Cops and robber games

Nicolas Nisse  Karol Suchan

DIM, Universidad de Chile, Santiago, Chile

Seminario Anillo en Redes, August 22nd, 2008

1/23

, Karol Suchan Cops and robber games



Cops & robber/pursuit-evasion /graph searching

Capture an intruder in a network
@ C plays with a team of cops
@ R plays with one robber

Cops’ goal:
@ C: Capture the robber using k cops (“few");

@ The minimum called cop-number, cn(G).

Robber’s goal:
@ R: Perpetually evade k cops (“many”);
@ The maximum equal cn(G) — 1.
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Taxonomy of graph searching games

robber's characteristics

bounded speed arbitrary fast
visible invisible | visible invisible
Cops
turn by turn & X X ?
Robber

graph searching
simultaneous ? X treewidth | pathwidth

Table: Classification of graph searching games

? = No studies (as far as | know)
X = Very few studies 323
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Cops & robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:
O C places the cops;
© R places the robber.
Step-by-step:
@ each cop traverses
at most 1 edge;

@ the robber traverses
at most 1 edge.

Robber apprehended:
A cop occupies the same vertex as
the robber.
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State of art

e Characterization of cop-win graphs {G | en(G) = 1}.
[Nowakowski & Winkler, 83; Quilliot, 83; Chepoi, 97]
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State of art

e Characterization of cop-win graphs {G | en(G) = 1}.
[Nowakowski & Winkler, 83; Quilliot, 83; Chepoi, 97]
n

Theorem: ¢cn(G) = 1 iff n-1

V(G) = {Vla Ty Vn} and

for any i < n, there is j > i s.t.
N[vi] € N[v;] in the subgraph
induced by v, -+, v,

Trees, chordal graphs, bridged graphs (...) are cop-win.
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State of art

e Algorithms: O(n*) to decide if cn(G) < k.
[Hahn & MacGillivray, 06]

cn(G) < k iff the configurations'graph with k cops is copwin.

o Complexity: Computing the cop-number is
EXPTIME-complete. [Goldstein & Reingold, 95]

e Lower bound: cn(G) > d*, where
d + 1 = minimum degree, girth > 8t — 3. [Frankl, 87]
(= there are n-node graphs G with cn(G) > Q(+/n))

e Planar graph G: cn(G) < 3.
[Aigner & Fromme, 84|
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One of the main tool used

Shortest path principle
1 cop can protect 1 shortest path P.

r
é//.
‘\a+1
u c 4 v
O O—0--0—-0

Position ¢ (shadow): dist(r,z) > dist(c,z),Vz € V(P).
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Planar graphs [Aigner & Fromme, 84]

G planar = ¢cn(G) < 3; G grid = cn(G) <2

2 shortest paths to surround, 3" one to reduce the zone.
In a grid, 1 shortest path is enough.
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Other applications of the shortest path principle

Bounded genus graphs

G with genus g: ¢n(G) < 2g + 3 [Schroder, 01]

Minor free graphs

G excluding a minor H: cn(G) < |E(H \ {x})|, where x is
any non-isolated vertex of H [Andreae, 86]

General upper bound

For any connected graph G, cn(G) < O(+2)
[Chiniforooshan, 08]
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Different speeds

Speed = maximum number of edges traversed in 1 step.
speedr > speede =1

Computational hardness

Computing cn for any speedr > 1 is NP-hard; the
parameterized version is W/[2]-hard. For speedr > 2, it is true
already on split graphs. [Fomin, Golovach, Kratochvil, 2008]

Impact of higher robber's speed in planar graphs?

How many cops are needed to capture a fast robber in a grid?
Recall: 2 cops are enough if speedr = speedc.

A
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Our results (speedr > speed;)

Theorem: cop-number is unbounded in planar graphs

Jc > 0Vk > 1: take a square grid f(k) x f(k), f(k) = c¥,
then cn(Squarer(x)) > k.

Corollary: cn(Square,) = Q(+/log(n)).

Gap: the best known upper bound is en(Square,) = O(n).
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Theorem: cop-number is unbounded in planar graphs

Jc > 0Vk > 1: take a square grid f(k) x f(k), f(k) = c¥,
then cn(Squarer(x)) > k.

Corollary: cn(Square,) = Q(+/log(n)).
Gap: the best known upper bound is en(Square,) = O(n).
Does a planar graph “containing” a large grid have a high cn?

Theorem: No...

3H subdivision of an arbitrarily large grid: cn(H) = 2.

Theorem: However...

VH planar with an induced subgraph Squarey(x), cn(H) > k.
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|dea of the proof, cn(Square,) = Q(+/log(n))

Definition inductive (on k) of a strategy for the robber

against k cops: ¢y, Cp, -+, Ck

Key idea

Vi < k, partition G into disjoint subgrid of size O(2')
= In a subgrid of level /, consider only ¢1, ¢, -+, ¢

level-k

In a level-i subgrid, a strategy will
be a path of level-(i — 1) subgrids

avoiding ¢;.
level—(k—1[¥ ] e
subgrid mEE
level—(k—L)/
subgrid
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|dea of the proof, cn(Square,) = Q(+/log(n))

Definition inductive (on k) of a strategy for the robber

against k cops: c1,Cp, -, Ck

Key idea

Vi < k, partition G into disjoint subgrid of size O(2')
= In a subgrid of level /, consider only ¢1, ¢, -, ¢

© Design of a strategy
@ Constraints on n for the strategy to be valid.
Q if n = f(k) = ¢¥ = constraints satisfied.
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Robber's strategy: big picture

NS

Grid of size n divided into 4 subgrids.
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Robber's strategy: big picture

Grid of size n divided into 4 subgrids.

Pass from a position in a subgrid
to a position in an adjacent subgrid. J
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Robber's strategy: big picture

°
°
)
° °
L_\.\/l
°
Grid of size n divided into 4 subgrids.
Pass from a safe position in a subgrid
to a safe position in an adjacent subgrid. J
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Robber's strategy: Goal

\4

Starting from any safe position in a subgrid
Move towards keeping its position safe.
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Robber's strategy: Induction k =1

margin

‘ . L. . )
Sizeq

Strategy to go from a position towards the blue side 15723
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Robber's strategy: Induction k =1

Case 1: straight line J
R ‘ ‘ -
i marigin i
‘ size ‘
Strategy to go from a position towards the blue side 15/23
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Robber's strategy: Induction k =1

Case 2: detour )
i margin{ i
: i :
7 ‘ 4 SR ) 7
size
Strategy to go from a position towards the blue side 15/23
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Robber’s strategy: Induction k

Case 2: detour J
. + Ay -

i margin i

_ B. _

=T
i . i
- ‘ 1 -
- sizey

Ai+B1 mafgl”l A1+B1
speedp = C & tlmel speedp * 15/23
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Robber’s strategy: Induction k = 2

o

Co

< >t

size;

(A2 —+ Bg)timel < C2 — %gim & time2 = timel(AQ + Bg)
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Robber's strategy: Induction kK = i

C;

< >t

(A,’ —+ B,-)time,-,l < C,' = %gin; & time,- = time,-,l(A,- + B,)

size;
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Constraints imposed by the strategy

3 variables: size;, A; + B; = detour; and margin;

Define zoom; = size;/size;_1, speed; = size;/time;, and
time; = (zoom; + detour;)time;_.

4 inequalities : Vi € [1..k]

| \

. 4+ speed; 1
margin; > (—spee di—l_l—‘

) (2+margin;+2)speed;_1
detour; /2 > | speed— -1 1

detour; /2 + 2 x margin; + 1 < zoom; /2
speed; > 1

Jda, b > 0, Inequalities satisfied for zoom; = ab’

= f(k) = sizey = sizeg * [[,;- zoom; = O(a* * pk(k+1)/2)

) 18/23
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Containment relations on graphs

Graph searching: unbounded speeds, Robber moves

simultaneously with Cops

“Many"” cops needed < “large” grid minor.
[Robertson, Seymour, Thomas, 94]
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simultaneously with Cops

“Many"” cops needed < “large” grid minor.
[Robertson, Seymour, Thomas, 94]

If a planar G “contains” a grid of size n, en(G) > g(n)?

vertex deletion (1), edge deletion (2), edge contraction (3)
Induced subgraph: 1; Subgraph: 1 & 2; Minor: 1,2 & 3
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Containment relations on graphs

Graph searching: unbounded speeds, Robber moves

simultaneously with Cops

“Many"” cops needed < “large” grid minor.
[Robertson, Seymour, Thomas, 94]

If a planar G “contains” a grid of size n, en(G) > g(n)?

vertex deletion (1), edge deletion (2), edge contraction (3)
Induced subgraph: 1; Subgraph: 1 & 2; Minor: 1,2 & 3

cop-number is not closed
under taking isometric

induced subgraphs
cn(H)=2>cen(G) =1 1
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Subdivision can diminish the cop-number

Each horizontal edge, except for L, is subdivided into 6n
edges. The cops use L as a shortcut. = en(H) = 2 J
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Large square as an induced subgraph

Planar H contains Square,, as an induced subgraph. Robber’s
strategy restricted to Square,. = cn(H) = Q(/log(n)) }
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In case speedr = speede =1

o G of genus g = cn(G) < 3g + 3. [Schroder, 01]
Conjecture: G of genus g = cn(G) < g + 3.

@ General upper bound for cn ?
for any connected graph G, cn(G) < O(527)-
[Chiniforooshan, 08]
Conjecture: cn(G) < O(y/n).
Link with A (maximum degree)?

In case speedr > speedc
o Q(4/log(n)) < cn(Square,) < O(n).
What is the exact value?
@ What about other graphs'classes?
@ Link with graphs'decompositions? 22/23
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Thank you

Any questions?
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