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General problem

Context

A fugitive is running in a graph.
A team of searchers is aiming at capturing the fugitive.

Goal

To design a strategy that capture any fugitive using the
fewest searchers as possible.

Initially studied by Breish (67) and Parson (76)

To save a speleologist lost in a caves’network.
Equivalently, to clear a contaminated pipelines’network.
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Motivations

Layout Problems

Numerical analysis, VLSI design, etc.
Related to: bandwidth, cutwidth, profile, etc.

Computational Complexity

Relationship between graph searching and pebble games
[Kirousis and Papadimitriou 86]
Tradeoff space/time complexity of computation.

Graph Minors Theory

Robertson and Seymour [JCTB, 1983-]
Tree decomposition, Path decomposition
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Search Strategy, Parson. [GTC,1978]

Model of Kirousis and Papadimitriou. [TCS,86]

The fugitive

occupies vertices of the graph;

is arbitrary fast;

can move from one vertex to another by following a path
in G , as long as it does not cross any vertex occupied by
a searcher.

The searchers

can jump from one vertex to any other vertex of the
graph;

are visible.
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Search Strategy, Parson. [GTC,1978]

Model of Kirousis and Papadimitriou. [TCS,86]

Sequence of two basic operations,. . .

1 Place a searcher at a vertex of the graph;

2 Remove a searcher from a vertex of the graph.

. . . that must result in catching the fugitive

The fugitive is caugth when it occupies the same vertex as a
searcher and it cannot move away.

The node-search number

Let s(G ) be the smallest number of searchers needed to catch
an invisible fugitive in a graph G .
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Simple example: A ternary tree
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Simple example: A ternary tree

s(T ) = 3
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Visibility of the fugitive

Visible fugitive

The fugitive is visible if, at every step, searchers know its
position.
Let vs(G ) be the visible search number of the graph G .

Obviously, for any graph G , vs(G ) ≤ s(G ).

Invisible fugitive vs. visible fugitive in trees

For any n-nodes tree T , s(T ) ≤ 1 + log3(n − 1) (tight)
Megiddo et al. [JACM 88]

For any tree T (with at least 2 vertices), vs(T ) = 2.
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Visible graph searching in a tree
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Visible graph searching in a tree

2 searchers
are sufficient
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NP-hardness

The following problems are NP-hard

Input: a graph G , an integer k > 0, Megiddo et al.,
Output: s(G ) ≤ k? [JACM 88]

Input: a graph G , an integer k > 0, Seymour and Thomas
Output: vs(G ) ≤ k? [JCTB 93]

Remark: linear in the class of trees, Skodinis [JAlg 03]

NP-membership? Certificate?
A strategy is a certificate, but what is its size ?
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Monotonicity

Monotone strategies

A vertex v is recontaminated if the fugitive can move to v
after v has been occupied by a searcher.
A search strategy is monotone if no recontamination ever
occurs. That is, a vertex is occupied by a searcher only once.

A monotone strategy consists of a polynomial number of steps

Question: Does recontamination help?

In other words, for any graph, does there always exist a
monotone strategy using the smallest number of searchers?
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Recontamination does not help

Case of an invisible fugitive

Bienstock and Seymour, J.of Alg., 1991
Monotonicity in graph searching.

LaPaugh, J.of ACM, 1993
Recontamination does not help to search a graph.

Constructive proofs: Any strategy using k searchers can be
turned into a monotone strategy using ≤ k searchers.

Case of a visible fugitive

Seymour and Thomas, J. of Comb. Th., 1993.
Graph searching and a min-max theorem for tree-width

Non constructive proof.

Corollary: To compute s(G ) (resp., vs(G )) is NP-complete.
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Search numbers and graphs’decompositions

Thanks to the monotonicity, we get:

Search number and Pathwidth (pw)

For any graph G , s(G ) = pw(G ) + 1,
Kinnersley [IPL 92],
Ellis, Sudborough, and Turner [Inf.Comp.94]

Visible search number and Treewidth (tw)

For any graph G , vs(G ) = tw(G ) + 1,
Seymour and Thomas [JCTB 93]
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Tree and Path Decompositions
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every vertex of G is at least in one
bag;

both ends of an edge of G are at
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Tree and Path Decompositions

a path P and bags (Xt)t∈V (P)

every vertex of G is at least in one
bag;

both ends of an edge of G are at
least in one bag;

For any vertex of G , all bags that
contain it, form a subpath.

Width = Size of largest Bag -1

pathwidth of G

pw(G ), minimum width
among any path-decomposition
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Monotone Visible Search Number = Treewidth +1

Thus, vs(G) ≤ tw(G) + 1
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Monotone Search Number = Pathwidth +1

Thus, s(G) ≤ pw(G) + 1
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Non-deterministic Graph Searching

Invisible fugitive
An Oracle permanently knows the position of the fugitive

One extra operation is allowed

Searchers can perform a query to the oracle:
“What is the current position of the fugitive?”

Sequence of three basic operations

1 Place a searcher at a vertex of the graph;

2 Remove a searcher from a vertex of the graph;

3 Perform a query to the Oracle.

Tradeoff number of searchers / number of queries
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Controlled Amount of Nondeterminism

q-limited (non-deterministic) search number, sq(G )

s0(G ) = pw(G ) + 1, invisible search number of G ;
s∞(G ) = tw(G ) + 1, visible search number of G .

number of searchers

number of queries

pw(G ) + 1

tw(G ) + 1

π(G ) τ(G )
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Still the same ternary tree

s0(T)=3
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Still the same ternary tree

2 queries

QUERY
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Still the same ternary tree

s0(T)=s1(T)=3

s2(T)=s∞(T)=2
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Results

Monotonicity [Mazoit and N.]

For any q ≥ 0, recontamination does not help to catch a
fugitive in G performing at most q queries.

Constructive proof;

Generalize the existing proofs (q = 0 and q = ∞).

Graph’s Decompositions [Fomin, Fraigniaud and N.]

Equivalence between non-deterministic graph searching
and branched tree-decomposition;

Exponential exact algorithm computing sq(G )
in time O∗(2n);

sq(G ) ≤ 2 sq+1(G ) (almost tight).
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Monotonicity: Search-tree

Auxiliary structure inspired by the tree-labelling
[Robertson and Seymour, Graph Minor X]:

Search-tree = A rooted tree T labelled with subsets of E (G )

For any vertex v ∈ V (T ) incident to e1, . . . , ep:

label of v : `(v) ⊆ E (G )

label of ei : `v(ei) ⊆ E (G )

Any edge has two labels: one for each extremity.

Two Properties

1 {`(v), `v(e1), `v(e2), . . . , `v(ep)} partition of E (G );

2 ∀e = {u, v} ∈ E (T ), `v(e) and `u(e) are disjoint.
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Monotonicity: Search-tree

Non-deterministic search strategy ⇒ Search-tree

placement of searchers ⇒ vertex of T

query ⇒ fork (vertex of T with more than one child)

removal of searchers ⇒ edge of T

Cleared
Part
Cleared
Part

v
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Monotonicity: Search-tree

Two Properties

1 {`(v), `v(e1), `v(e2), . . . , `v(ep)} partition of E (G );

2 ∀e = {u, v} ∈ E (T ), `v(e) and `u(e) are disjoint.

Cleared
Part
Cleared
Part

v

Contaminated part
after the query

Cleared part
after removal
of searchersu
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Monotonicity

Search-tree = a rooted tree T labelled with subsets of E (G ).

Remark: a search tree ≈ relaxed tree decomposition

Sketch of the proof

(possibly non monotone) strategy ⇒ Search-tree

weight function over the search-trees

minimal search-tree ⇒ monotone strategy

local optimization without increasing neither the number
of searcher, nor the number of queries.
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Recent Results and Open Problems

Class of trees

polynomial time algorithm to compute s1(T ) and
polynomial time 2-approximation to compute sq(T ), for
any q ≥ 0. [Amini, Coudert, and N.]

∃? polynomial (linear?) time algorithm to compute
sq(T ), for any tree T , and q ≥ 0.

Search-tree

Generalization of the min-max theorem for treewidth
[Amini, Mazoit, N. and Thomassé]

(FPT) Algorithms? Excluding Minor Theorem?

Application to matroids.
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Outline

1 Introduction

2 Non-deterministic Graph Searching

3 Connected Graph Searching
Cost of connectivity
Non-Monotonicity
Open Problems

4 Distributed Graph Searching

5 Conclusion and Further Works
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Connected Graph Searching

Limits of the Parson’s model

Searchers cannot move at will in a real network;

Secured communications.

Connected Search Strategy, Barrière et al., [SPAA 02]

At any step, the cleared part of the graph must induce a
connected subgraph.
Let cs(G ) be the connected search number of the graph G .

Two main questions

What is the cost of connectivity? ratio cs/s?
Monotonicity property of connected graph searching?
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The cost of connectedness

In terms of number of searchers

For any tree T , s(T ) ≤ cs(T ) ≤ 2 s(T )− 2. (tight)
Barrière, Flocchini, Fraigniaud, and Thilikos [WG 03]

For any connected graph G , cs(G ) ≤ s(G ) (2 + log |E (G )|).
Fomin, Fraigniaud, and Thilikos [Tech. Rep. 04]

About monotonicity

Recontamination does not help in trees.
Barrière, Flocchini, Fraigniaud, and Santoro [SPAA 02]

Recontamination helps in general.
Alspach, Dyer, and Yang [ISAAC 04]
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Results: Case of a invisible fugitive

Using the concept of connected tree-decomposition.

Cost of connectivity [Fraigniaud and N.]

For any n-node connected graph G , cs(G )/s(G ) ≤ log n.

Graphs with bounded chordality k [N.]

(T , X ) an optimal tree-decomposition of G
cs(G ) ≤ (tw(G )bk/2c+ 1)cs(T ).

⇒ cs(G )/s(G ) ≤ 2 (tw(G ) + 1) if G chordal
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Sketch of proof: cs(G ) ≤ s(G ) log n

Proof by induction on n: cs(G ) ≤ (tw(G ) + 1) log n

T1 Ti Tr

... ...

For any 1 ≤ i ≤ r , G [Ti ] is a connected subgraph with at
most n/2 vertices.
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Sketch of proof: cs(G ) ≤ s(G ) log n

Proof by induction on n: cs(G ) ≤ (tw(G ) + 1) log n

<  (tw(G)+1) log(n/2) searchers

T1 Ti Tr

... ...

There is a connected search strategy for G [T1], using at most
(tw(G ) + 1) log(n/2) searchers.
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Sketch of proof: cs(G ) ≤ s(G ) log n

Proof by induction on n: cs(G ) ≤ (tw(G ) + 1) log n

<  tw(G)+1 searchers

<  (tw(G)+1) log(n/2) searchers

T1 Ti Tr

... ...

to avoid recontamination

At most tw(G ) + 1 searchers are required to protect G [T1]
from recontamination from the remaining part of G .
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Sketch of proof: cs(G ) ≤ s(G ) log n

Proof by induction on n: cs(G ) ≤ (tw(G ) + 1) log n

<  tw(G)+1 searchers

<  (tw(G)+1) log(n/2) searchers

T1 Ti Tr

... ...

to avoid recontamination

Then, we can terminate the clearing of G [T1].

Nicolas Nisse Graph Searching and related problems



29/42

Intro NonDeterministic Connectivity Distributed Concl. Cost Non-Monotonicity Open Problems

Sketch of proof: cs(G ) ≤ s(G ) log n

Proof by induction on n: cs(G ) ≤ (tw(G ) + 1) log n

<  tw(G)+1 searchers

<  (tw(G)+1) log(n/2) searchers

T1 Ti Tr

... ...

to avoid recontamination

The (tw(G ) + 1) log(n/2) searchers can be used to clear
another subgraph G [Ti ], and so on...
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Sketch of proof: cs(G ) ≤ s(G ) log n

Proof by induction on n: cs(G ) ≤ (tw(G ) + 1) log n

<  (tw(G)+1) + (tw(G)+1).log(n/2) searchers

T1 Ti Tr

... ...

Connected search strategy using at most (tw(G ) + 1) log n
searchers. Thus, cs(G ) ≤ s(G ) log n
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Results: Case of a visible fugitive

Cost of connectivity [Fraigniaud and N.]

For any n-node graph G , cvs(G )/vs(G ) ≤ log n
tight for monotone strategies: mcvs(G )/vs(G ) ≥ Ω(log n).

Non Monotonicity [Fraigniaud and N.]

In visible connected graph searching, recontamination helps

For any k ≥ 4, there exists a graph G such that
cvs(G ) = 4k+1 and any monotone connected visible
search strategy uses at least 4k + 2 searchers.
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Non-monotonicity

Recontamination helps in visible connected graph searching

Let G be the graph below: mcvs(G ) > cvs(G ) = 4.

symmetry axis
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Non-monotonicity

Recontamination helps in visible connected graph searching

Let G be the graph below: mcvs(G ) > cvs(G ) = 4.

symmetry axis

RECONTAMINATION
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Connected Graph Searching: Open Problems

Cost of connectivity

Conjecture: For any graph G , cs(G )/s(G ) ≤ 2 [Barrière et
al.]

FPT Algorithm

FPT algorithm to compute cs(G )?

NP membership

Bound on the number of recontamination-steps?
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Outline

1 Introduction

2 Non-deterministic Graph Searching

3 Connected Graph Searching

4 Distributed Graph Searching
Model
Distributed Protocols
Open Problems

5 Conclusion and Further Works
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Graph searching in a distributed way

Distributed search problem

To design a distributed protocol that enables the minimum
number of searchers to clear the network.
The searchers must compute themselves a strategy.

We consider connected search strategies.

mcs refers to the smallest number of searchers required to
catch an invisible fugitive in a monotone connected way.
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Distributed graph searching: the network

undirected connected graph;

local orientation of the edges;

whiteboards on vertices;

asynchronous environment.

1
4

3

2

2
3

4

1

2
1

3
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Distributed graph searching: the searchers

autonomous mobile computing entities with distinct IDs;

automata with O(log n) bits of memory.

Decision is computed locally and depends on:

its current state;

the states of the other searchers present at the vertex;

the content of the local whiteboard;

if appropriate the incoming port number.

A searcher can decide to:

leave a vertex via a specific port number;

switch its state.

write/erase content of the local whiteboard.
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Distributed graph searching: related work

The searchers have a priori knowledge of the topology.

Protocols to clear specific topologies

Tree. Barrière et al., [SPAA 02]

Mesh. Flocchini, Luccio, and Song. [CIC 05]

Hypercube. Flocchini, Huang, and Luccio. [IPDPS 05]

Tori. Flocchini, Luccio, and Song. [IPDPS 06]

Sierpinski’s graph. Luccio. [FUN 07]

A monotone connected strategy is performed using mcs + 1
searchers, in polynomial time.

Remark:

The extra searcher is due to the asynchronicity of the network
and it is necessary [CIC 05].

Nicolas Nisse Graph Searching and related problems



37/42

Intro NonDeterministic Connectivity Distributed Concl. Model Distributed Protocols Open Problems

Distributed graph searching: related work

The searchers have a priori knowledge of the topology.

Protocols to clear specific topologies

Tree. Barrière et al., [SPAA 02]

Mesh. Flocchini, Luccio, and Song. [CIC 05]

Hypercube. Flocchini, Huang, and Luccio. [IPDPS 05]

Tori. Flocchini, Luccio, and Song. [IPDPS 06]

Sierpinski’s graph. Luccio. [FUN 07]

A monotone connected strategy is performed using mcs + 1
searchers, in polynomial time.

Remark:

The extra searcher is due to the asynchronicity of the network
and it is necessary [CIC 05].

Nicolas Nisse Graph Searching and related problems



38/42

Intro NonDeterministic Connectivity Distributed Concl. Model Distributed Protocols Open Problems

Results

Distributed algorithm [Blin, Fraigniaud, N. and Vial]

Distributed protocol that enable mcs(G ) + 1 searchers to clear
an unknown graph G in a connected way

Sketch of the algorithm

For k ≥ 0 to n do
Test all connected search strategies using ≤ k searchers.
(Difficulty: to ensure that all strategies will be checked)
If this fails, another searcher is called (k++).

Drawback: the strategy is not monotone and may be
performed in exponential time.
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Results

Unless P=NP, there is no hope to clear an unknown graph in a
monotone way, using the optimal number of searchers.

Provide knowledge about the graph [N. and Soguet]

Θ(n log n) bits of information must be provided to the
mcs(G ) searchers to clear a unknown graph G in a monotone
connected way.

Use more searchers [Ilcinkas, N. and Soguet]

Θ( n
log n

)mcs(G ) searchers are necessary and sufficient to clear
any unknown graph G in a connected monotone way.
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Distributed Graph Searching: Open Problems

Tradeoff between the number of searchers and the amount of
information about the graph.

Better algorithm to clear a graph, possibly computing
non-monotone search strategies?
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Outline

1 Introduction

2 Non-deterministic Graph Searching

3 Connected Graph Searching

4 Distributed Graph Searching

5 Conclusion and Further Works
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Further Works

Directed graph searching

Several recent works [Obdrzalek, Hunter et al., Adler, etc.]
using “directed” tree decompositions.
Duality therorem?
(FPT) Algorithms?

Cost of connectivity

Conjecture: For any graph G , cs(G ) ≤ 2s(G ) [Barrière et al.]

Search-tree

Generalization of the min-max theorem for treewidth
[Amini, Mazoit, N. and Thomassé]

(FPT) Algorithms? Excluding Minor Theorem?

Application to matroids.
Nicolas Nisse Graph Searching and related problems
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