3} \rceil$$
 otherwise.

Nicolas Nisse

Deciding if $t\ell(G) \leq 2$ in Serie-Parallel graphs

Characterization by forbidden isometric subgraphs [Dissaux, Ducoffe, N., Nivelle LAGOS 21]

Let G be a Serie-Parallel graphs. Then, $t\ell(G) \leq 2$ if and only if $is(G) \leq 6$ and G has no Dumbo graph as isometric subgraph.

Polynomial-time algorithm that, given G Serie-parallel:

- either returns an isometric cycle larger than 6 or an isometric Dumbo subgraph;
- or compute a tree-decomposition of G of length at most 2.

Dumbo graph:

15/25

Deciding if $t\ell(G) \leq 2$ in Serie-Parallel graphs

Characterization by forbidden isometric subgraphs

[Dissaux,Ducoffe,N.,Nivelle LAGOS 21]

イロン イヨン イヨン イヨン

Let G be a Serie-Parallel graphs. Then, $t\ell(G) \leq 2$ if and only if $is(G) \leq 6$ and G has no Dumbo graph as isometric subgraph.

Polynomial-time algorithm that, given G Serie-parallel:

- either returns an isometric cycle larger than 6 or an isometric Dumbo subgraph;
- or compute a tree-decomposition of G of length at most 2.

Proof:

- by induction on the number of Ears;
- must ensure that: if a forthcoming ear is attached to two vertices x and y, then there is a bag containing them;
- tedious case analysis depending on the length of the ears.

Pathlength in Outerplanar graphs

・ロト ・回ト ・ヨト ・ヨト

16/25

æ

[Dissaux,N. LATIN 22]

17/25

표 문 문

Nicolas Nisse Tree-decompositions with bags of small diameter

Linear time algorithm for any tree T

[Dissaux, N. LATIN 22]

17/25

Let $D = (v_1, \cdots, v_d)$ be a diameter.

Linear time algorithm for any tree T

[Dissaux,N. LATIN 22]

17/25

Э

Let $D = (v_1, \cdots, v_d)$ be a diameter.

Linear time algorithm for any tree T

[Dissaux,N. LATIN 22]

E + 4 E +

17/25

Let $D = (v_1, \dots, v_d)$ be a diameter. Start with one bag $\{v_1, v_2\}$.

Nicolas Nisse Tree-decompositions with bags of small diameter

Linear time algorithm for any tree T

[Dissaux,N. LATIN 22]

글 🖌 🖌 글 🕨

17/25

- order the leaves "around" v_i in any DFS manner;
- \forall path P_f from v_i to a leaf f "around" it, in the DFS order, add a bag $V(P_f)$
- then, add one bag $\{v_i, v_{i+1}\}$.

Linear time algorithm for any tree T

[Dissaux,N. LATIN 22]

글 🖌 🖌 글 🕨

17/25

- order the leaves "around" v_i in any DFS manner;
- \forall path P_f from v_i to a leaf f "around" it, in the DFS order, add a bag $V(P_f)$
- then, add one bag $\{v_i, v_{i+1}\}$.

Linear time algorithm for any tree T

[Dissaux,N. LATIN 22]

3 1 4 3 1

17/25

- order the leaves "around" v_i in any DFS manner;
- \forall path P_f from v_i to a leaf f "around" it, in the DFS order, add a bag $V(P_f)$
- then, add one bag $\{v_i, v_{i+1}\}$.

Linear time algorithm for any tree T

[Dissaux,N. LATIN 22]

→ < ∃ →</p>

17/25

- order the leaves "around" v_i in any DFS manner;
- \forall path P_f from v_i to a leaf f "around" it, in the DFS order, add a bag $V(P_f)$
- then, add one bag $\{v_i, v_{i+1}\}$.

Linear time algorithm for any tree T

[Dissaux,N. LATIN 22]

- ∢ ⊒ ⊳

17/25

- order the leaves "around" v_i in any DFS manner;
- \forall path P_f from v_i to a leaf f "around" it, in the DFS order, add a bag $V(P_f)$
- then, add one bag $\{v_i, v_{i+1}\}$.

Linear time algorithm for any tree T

[Dissaux,N. LATIN 22]

- ∢ ⊒ ⊳

17/25

- order the leaves "around" v_i in any DFS manner;
- \forall path P_f from v_i to a leaf f "around" it, in the DFS order, add a bag $V(P_f)$
- then, add one bag $\{v_i, v_{i+1}\}$.

Linear time algorithm for any tree T

[Dissaux,N. LATIN 22]

17/25

Let $D = (v_1, \dots, v_d)$ be a diameter. Start with one bag $\{v_1, v_2\}$. When arriving at a bag $\{v_{i-1}, v_i\}$:

- order the leaves "around" v_i in any DFS manner;
- \forall path P_f from v_i to a leaf f "around" it, in the DFS order, add a bag $V(P_f)$
- then, add one bag $\{v_i, v_{i+1}\}$.

Nicolas Nisse Tree-decompositions with bags of small diameter

Linear time algorithm for any tree T

[Dissaux,N. LATIN 22]

17/25

- order the leaves "around" v_i in any DFS manner;
- \forall path P_f from v_i to a leaf f "around" it, in the DFS order, add a bag $V(P_f)$
- then, add one bag $\{v_i, v_{i+1}\}$.

Linear time algorithm for any tree T

[Dissaux,N. LATIN 22]

17/25

- order the leaves "around" v_i in any DFS manner;
- \forall path P_f from v_i to a leaf f "around" it, in the DFS order, add a bag $V(P_f)$
- then, add one bag $\{v_i, v_{i+1}\}$.

Linear time algorithm for any tree T

[Dissaux,N. LATIN 22]

17/25

Let $D = (v_1, \dots, v_d)$ be a diameter. Start with one bag $\{v_1, v_2\}$. When arriving at a bag $\{v_{i-1}, v_i\}$:

- order the leaves "around" v_i in any DFS manner;
- \forall path P_f from v_i to a leaf f "around" it, in the DFS order, add a bag $V(P_f)$
- then, add one bag $\{v_i, v_{i+1}\}$.

Nicolas Nisse Tree-decompositions with bags of small diameter

Linear time algorithm for any tree T

[Dissaux,N. LATIN 22]

17/25

Let $D = (v_1, \dots, v_d)$ be a diameter. Start with one bag $\{v_1, v_2\}$. When arriving at a bag $\{v_{i-1}, v_i\}$:

- order the leaves "around" v_i in any DFS manner;
- \forall path P_f from v_i to a leaf f "around" it, in the DFS order, add a bag $V(P_f)$
- then, add one bag $\{v_i, v_{i+1}\}$.

Nicolas Nisse Tree-decompositions with bags of small diameter

Linear time algorithm for any tree T

[Dissaux, N. LATIN 22]

17/25

- order the leaves "around" v_i in any DFS manner;
- \forall path P_f from v_i to a leaf f "around" it, in the DFS order, add a bag $V(P_f)$
- then, add one bag $\{v_i, v_{i+1}\}$.

Linear time algorithm for any tree T

[Dissaux,N. LATIN 22]

17/25

- order the leaves "around" v_i in any DFS manner;
- \forall path P_f from v_i to a leaf f "around" it, in the DFS order, add a bag $V(P_f)$
- then, add one bag $\{v_i, v_{i+1}\}$.

Linear time algorithm for any tree T

[Dissaux, N. LATIN 22]

17/25

Let $D = (v_1, \dots, v_d)$ be a diameter. Start with one bag $\{v_1, v_2\}$. When arriving at a bag $\{v_{i-1}, v_i\}$:

- order the leaves "around" v_i in any DFS manner;
- \forall path P_f from v_i to a leaf f "around" it, in the DFS order, add a bag $V(P_f)$
- then, add one bag $\{v_i, v_{i+1}\}$.

Nicolas Nisse

Linear time algorithm for any tree T

[Dissaux,N. LATIN 22]

17/25

- order the leaves "around" v_i in any DFS manner;
- \forall path P_f from v_i to a leaf f "around" it, in the DFS order, add a bag $V(P_f)$
- then, add one bag $\{v_i, v_{i+1}\}$.

Linear time algorithm for any tree T

[Dissaux, N. LATIN 22]

17/25

Let $D = (v_1, \dots, v_d)$ be a diameter. Start with one bag $\{v_1, v_2\}$. When arriving at a bag $\{v_{i-1}, v_i\}$:

- order the leaves "around" v_i in any DFS manner;
- \forall path P_f from v_i to a leaf f "around" it, in the DFS order, add a bag $V(P_f)$
- then, add one bag $\{v_i, v_{i+1}\}$.

Linear time algorithm for any tree T

[Dissaux,N. LATIN 22]

17/25

Let $D = (v_1, \dots, v_d)$ be a diameter. Start with one bag $\{v_1, v_2\}$. When arriving at a bag $\{v_{i-1}, v_i\}$:

- order the leaves "around" v_i in any DFS manner;
- \forall path P_f from v_i to a leaf f "around" it, in the DFS order, add a bag $V(P_f)$
- then, add one bag $\{v_i, v_{i+1}\}$.

Nicolas Nisse

Linear time algorithm for any tree T

[Dissaux,N. LATIN 22]

Let $D = (v_1, \dots, v_d)$ be a diameter. Start with one bag $\{v_1, v_2\}$. When arriving at a bag $\{v_{i-1}, v_i\}$:

- order the leaves "around" v_i in any DFS manner;
- \forall path P_f from v_i to a leaf f "around" it, in the DFS order, add a bag $V(P_f)$

• then, add one bag $\{v_i, v_{i+1}\}$.

Linear time algorithm for any tree T

[Dissaux, N. LATIN 22]

17/25

Let $D = (v_1, \dots, v_d)$ be a diameter. Start with one bag $\{v_1, v_2\}$. When arriving at a bag $\{v_{i-1}, v_i\}$:

- order the leaves "around" v_i in any DFS manner;
- \forall path P_f from v_i to a leaf f "around" it, in the DFS order, add a bag $V(P_f)$

• then, add one bag $\{v_i, v_{i+1}\}$.

Pathlength of trees

Linear time algorithm for any tree T

[Dissaux, N. LATIN 22]

[DG 07]

17/25

Let $D = (v_1, \dots, v_d)$ be a diameter. Start with one bag $\{v_1, v_2\}$. When arriving at a bag $\{v_{i-1}, v_i\}$:

- order the leaves "around" v_i in any DFS manner;
- \forall path P_f from v_i to a leaf f "around" it, in the DFS order, add a bag $V(P_f)$

• then, add one bag $\{v_i, v_{i+1}\}$.

Nicolas Nisse

Tree-decompositions with bags of small diameter

Pathlength of Outerplanar graphs

Outerplanar: K_4 , $K_{2,3}$ minor-free $\Leftrightarrow \exists$ planar embedding with all vertices on outer-face Example of 2-connected outerplanar:

・ 同 ト ・ 三 ト ・ 三 ト

Pathlength of Outerplanar graphs

Outerplanar: $K_4, K_{2,3}$ minor-free $\Leftrightarrow \exists$ planar embedding with all vertices on outer-face

Let $k \ge 0$. There exists an algorithm that:[Dissaux,N. LATIN 22]given an outerplanar graph G, in time $O(n^3(n + k^2))$,• either returns a path-decomposition of length $\le k + 1$,• or states that $p\ell(G) > k$.

Two steps:

- Show that, for every $k \ge p\ell(G)$, there exists a path-decomposition of length $\le k + 1$ with "good" properties;
- 2 Compute such a decomposition in polynomial-time.

Open: Does there exist an exact polynomial-time algorithm?

・ロト ・日ト ・ヨト ・ヨト

Pathlength of Outerplanar graphs: use the dual

Weak dual of outerplanar graph G is a tree G^* Idea: "Mimic" the strategy on trees: follow a diameter, add "branches" in this order.

・ 同 ト ・ ヨ ト ・ ヨ ト

Pathlength of Outerplanar graphs: use the dual

Weak dual of outerplanar graph G is a tree G^* Idea: "Mimic" the strategy on trees: follow a diameter, add "branches" in this order. Problem: no relation between diameters of G and G^*

Which "main" path to follow?

(I) < ((i) <

Pathlength of Outerplanar graphs: use the dual

Weak dual of outerplanar graph G is a tree G^* Idea: "Mimic" the strategy on trees: follow a diameter, add "branches" in this order. Problem: no relation between diameters of G and G^*

Which "main" path to follow? We will try them all!

(I) < ((i) <

(x, y)-Path-Decomposition

Let $x, y \in E(G)$. (x, y)-Path-Decomposition: x in the first bag, y in the last bag. $p\ell(G, x, y)$: minimum length of a (x, y)-Path-Decomposition of G.

Lemma: $p\ell(G) = \min_{x,y\in E(G)} p\ell(G,x,y).$

We will try to compute an optimal (x, y)-Path-Decomposition for every $x, y \in E(G)$. ("only" $O(n^2)$ possibilities).

(x, x)-Path-Decomposition: greedy algorithm

Computation of (x, y)-Path-Decomposition: Case $x = y = \{a, s\}$.

Greedy algorithm: add the vertices in the path-decomposition P in a DFS ordering (from x) guided by the outer-face.

Lemma: $length(P) = \max_{v \in V(G)} \max\{dist(a, v), dist(s, v)\} \le p\ell(G, x, x).$

 $x \neq y \in E(G) \Rightarrow$ define a path in the dual

 $x \neq y \in E(G) \Rightarrow$ define a path in the dual Case $x \neq y \in E(G)$, and there are e_1, \dots, e_q edge separators of x and y.

 $x \neq y \in E(G) \Rightarrow$ define a path in the dual Case $x \neq y \in E(G)$, and there are e_1, \dots, e_q edge separators of x and y.

Lemma: If $x, y \in E(G)$ not in the same face, there exists an (x, y)-Path-Decomposition with length $p\ell(G, x, y)$ which is "well separated".

Nicolas Nisse Tree-decompositions with bags of small diameter

 $x \neq y \in E(F)$ for some face F. Components of $G \setminus F$: "branches".

 $x \neq y \in E(F)$ for some face F. Components of $G \setminus F$: "branches".

Nicolas Nisse Tree-decompositions with bags of small diameter

23/25

Э

 $x \neq y \in E(F)$ for some face F. Components of $G \setminus F$: "branches".

Lemma: If $x, y \in E(F)$, there exists an (x, y)-Path-Decomposition with length $p\ell(G, x, y) + 1$ which "proceeds branch by branch". Moreover, for each branch G_i , it is a greedy (e_i, e_i) -path-decomposition.

Can we guess the ordering of the "branches"?

Nicolas Nisse Tree-decompositions with bags of small diameter

 $x \neq y \in E(F)$ for some face F. Components of $G \setminus F$: "branches".

Lemma: If $x, y \in E(F)$, there exists an (x, y)-Path-Decomposition with length $p\ell(G, x, y) + 1$ which "proceeds branch by branch", from left to right. Moreover, for each branch G_i , it is a greedy (e_i, e_i) -path-decomposition.

 $x \neq y \in E(F)$ for some face F. Components of $G \setminus F$: "branches".

Lemma: If $x, y \in E(F)$, there exists an (x, y)-Path-Decomposition with length $p\ell(G, x, y) + 1$ which "proceeds branch by branch". Moreover, for each branch G_i , it is a greedy (e_i, e_i) -path-decomposition.

By dynamic programming, in time $O(n + |F|^2) \le n + is(G)^2 = O(n + p\ell(G)^2)$.

Nicolas Nisse Tree-decompositions with bags of small diameter

Pathlength of Outerplanar graphs

Let $k \ge 0$. There exists an algorithm that:

given an outerplanar graph G, in time $O(n^3(n+k^2))$,

- either returns a path-decomposition of length $\leq k + 1$,
- or states that $p\ell(G) > k$.

Remark: the +1 cannot be avoided in our algorithm.

[Dissaux, N. LATIN 22]

Further work

Treelength:

- Complexity in Serie-parallel graphs?
- Complexity in Planar graphs?
- Complexity in bouded treewidth graphs?
- New algorithmic applications?

Pathlength:

- Complexity in Outerplanar graphs?
- Complexity in Serie-parallel graphs?
- Complexity in Planar graphs?
- Complexity in bouded treewidth graphs?
- New algorithmic applications?

Treewidth:

• Complexity in Planar graphs?

In general, better practical approximation algorithms?

・ 同 ト ・ ヨ ト ・ ヨ ト

Further work

Treelength:

- Complexity in Serie-parallel graphs?
- Complexity in Planar graphs?
- Complexity in bouded treewidth graphs?
- New algorithmic applications?

Pathlength:

- Complexity in Outerplanar graphs?
- Complexity in Serie-parallel graphs?
- Complexity in Planar graphs?
- Complexity in bouded treewidth graphs?
- New algorithmic applications?

Treewidth:

• Complexity in Planar graphs?

In general, better practical approximation algorithms?

Thank you!

(日本) (日本) (日本)