Cops and robber games

Nicolas Nisse Karol Suchan

DIM, Universidad de Chile, Santiago, Chile

Seminario Anillo en Redes, August 22nd, 2008
Capture an intruder in a network

- \(C \) plays with a team of cops
- \(R \) plays with one robber

Cops’ goal:
- \(C \): Capture the robber using \(k \) cops (“few”);
- The minimum called cop-number, \(cn(G) \).

Robber’s goal:
- \(R \): Perpetually evade \(k \) cops (“many”);
- The maximum equal \(cn(G) - 1 \).
Taxonomy of graph searching games

<table>
<thead>
<tr>
<th></th>
<th>robber’s characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bounded speed</td>
<td>arbitrary fast</td>
</tr>
<tr>
<td></td>
<td>visible</td>
<td>invisible</td>
</tr>
<tr>
<td>turn by turn</td>
<td>Cops</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>&</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Robber</td>
<td>?</td>
</tr>
<tr>
<td>simultaneous</td>
<td>?</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>graph searching</td>
</tr>
<tr>
<td></td>
<td></td>
<td>treewidth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pathwidth</td>
</tr>
</tbody>
</table>

Table: Classification of graph searching games

? = No studies (as far as I know)
X = Very few studies
Cops & robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:
1. C places the cops;
2. R places the robber.

Step-by-step:
- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber apprehended:
A cop occupies the same vertex as the robber.
Initialization:

1. C places the cops;
2. R places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber apprehended:
A cop occupies the same vertex as the robber.
Initialization:
1. \(C \) places the cops;
2. \(R \) places the robber.

Step-by-step:
- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber apprehended:
A cop occupies the same vertex as the robber.
Initialization:
1. C places the cops;
2. R places the robber.

Step-by-step:
- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber apprehended:
A cop occupies the same vertex as the robber.
Cops & robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:
1. \(C \) places the cops;
2. \(R \) places the robber.

Step-by-step:
- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber apprehended:
A cop occupies the same vertex as the robber.
Initialization:
1. \mathcal{C} places the cops;
2. \mathcal{R} places the robber.

Step-by-step:
- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber apprehended:
A cop occupies the same vertex as the robber.
Initialization:
1. C places the cops;
2. R places the robber.

Step-by-step:
- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber apprehended:
A cop occupies the same vertex as the robber.
Initialization:
1. C places the cops;
2. R places the robber.

Step-by-step:
- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber apprehended:
A cop occupies the same vertex as the robber.
State of art

- **Characterization** of *cop-win* graphs $\{ G \mid cn(G) = 1 \}$.
 [Nowakowski & Winkler, 83; Quilliot, 83; Chepoi, 97]

Theorem: $cn(G) = 1$ iff $V(G) = \{ v_1, \cdots, v_n \}$ and for any $i < n$, there is $j > i$ s.t. $N[v_i] \subseteq N[v_j]$ in the subgraph induced by v_i, \cdots, v_n.

Trees, chordal graphs, bridged graphs (...) are cop-win.
Characterization of *cop-win* graphs \(\{ G \mid \text{cn}(G) = 1 \} \). [Nowakowski & Winkler, 83; Quilliot, 83; Chepoi, 97]

Theorem: \(\text{cn}(G) = 1 \) iff

\[V(G) = \{ v_1, \cdots, v_n \} \] and for any \(i < n \), there is \(j > i \) s.t. \(N[v_i] \subseteq N[v_j] \) in the subgraph induced by \(v_i, \cdots, v_n \)

Trees, chordal graphs, bridged graphs (…) are cop-win.
Characterization of cop-win graphs \(\{ G | cn(G) = 1 \} \).

[Nowakowski & Winkler, 83; Quilliot, 83; Chepoi, 97]

Theorem: \(cn(G) = 1 \) iff

\[
V(G) = \{ v_1, \cdots, v_n \} \text{ and for any } i < n, \text{ there is } j > i \text{ s.t. } N[v_i] \subseteq N[v_j] \text{ in the subgraph induced by } v_i, \cdots, v_n
\]

Trees, chordal graphs, bridged graphs (...) are cop-win.
State of art

- **Characterization** of cop-win graphs \(\{ G \mid \text{cn}(G) = 1 \} \).
 [Nowakowski & Winkler, 83; Quilliot, 83; Chepoi, 97]

 Theorem: \(\text{cn}(G) = 1 \) iff

 \[V(G) = \{ v_1, \cdots, v_n \} \text{ and for any } i < n, \text{ there is } j > i \text{ s.t. } N[v_i] \subseteq N[v_j] \text{ in the subgraph induced by } v_i, \cdots, v_n \]

Trees, chordal graphs, bridged graphs (...) are cop-win.
Characterization of cop-win graphs \(\{ G | \text{cn}(G) = 1 \} \).

[Nowakowski & Winkler, 83; Quilliot, 83; Chepoi, 97]

Theorem: \(\text{cn}(G) = 1 \) iff

\[
V(G) = \{ v_1, \cdots, v_n \} \text{ and }
\]

for any \(i < n \), there is \(j > i \) s.t.

\(N[v_i] \subseteq N[v_j] \) in the subgraph induced by \(v_i, \cdots, v_n \)

Trees, chordal graphs, bridged graphs (...) are cop-win.
State of art

- Characterization of cop-win graphs \(\{ G \mid cn(G) = 1 \} \).
 [Nowakowski & Winkler, 83; Quilliot, 83; Chepoi, 97]

Theorem: \(cn(G) = 1 \) iff

- \(V(G) = \{ v_1, \ldots, v_n \} \) and
- for any \(i < n \), there is \(j > i \) s.t.
 \(N[v_i] \subseteq N[v_j] \) in the subgraph induced by \(v_i, \ldots, v_n \)

Trees, chordal graphs, bridged graphs (…) are cop-win.
State of art

- **Characterization** of *cop-win* graphs \(\{ G \mid \text{cn}(G) = 1 \} \).
 [Nowakowski & Winkler, 83; Quilliot, 83; Chepoi, 97]

Theorem: \(\text{cn}(G) = 1 \) iff

\[
V(G) = \{ v_1, \ldots, v_n \} \text{ and for any } i < n, \text{ there is } j > i \text{ s.t. } N[v_i] \subseteq N[v_j] \text{ in the subgraph induced by } v_i, \ldots, v_n
\]

Trees, chordal graphs, bridged graphs (...), are cop-win.
Characterization of cop-win graphs \{ G \mid cn(G) = 1 \}. [Nowakowski & Winkler, 83; Quilliot, 83; Chepoi, 97]

Theorem: \(cn(G) = 1 \) iff

\[V(G) = \{ v_1, \ldots, v_n \} \] and for any \(i < n \), there is \(j > i \) s.t. \(N[v_i] \subseteq N[v_j] \) in the subgraph induced by \(v_i, \ldots, v_n \)

Trees, chordal graphs, bridged graphs (…) are cop-win.
State of art

- **Algorithms:** $O(n^k)$ to decide if $\text{cn}(G) \leq k$.
 [Hahn & MacGillivray, 06]

 $\text{cn}(G) \leq k$ iff the configurations’ graph with k cops is copwin.

- **Complexity:** Computing the cop-number is EXPTIME-complete. [Goldstein & Reingold, 95]

- **Lower bound:** $\text{cn}(G) \geq d^t$, where
 $d + 1 = \text{minimum degree}$, $\text{girth} \geq 8t - 3$. [Frankl, 87]
 (\Rightarrow there are n-node graphs G with $\text{cn}(G) \geq \Omega(\sqrt{n})$)

- **Planar graph** G: $\text{cn}(G) \leq 3$.
 [Aigner & Fromme, 84]
One of the main tool used

Shortest path principle

1 cop can protect 1 **shortest** path P.

Position c (**shadow**: $\text{dist}(r, z) \geq \text{dist}(c, z)$, $\forall z \in V(P)$.)
One of the main tool used

Shortest path principle

1 cop can protect 1 shortest path P.

Position c (shadow): $\text{dist}(r, z) \geq \text{dist}(c, z), \forall z \in V(P)$.
One of the main tool used

Shortest path principle

1 cop can protect 1 shortest path P.

Position c (shadow): $\text{dist}(r, z) \geq \text{dist}(c, z), \forall z \in V(P)$.
One of the main tool used

Shortest path principle

1 cop can protect 1 *shortest* path P.

Position c (*shadow*): $\text{dist}(r, z) \geq \text{dist}(c, z)$, $\forall z \in V(P)$.
Planar graphs [Aigner & Fromme, 84]

\[G \text{ planar } \Rightarrow cn(G) \leq 3; \ G \text{ grid } \Rightarrow cn(G) \leq 2 \]

2 shortest paths to surround, 3rd one to reduce the zone. In a grid, 1 shortest path is enough.
Planar graphs [Aigner & Fromme, 84]

\[G \text{ planar } \Rightarrow cn(G) \leq 3; \ G \text{ grid } \Rightarrow cn(G) \leq 2 \]

2 shortest paths to surround, \(3^{rd}\) one to reduce the zone.
In a grid, 1 shortest path is enough.
Planar graphs [Aigner & Fromme, 84]

G planar \Rightarrow $cn(G) \leq 3$; G grid \Rightarrow $cn(G) \leq 2$

2 shortest paths to surround, 3^{rd} one to reduce the zone. In a grid, 1 shortest path is enough.
Planar graphs [Aigner & Fromme, 84]

\[G \text{ planar } \Rightarrow \text{cn}(G) \leq 3; \ G \text{ grid } \Rightarrow \text{cn}(G) \leq 2 \]

2 shortest paths to surround, 3rd one to reduce the zone. In a grid, 1 shortest path is enough.
Planar graphs [Aigner & Fromme, 84]

G planar $\Rightarrow cn(G) \leq 3$; G grid $\Rightarrow cn(G) \leq 2$

2 shortest paths to surround, 3^{rd} one to reduce the zone. In a grid, 1 shortest path is enough.
Planar graphs [Aigner & Fromme, 84]

G planar $\Rightarrow cn(G) \leq 3$; G grid $\Rightarrow cn(G) \leq 2$

2 shortest paths to surround, 3^{rd} one to reduce the zone.
In a grid, 1 shortest path is enough.
Planar graphs [Aigner & Fromme, 84]

\[G \text{ planar} \Rightarrow cn(G) \leq 3; \ G \text{ grid} \Rightarrow cn(G) \leq 2 \]

2 shortest paths to surround, 3\(^{rd}\) one to reduce the zone. In a grid, 1 shortest path is enough.
Other applications of the shortest path principle

Bounded genus graphs

G with **genus** g: $cn(G) \leq \frac{3}{2}g + 3$ [Schröder, 01]

Minor free graphs

G excluding a minor H: $cn(G) \leq |E(H \setminus \{x\})|$, where x is any non-isolated vertex of H [Andreae, 86]

General upper bound

For any connected graph G, $cn(G) \leq O\left(\frac{n}{\log n}\right)$ [Chiniforooshan, 08]
Fast robber

Different speeds

Speed = maximum number of edges traversed in 1 step.

\[\text{speed}_R \geq \text{speed}_C = 1 \]

Computational hardness

Computing \(cn \) for any \(\text{speed}_R \geq 1 \) is NP-hard; the parameterized version is \(W[2] \)-hard. For \(\text{speed}_R \geq 2 \), it is true already on split graphs. [Fomin, Golovach, Kratochvil, 2008]

Impact of higher robber’s speed in planar graphs?

How many cops are needed to capture a fast robber in a grid?

Recall: 2 cops are enough if \(\text{speed}_R = \text{speed}_C \).
Our results \((\text{speed}_R > \text{speed}_C)\)

Theorem: cop-number is unbounded in planar graphs

\[\exists c > 0 \forall k \geq 1: \text{take a square grid } f(k) \times f(k), f(k) = c^{k^2}, \text{ then } \text{cn}(\text{Square}_f(k)) \geq k.\]

Corollary: \(\text{cn}(\text{Square}_n) = \Omega(\sqrt{\log(n)}).\)

Gap: the best known upper bound is \(\text{cn}(\text{Square}_n) = O(n).\)

Does a planar graph “containing” a large grid have a high \(\text{cn}\)?

Theorem: No...

\[\exists H \text{ subdivision of an arbitrarily large grid: } \text{cn}(H) = 2.\]

Theorem: However...

\[\forall H \text{ planar with an induced subgraph } \text{Square}_{2f(k)}, \text{cn}(H) \geq k.\]
Our results \((speed_\mathcal{R} > speed_\mathcal{C})\)

Theorem: cop-number is unbounded in planar graphs

\[\exists c > 0 \forall k \geq 1: \text{take a square grid } f(k) \times f(k), \quad f(k) = c^{k^2}, \]
then \(\text{cn}(\text{Square}_f(k)) \geq k\).

Corollary: \(\text{cn}(\text{Square}_n) = \Omega(\sqrt{\log(n)})\).

Gap: the best known upper bound is \(\text{cn}(\text{Square}_n) = O(n)\).

Does a planar graph “containing” a large grid have a high \(\text{cn}\)?

Theorem: No...

\[\exists H \text{ subdivision of an arbitrarily large grid: } \text{cn}(H) = 2. \]

Theorem: However...

\[\forall H \text{ planar with an induced subgraph } \text{Square}_{2f(k)}, \quad \text{cn}(H) \geq k. \]
Our results ($speed_R > speed_C$)

Theorem: cop-number is unbounded in planar graphs

$\exists c > 0 \forall k \geq 1$: take a square grid $f(k) \times f(k)$, $f(k) = c^{k^2}$, then $\text{cn}(\text{Square}_f(k)) \geq k$.

Corollary: $\text{cn}(\text{Square}_n) = \Omega(\sqrt{\log(n)})$.

Gap: the best known upper bound is $\text{cn}(\text{Square}_n) = O(n)$.

Does a planar graph “containing” a large grid have a high cn?

Theorem: No...

$\exists H$ subdivision of an arbitrarily large grid: $\text{cn}(H) = 2$.

Theorem: However...

$\forall H$ planar with an induced subgraph $\text{Square}_{2f(k)}$, $\text{cn}(H) \geq k$.

Nicolas Nisse, Karol Suchan

Cops and robber games
Idea of the proof, $cn(Square_n) = \Omega(\sqrt{\log(n)})$

Definition inductive (on k) of a strategy for the robber against k cops: c_1, c_2, \cdots, c_k

Key idea

$\forall i \leq k$, partition G into disjoint subgrid of size $O(2^i)$

\Rightarrow In a subgrid of level i, consider only c_1, c_2, \cdots, c_i

In a level-i subgrid, a strategy will be a path of level-$(i - 1)$ subgrids avoiding c_i.

Nicolas Nisse, Karol Suchan

Cops and robber games
Idea of the proof, $cn(Square_n) = \Omega(\sqrt{\log(n)})$

Definition inductive (on k) of a strategy for the robber against k cops: c_1, c_2, \cdots, c_k

Key idea

$\forall i \leq k$, partition G into disjoint subgrid of size $O(2^i)$

\Rightarrow In a subgrid of level i, consider only c_1, c_2, \cdots, c_i

In a level-i subgrid, a strategy will be a path of level-$(i - 1)$ subgrids avoiding c_i.
Idea of the proof, $cn(Square_n) = \Omega(\sqrt{\log(n)})$

Definition inductive (on k) of a strategy for the robber against k cops: c_1, c_2, \cdots, c_k

Key idea

\[\forall i \leq k, \text{partition } G \text{ into disjoint subgrid of size } O(2^i) \]
\[\Rightarrow \text{In a subgrid of level } i, \text{ consider only } c_1, c_2, \cdots, c_i \]

1. Design of a strategy
2. Constraints on n for the strategy to be valid.
3. if $n = f(k) = c^{k^2} \Rightarrow \text{constraints satisfied.}$
Robber’s strategy: big picture

Grid of size n divided into 4 subgrids.
Robber’s strategy: big picture

Grid of size n divided into 4 subgrids.

Pass from a position in a subgrid to a position in an adjacent subgrid.
Grid of size n divided into 4 subgrids.

Pass from a **safe** position in a subgrid to a **safe** position in an adjacent subgrid.
Robber’s strategy: big picture

Grid of size n divided into 4 subgrids.

Pass from a safe position in a subgrid to a safe position in an adjacent subgrid.
Robber’s strategy: Goal

Starting from any safe position in a subgrid Move towards any side keeping its position safe.
Robber’s strategy: Induction $k = 1$

Strategy to go from a safe position towards the blue side
Robber’s strategy: Induction $k = 1$

Case 1: straight line

Strategy to go from a safe position towards the blue side
Robber’s strategy: Induction $k = 1$

Case 2: detour

Strategy to go from a safe position towards the blue side
Robber’s strategy: Induction $k = 1$

Case 2: detour

\[\frac{A_1 + B_1}{\text{speed}_0} < C_1 - \frac{\text{margin}_1}{2} \quad \text{and} \quad \text{time}_1 = \frac{A_1 + B_1}{\text{speed}_0}. \]
Robber’s strategy: Induction $k = 2$

size_1

margin_2

size_2

$(A_2 + B_2)time_1 < C_2 - \frac{\text{margin}_2}{2} \quad \& \quad time_2 = time_1(A_2 + B_2)$.
Robber’s strategy: Induction $k = i$

$$(A_i + B_i) \text{time}_{i-1} < C_i - \frac{\text{margin}_i}{2} \quad \& \quad \text{time}_i = \text{time}_{i-1}(A_i + B_i).$$
Constraints imposed by the strategy

3 variables: \(\text{size}_i, A_i + B_i \approx \text{detour}_i \) and \(\text{margin}_i \)

Define \(\text{zoom}_i = \frac{\text{size}_i}{\text{size}_{i-1}}, \text{speed}_i = \frac{\text{size}_i}{\text{time}_i} \), and \(\text{time}_i = (\text{zoom}_i + \text{detour}_i)\text{time}_{i-1} \).

4 inequalities: \(\forall i \in [1..k] \)

\[
\text{margin}_i \geq \left\lceil \frac{4 + \text{speed}_{i-1}}{\text{speed}_{i-1} - 1} \right\rceil \\
\text{detour}_i / 2 \geq \left\lceil \frac{(2 \times \text{margin}_i + 2)\text{speed}_{i-1}}{\text{speed}_{i-1} - 1} \right\rceil \\
\text{detour}_i / 2 + 2 \times \text{margin}_i + 1 < \text{zoom}_i / 2 \\
\text{speed}_i > 1
\]

\(\exists a, b > 0, \) Inequalities satisfied for \(\text{zoom}_i = ab^i \)

\(\Rightarrow f(k) = \text{size}_k = \text{size}_0 \times \prod_{1 \leq i \leq k} \text{zoom}_i = O(a^k \times b^{k(k+1)/2}) \)
Containment relations on graphs

Graph searching: unbounded speeds, Robber moves simultaneously with Cops

“Many” cops needed ⇔ “large” grid minor. [Robertson, Seymour, Thomas, 94]

If a planar G “contains” a grid of size n, $\text{cn}(G) \geq g(n)$?

G contains H

- vertex deletion (1)
- edge deletion (2)
- edge contraction (3)

Induced subgraph: 1; Subgraph: 1 & 2; Minor: 1, 2 & 3

cop-number is not closed under taking isometric induced subgraphs

$\text{cn}(H) = 2 > \text{cn}(G) = 1$
Containment relations on graphs

Graph searching: unbounded speeds, Robber moves simultaneously with Cops

“Many” cops needed \iff “large” grid minor.
[Robertson, Seymour, Thomas, 94]

If a planar G “contains” a grid of size n, $\text{cn}(G) \geq g(n)$?

G contains H

vertex deletion (1), edge deletion (2), edge contraction (3)
Induced subgraph: 1; Subgraph: 1 & 2; Minor: 1, 2 & 3

cop-number is not closed under taking isometric induced subgraphs
$\text{cn}(H) = 2 > \text{cn}(G) = 1$
Graph searching: unbounded speeds, Robber moves simultaneously with Cops
“Many” cops needed \Leftrightarrow “large” grid minor.
[Robertson, Seymour, Thomas, 94]

If a planar G “contains” a grid of size n, $\text{cn}(G) \geq g(n)$?

G contains H
vertex deletion (1), edge deletion (2), edge contraction (3)
Induced subgraph: 1; Subgraph: 1 & 2; Minor: 1, 2 & 3

cop-number is not closed under taking isometric induced subgraphs
$\text{cn}(H) = 2 > \text{cn}(G) = 1$
Subdivision can diminish the cop-number

Each horizontal edge, except for L, is subdivided into $6n$ edges. The cops use L as a shortcut. $\Rightarrow \text{cn}(H) = 2$
Subdivision can diminish the cop-number

Each horizontal edge, except for L, is subdivided into $6n$ edges. The cops use L as a shortcut. \[\Rightarrow \text{cn}(H) = 2 \]
Subdivision can diminish the cop-number

Each horizontal edge, except for L, is subdivided into $6n$ edges. The cops use L as a shortcut. \(\Rightarrow \text{cn}(H) = 2 \)
Subdivision can diminish the cop-number

Each horizontal edge, except for L, is subdivided into $6n$ edges. The cops use L as a shortcut. $\Rightarrow \text{cn}(H) = 2$
Subdivision can diminish the cop-number

Each horizontal edge, except for L, is subdivided into $6n$ edges. The cops use L as a shortcut. \(\Rightarrow \text{cn}(H) = 2 \)
Subdivision can diminish the cop-number

Each horizontal edge, except for L, is subdivided into $6n$ edges. The cops use L as a shortcut. $\Rightarrow \text{cn}(H) = 2$
Subdivision can diminish the cop-number

Each horizontal edge, except for L, is subdivided into $6n$ edges. The cops use L as a shortcut. $\Rightarrow \text{cn}(H) = 2$
Planar H contains $Square_{2n}$ as an induced subgraph. Robber's strategy restricted to $Square_n$. $\Rightarrow cn(H) = \Omega(\sqrt{\log(n)})$
Perspectives

In case $\text{speed}_R = \text{speed}_C = 1$

- G of genus $g \Rightarrow \text{cn}(G) \leq \frac{3}{2}g + 3$. [Schröder, 01]
 Conjecture: G of genus $g \Rightarrow \text{cn}(G) \leq g + 3$.

- General upper bound for cn?
 for any connected graph G, $\text{cn}(G) \leq O\left(\frac{n}{\log n}\right)$.
 [Chiniforooshan, 08]
 Conjecture: $\text{cn}(G) \leq O(\sqrt{n})$.
 Link with Δ (maximum degree)?

In case $\text{speed}_R > \text{speed}_C$

- $\Omega(\sqrt{\log n}) \leq \text{cn}(\text{Square}_n) \leq O(n)$.
 What is the exact value?

- What about other graphs’classes?

- Link with graphs’decompositions?
Thank you

Any questions?