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How to find Dorian in MASCOTTE’s floor?

Take advantage of your knowledge
Map, sense of direction (left/right, north/south...), topology...
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How to find Dorian in MASCOTTE’s floor?

Algorithm A (Advice)

Keep on following the advice until the target t is found.
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Algorithm A (Advice)

Keep on following the advice until the target t is found
(LOOP).
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How to find a cash machine in NY ?

Take advantage of your knowledge
Map, sense of direction (left/right, north/south...), topology...
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Searching for information in networks with liars

IS IT A GOOD ADVICE ?

ADVICE

destination

source : where to go ?

Numerous adversaries
the network map and
the target location
unknown
dynamicity =⇒ local
information unreliable

Some models of searching with errors
For every target t, each node gives an advice. If this advice is
bad, the node is a liar.

Searching with uncertainty, SIROCCO’1999, Kranakis-Krizanc

Searching with mobile agents in networks with liars, Disc.
Applied Maths. 2004, Hanusse-Kranakis-Krizanc
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shortest path
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destination
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the target location
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A model of searching with errors
Lille

Caen

Rennes

Nantes

Nice

Toulouse Montpellier
Marseille

Lyon

Bordeaux

Paris

Local information
advice: For each target t,
every node u points to an
incident link e;
If e is on a shortest path
from u to t, u is a
truthteller , otherwise a
liar.

Hypothesis
Advice and topology are unchanged during the search;
worst-case analysis: The adversary knows the
algorithm and chooses the worst configuration of advice.
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Performance Measures

Performance Measures
n: # nodes, k : # liars, d : distance to the target
Time T : # hops to reach the target
MemoryM: of the mobile agent

1 2 3 4 5 6 7 9 118 10

With sense of direction:
T ≤ 2n etM = Θ(1) - whole exploration
T = Θ(d) etM = Θ(log n) - zigzag
T ≤ d + 4k + 2 etM = Θ(log k) - using advice, know k
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State of the art

2 types of results
specialized deterministic algorithms: ring, hypercube,
complete graph, ...
universal randomized algorithms withM = 0: random
walk (R), biasest random walk (BR)

Examples

T = Ω(d + 2k) for binary trees for any algorithms;
T = O(d + 2Θ(k)) for bounded degree graphs (BR);
T = Ω(d + 2k) for the path (BR)
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State of the art

Idea of the lower bound in trees
T = Ω(d + 2k) for binary trees for any algorithms;

k

liar

liar

liar

source, liar

target

Everything is symmetric: Ω(2k) leaves look the same
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Contribution

Goal
Designing universal algorithms using the least amount of
requirements :

no hypothesis on ports/nodes labeling ...
light mobile agents (M = O(log n))
no knowledge on k .

New results
New algorithm: using the moody walk or R/A and
M = O(log k)

E(T ) = 2d + O(k5) for the path
E(T ) = O(k3 log3 n) for some expanders (random
regular)
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Biasest random walk VS moody walk

Algorithm BR
With probability p, follow the advice (A);
Otherwise, the agent chooses a neighbor at random (R).

R A A A A A A A

A

R R R R R R

R

LR

p=1/2

R A

BR

Algorithm R/A [LR , LA]

Keep on alternating Algorithm R for LR hops and Algorithm A
for LA hops.
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Ring or path
Gain: r.v X - distance reduction to t in one iteration.
Phase R during L steps

With probability 1− 2/kc , |XR | <
√

L log k ;

With probability 1− 2/e, |XR | <
√

L.

ts t

p
L log k

Algorithm R/A[L, L]

Safe area: whp. XA > L−
√

L log k .
Dangerous area: connected component of nodes at
distance at most

√
L log k from liars.
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Path

tt

R

R

A AA

√
L

Phase A (dangerous area)

1 −k ≤ XA < 0 with prob. O(k/
√

L);
2 XA ≥

√
2L/k − 1 with prob. Θ(1);

3 E(X ) = E(XA) and E(XA) ≥
√

L
40k − 1.
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Performance of Moody walk on Path

With knowledge of k

For L > 32k3, R/A[L,L] finds the target in
T = 2d + O(Lk2 log k) + o(d) with probability 1−Θ(1/kc−3),
M = O(log k)

Without knowledge of k

Iterating R/A[23i , 23i ], increasing i every i22i phases:
T = 2d + O(k5 log k) + o(d) with probability 1−Θ(1/kc−3)

Remainder: BR: T = Θ(d + 2k) for the path,M = 0

Hanusse, Ilcinkas, Kosowski, Nisse How to beat a random walk with a clock ?



Introduction Moody walk analysis R/A Conclusion Ring or path Expanders From R/A/E with knwoledge to R/A without knowledge

Expanders

Graphs of high expansion are useful
For any set S of nodes, the neighborhood of S is of size
Ω(|S |)
P2P networks, error-correcting codes, small-world

A family of expanders: random ∆-regular graphs
Diameter=log∆-1 n + log∆-1 log n + D (Bollobas, De la
Vega 1982)
fast mixing: Every node is reached with probability
Θ(1/n) following a random walk of length 8 log n

log(∆/4)

(Friedman 2003, Cooper 2005)
Local Tree-like: There is a constant c ≡ 1/2 such that
the neighborhood at distance c log∆-1 n is a tree
(Cooper-Frieze-Radzik 2008)
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R/A/E with knowledge

s

R

s’

s

t

R/A/E

Beat the adversary ?
Starting from a random
source
With prob. Θ(1), only
truthtellers are
encountered during phase
A
With prob. Θ(1), the
target is "close" to the
current position (phase E:
BFS exploration)
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Toward R/A without knowledge of n and k

R/A/E WITH knowledge of n, k and diameter

Phase R: LR = 8 log n
log(∆/4)

steps

Phase A: LA = log∆-1 n − 1− log∆-1 k steps
Phase E: radius rE = log∆-1 k + log∆-1 log n + D + 1

Theorem: In a random ∆-regular graph, the target is found in
O(k log n) steps with probability Θ(1).

R/A[LR + rE , LA] (Simulation of phase E)

In phase R, a target at distance rE is reached with probability
Ω( 1

k log n).
Theorem: In a random ∆-regular graph, the target is reached
in O(k2 log2 n) steps with probability Θ(1).
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R/A/E without knowledge of n, k and diameter

R/A without knowledge
j ← 1;
i = 1..j , Run R/A[100i , i ]
j + +

Theorem: In a random ∆-regular graph, the target is found
within O(c3k3 log3 n) steps with probability 1− 1/2Ω(c).
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To sum up (without knowledge of n and k)

Strategy Mean search time
Path random ∆-regular

BR [p < 1/2] 2Ω(d) Θ(min{(∆− 1)k , nΘ(1)})
BR [p = 1/2] Ω(dn) Ω(log2

∆-1 n)

BR [p > 1/2] Θ(d + 2Θ(k)) nΘ(1)

R/A∗ 2d + kΘ(1) + o(d) O(k3 log3 n)

Lower B.∗ Ω(min{(∆− 1)k ,

(∆− 1)d , log∆-1 n})

∗No hypothesis on the in-ports is assumed for the upper
bounds but the lower bound assumes one.
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What you need to retain

Do not blindy follow the advice but find the
good proportions !!

Challenges
Other graphs family: D-dimensionnal grids ?
With less memory ?
R/A[n3, 0] universal: How to parameter ?
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