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Séminaire LIFL, March 5th, 2009

Nicolas Nisse Graph Searching and Routing Reconfiguration



2/36

Intro/Motivations Overview Routing Reconfiguration

Plan

1 Introduction, Motivations, Many Variants
General Problem
Many Variants

2 Overview of Invisible Graph Searching
Definitions
Link with Graph decompositions
Distributed Graph Searching

3 Model for Routing Reconfiguration in Networks
Problem, Definitions and Previous Results
Our Contribution

Nicolas Nisse Graph Searching and Routing Reconfiguration



3/36

Intro/Motivations Overview Routing Reconfiguration

Cops & robber/pursuit-evasion/graph searching

Capture an intruder in a network

a team of cops/searchers vs. a robber/intruder/fugitive

Combinatorial Problem:
search number, s(G ): minimum number of searchers to
capture the fugitive whatever he does in a network G .

Algorithmic Problem:
strategy (sequence of moves) of the searchers allowing them
to capture the fugitive

Nicolas Nisse Graph Searching and Routing Reconfiguration
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Motivations

Graph Decompositions and Complexity Theory

tree(path)-decomposition = representation of a graph as a tree(path)

- structural theory of graphs
(Graph Minor theory, Robertson & Seymour)

- many NP-complete problems tractable when bounded treewidth
(Bodlaender, Courcelle)

Graph Searching = Algorithmic interpretation of tree-decompositions

different point of view leading to new results/algorithms

Nicolas Nisse Graph Searching and Routing Reconfiguration
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Motivations

Graph Decompositions and Complexity Theory

Distributed Algorithms for Clearing Networks

Graph Searching ⇔ to clear a contaminated network

robots with local view must clear unknown networks

tradeoffs between

- clearing-time

- number of robots

- knowledge about the network

- memory of robots

Nicolas Nisse Graph Searching and Routing Reconfiguration



4/36

Intro/Motivations Overview Routing Reconfiguration

Motivations

Graph Decompositions and Complexity Theory

Distributed Algorithms for Clearing Networks

Algorithmic Aspects of Routing Reconfiguration

second part of this talk
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Motivations

Graph Decompositions and Complexity Theory

Distributed Algorithms for Clearing Networks

Algorithmic Aspects of Routing Reconfiguration

and also:

structural characterizations of graphs, localization of mobile targets,

study of tradeoffs between space/time complexity, link with network

exploration, etc.
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Taxonomy of graph searching games

Capture = Surround and/or Occupy the same node as the fugitive

robber’s characteristics
bounded speed arbitrary fast

visible invisible visible invisible
Cops

turn by turn & X X ?
Occupy Robber

graph searching
simultaneous ? X treewidth pathwidth
Occ. & Sur.

? = No studies (as far as I know)
X = Very few studies

Nicolas Nisse Graph Searching and Routing Reconfiguration
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Taxonomy of graph searching games
Capture = Surround and/or Occupy the same node as the fugitive

robber’s characteristics
bounded speed arbitrary fast

visible invisible visible invisible
Cops

turn by turn & X X ?
Occupy Robber

graph searching
simultaneous ? X treewidth pathwidth
Occ. & Sur.

Capture = Surround the fugitive

simultaneous ? ? ? routing
Surround reconfig.
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Graph Searching (Breish 67, Parson 78)

network modelized by a graph G

searchers and fugitive on nodes, move along edges
and play simultaneously

the fugitive is

invisible

arbitrary fast (as far as he does not meet a searcher)

omniscient (best possible strategy to avoid searchers)

capture: the fugitive occupies the same node as a searcher
and cannot flee

equivalent to clear a contaminated network (toxic gas, virus)
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Search Strategy (Parson 78)

Variant of Kirousis & Papadimitriou [TCS 86]

Sequence of two basic operations,. . .

1 Place a searcher at a node;

2 Remove a searcher from a node.

. . . that must result in catching the fugitive

capture: to surround the fugitive and to occupy his node
- node cleared when occupied by a searcher
- node contaminated if the fugitive can access it

Minimize the number of searchers.

Let s(G ) be the smallest number of searchers needed to
capture the fugitive in G whatever he does (worst case).

Nicolas Nisse Graph Searching and Routing Reconfiguration
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Basic examples: Path and Ring
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Basic examples: Path and Ring

s(Path)=2

s(Ring)=3
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NP-hardness

The following problem is NP-hard

Input: a graph G , an integer k > 0, Megiddo et al.,
Output: s(G ) ≤ k? [JACM 88]

Remark: linear in the class of trees, Skodinis [JAlg 03]

Nicolas Nisse Graph Searching and Routing Reconfiguration
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Monotonicity and NP-completeness

A vertex v is recontaminated if the fugitive can move to v
after v has been occupied by a searcher.

Monotonicity

A search strategy is monotone if no recontamination ever
occurs. That is, a vertex is occupied by a searcher only once.

Recontamination does not help

There always exists an optimal monotone search strategy.
LaPaugh [JACM 93], Bienstock & Seymour [JAlg 91]

Corollary: The above problems belong to NP.

Nicolas Nisse Graph Searching and Routing Reconfiguration
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Graph Searching and Graph Decompositions

Thanks to the monotonicity, we get:

Search number and Pathwidth (pw)

For any graph G , s(G ) = pw(G ) + 1,
Kinnersley [IPL 92], Ellis, Sudborough, and Turner [Inf.Comp.94]

Why Graph Searching interpretation is (so?) important?

led to results for directed graphs decompositions
Baràt [Graphs Comb. 06], Hunter & Kreutzer [TCS 08],

Hunter et al. [STACS 06], Adler [JCTB 07]

led to results for unified and generalized decompositions
Mazoit, N. [TCS 08], Amini, Mazoit, N., Thomassé [SIAM Disc. Maths],

Fomin, Fraigniaud, N. [Algorithmica], Berthomé, N. (submitted)

Nicolas Nisse Graph Searching and Routing Reconfiguration



12/36

Intro/Motivations Overview Routing Reconfiguration

Graph Searching and Graph Decompositions

Thanks to the monotonicity, we get:

Search number and Pathwidth (pw)

For any graph G , s(G ) = pw(G ) + 1,
Kinnersley [IPL 92], Ellis, Sudborough, and Turner [Inf.Comp.94]

Why Graph Searching interpretation is (so?) important?

led to results for directed graphs decompositions
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Distributed Setting, Connected Graph Searching

Goal in Distributed Settings

A team of robots must clear a contaminated network
Robots must compute online their strategy,
with a local view of an unknown network

New constraint: Connectivity (Barrière et al. [SPAA 02])
Need of safe communications impose connected clear part

Cost of connectivity (in terms of number of searchers)

≤ 2s(T ) searchers may be used in any tree T (Barrière et al. [WG 03])

≤ log(n) · s(G ) searchers may be used in any G (Fraigniaud, N. [LATIN 06])

Recontamination helps (Alspach, Dyer, Yang [ISAAC 04])

strictly more searchers may be used in this setting

mcs(G ) smallest # searchers to clear G in a monotone connected way

Nicolas Nisse Graph Searching and Routing Reconfiguration
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Distributed Algorithms to Clear Networks (1)

The searchers have a prior knowledge of the topology.

Protocols to clear specific topologies

Tree. (Barrière et al. [SPAA 02])

Mesh. (Flocchini, Luccio, and Song [CIC 05])

Hypercube. (Flocchini, Huang, and Luccio [IPDPS 05])

Tori. (Flocchini, Luccio, and Song [IPDPS 06])

Optimal number (mcs) of searchers are used
Searchers have log n bits of memory.
Local node memory of log n bits.

Nicolas Nisse Graph Searching and Routing Reconfiguration
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Distributed Algorithms to Clear Networks (2)

What about distributed algorithms for clearing any graphs?

Clearing any network G using mcs(G ) searchers

Blin, Fraigniaud, N., Vial [TCS 08]

But, strategy non monotone: may take exponential time

Tradeoff knowledge/ number of searchers/ clearing time

monotone (Polynomial-time) clearing using mcs(G ) searchers

requires Θ(n log n) bits of information (N., Soguet [TCS])

monotone strategy in any unknown graph G

requires mcs(G ) ·Θ(n/ log n) searchers (Ilcinkas, N., Soguet [OPODIS 07])

Nicolas Nisse Graph Searching and Routing Reconfiguration
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Short Historic

Comes from a problem in WDM Networks (Jose & Somani, 03)

New model to handle it (Coudert & Sereni, 05)1

It looks like graph searching ????

Yes, it is !!!

Leads to new results and algorithms...

1Thank you to David Coudert for some of the following slides
Nicolas Nisse Graph Searching and Routing Reconfiguration
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Routing in WDM Networks

Physical Network = multi-graph G = (V , A)

Links provide several wavelengths = multi arcs

Routing of a set of requests/connections

set of requests R ⊆ 2V×V

routing: for each request (u, v),
a path from u to v and 1 wavelength.

Problem: due to dynamicity of traffic, failures,

how to maintain an efficient routing?

Nicolas Nisse Graph Searching and Routing Reconfiguration
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Basic Example

Network = Path with two wavelengths per link
(2 parallel edges).

A B C D E F

Nicolas Nisse Graph Searching and Routing Reconfiguration
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Network = Path with two wavelengths per link
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request for a A-F connection
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Basic Example

Network = Path with two wavelengths per link
(2 parallel edges).

A B C D E F

request for a A-C connection
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Basic Example

Network = Path with two wavelengths per link
(2 parallel edges).

A B C D E F

request for a E-F connection
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Basic Example

Network = Path with two wavelengths per link
(2 parallel edges).

A B C D E F

end of the A-F connection

Nicolas Nisse Graph Searching and Routing Reconfiguration
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Basic Example

Network = Path with two wavelengths per link
(2 parallel edges).

A B C D E F

request for a D-F connection
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Basic Example

Network = Path with two wavelengths per link
(2 parallel edges).

A B C D E F

request for a A-B connection
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Basic Example

Network = Path with two wavelengths per link
(2 parallel edges).

A B C D E F

What if there is a request for a B-E connection?
(using ONE wavelength) Impossible with the current routing...

Nicolas Nisse Graph Searching and Routing Reconfiguration
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Basic Example

Network = Path with two wavelengths per link
(2 parallel edges).

A B C D E F

A B C D E F

... While it is possible !!

Nicolas Nisse Graph Searching and Routing Reconfiguration
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What can we do ?

Reject the new request → blocking probabilities

Stop all requests and restart with new “optimal” routing

Sequence of switching to converge to new routing

Find the most suitable route for incoming request with
eventual rerouting of pre-established connections

Our problem:

Inputs: Set of connection requests
+ current and new routing

Output: Scheduling for switching connection requests from
current to new routes

Constraint: A connection is switched only once

Nicolas Nisse Graph Searching and Routing Reconfiguration
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Tool: the Dependency Digraph (Jose & Somani, 03)

initial routing I + request BE

A B C D E F

final routing F (pre-computed)

A B C D E F

Dependancy Digraph

one vertex per connection with
different routes in I and F

arc from u to v if ressources needed
by u in F are used by v in I

If cycles exist ⇒ cyclic dependencies ⇒

some requests must be interrupted

Nicolas Nisse Graph Searching and Routing Reconfiguration
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one vertex per connection with
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(Break-before-Make)
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Possible objectives

Minimize overall number of break-before-make

Minimum Feedback Vertex Set (MFVS), here N/4

Minimize number of simultaneous break-before-make

Process Number, pn = smallest number of requests that
have to be simultaneously interrupted.
Here, pn = 1 ⇒ Gap with MFVS up to N/2

It is a graph searching formulation of the problem...

Nicolas Nisse Graph Searching and Routing Reconfiguration
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Routing Reconfiguration, Process number

Given a digraph D (Dependency digraph)

Sequence of three basic operations,. . .
1 Place a searcher at a node = interrupt the request;

2 Process a node if all its out-neighbors are either processed or occupied by an
agent = (Re)route a connection when final resources are available;

3 Remove an agent from a node, after having processed it.

. . . that must result in processing all nodes

Process number pn(G )= min p | G can be processed with p agents

Remarks: Graph Searching game when capture = surround
It is monotone by definition
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Example: DAG

Only one operation is used
1 Place a searcher at a node = interrupt the request;

2 Process a node if all its out-neighbors are either processed or occupied by an
agent = (Re)route a connection when final resources are available;

3 Remove an agent from a node, after having processed it.

Direct path, DAG

Theorem

pn(D) = 0 iff D is a DAG
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Digraphs with process number 1

One agent is used
1 Place a searcher at a node = interrupt the request;

2 Process a node if all its out-neighbors are either processed or occupied by an
agent = (Re)route a connection when final resources are available;

3 Remove an agent from a node, after having processed it.

Theorem

pn(D) = 1 ⇔ ∀SCC , MFVS(SCC ) = 1 O(N + M)
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Process number versus Search number

a parameter of (un)directed graphs

vs, vertex separation

Recall that the pathwidth pw(G ) = s(G )− 1 (search number)

in undirected graph or symetric digraph

pw(G ) = vs(G ) (Kinnersley [IPL 92]). Thus, vs(G ) = s(G )− 1

Theorem (Coudert & Sereni, 2007)

vs(D) ≤ pn(D) ≤ vs(D) + 1

Complexity: NP-Hard, Not APX

Characterization of digraphs with process number 0, 1, 2
(Coudert & Sereni, 2007)

distributed O(n log n)-time algorithm in trees
(Coudert, Huc, Mazauric [DISC 2008])
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What we delt with

Joint work with D. Coudert, F. Huc, D. Mazauric and J-S. Sereni [ONDM 09]

How to handle priority connections?

connections that cannot be interrupted

Heuristic and simulations

to compute upper bounds on process number

Joint work with D. Coudert and D. Mazauric [AGT 09]

What if requests can share links?

requests share a constant fraction of the bandwidth of a link
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Two classes of services

Priority connections

Refuse by contract (SLA) break-before-make
⇒ vertex of the dependency digraph that cannot host agent

Impossibility

Direct cycle of priority connections in the dependency digraph

⇒ Small number of such connections

Recognition in time O(N + M)

Transformation

⇒ Same problem to solve
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Example with priority connection d

Symmetric grid, with 1 wavelength per arc.
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Cost of Priority Connections
D a digraph, and a set P ⊆ V of priority connections

Generalize process number pn(D, P)= min p s.t. G can be processed with p
agents without placing an agent on nodes of P

Lemma

For any digraph D and P ⊆ V
pn(D, P) is defined iff P is a DAG, and in this case
pn(D, P) ≤ pn(D) + |N+(P)| (assymptotically tight)

v

CCC1 2

2
vv

1 k

k

v
0

Ci symmetric clique of size k, pn(D) = k + 1
pn(D, P) =

P
i≤k |Ci | with P = {v0, · · · , vk}.
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Previous heuristic (Jose and Somani [DRCN 03])

1 Compute all directed cycles using Johnson’s algorithm

2 Choose the vertex that belongs to the maximum number of cycles

3 Remove that vertex and update set of cycles

4 Repeat 2-3 until remaining digraph is a DAG

5 Process DAG

6 Process removed vertices

Heuristic for MFVS

Complexity in O((n + m)(c + 1))

Exponential number of cycles ⇒ only for small digraphs
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Our heuristic / process number

1 Priority connections: impossibility and transformation

2 Choose of a candidate vertex to receive an agent (to be removed)
using a flow circulation method

3 Remove that vertex and process all possible vertices including
removed vertices and priority connections

4 Repeat 2-3 until processing of all vertices
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Our heuristic / process number

1 Priority connections: impossibility and transformation

2 Choose of a candidate vertex to receive an agent (to be removed)
using a flow circulation method

3 Remove that vertex and process all possible vertices including
removed vertices and priority connections

4 Repeat 2-3 until processing of all vertices

Heuristic for the process number

Complexity in O(n2(n + m)) ⇒ large digraphs
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Simulation results: n × n grids

Jose & Somani
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Simulation results
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When connections can share Bandwidth

Example: Symmetric grid, where each arc has capacity 2.
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Theorem (Coudert, Mazauric, N. [AGT 09])

When arcs have capacity more than 1, to decide whether the reconfiguration can be
done without interruptions is NP-complete.
This is true even if capacities are at most 3.

Recall that if capacities equal 1, this problem is equivalent to recognize a DAG
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Further work

Lot of questions remain:

More simulations, more realistic scenarios

Multiple classes of services ?

Time dependent penalities

Other objectives
Compromise: simultaneous interruptions / interruption
time

Distributed algorithms

Heuristics when shared bandwidth

complexity when ≤ 2 requests can share a link?

...
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