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@ Our results

© Cops and Robber Games
@ Definitions and related works
@ Cops and Robber in k-chordal graphs
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What is Routing?

Something/someone is at some node (the source) of a
(city, country, Internet, etc.)

e.g., you at home or in a city,

network
an email that you want to send in your computer,
etc.

and needs to go to another node (the destination)
you want to go somewhere,

to send the email to someone,
etc.

Goal: to reach the destination quickly.
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Why may Routing be difficult?

Jean-Claude wants to reach his destination

How to reach
Cogolin?

D137
Sophia-Antipolis

4/21
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Why may Routing be difficult?

Jean-Claude wants to reach his destination

G "

How to reach
Cogolin?

S\ .n} .ly
& D504
y D137

Sophia-Antipolis

If the network is small, known, static, etc. Easy !l
Apply your favorite shortest path algorithm (e.g., Dijkstra)

4/21

Kosowski, Li, , and Suchan Efficient routing in networks



Routing distributed compact chordality results

Why may Routing be difficult?

What for David?

. = Map of Internet Providers
moraner NE E A ke Wy 4 I [Burch and Cheswick 99]

Burch/Chuswik: man o the ntomot W chas . conmapAndus ik
Ening s mogor 5. Data catctod 28 e 1990 T ounen Copyright (63 1999, Lucont Tocmsogses

If the network is Huge, only partially known, dynamic, etc.
What to do 77

5/27
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How Internet works? Border Gateway Protocol

BGP: routing protocol of the Autonomous Systems’ (AS) network

Biot: D04 D4
Kice: D504D103;48;06202,06098
Barcelone: AB; A7 AS4:N113:A54; A9:AT:AP-T
varseiles il paths i o warseile 1

Why you want ta go
Fadarbon ABIAL DAY AbAS AT4:A96 8641813

‘ Rians:p504;0103;035;A8,DN7,023,03,02003

Let's go to Rians!

[ i |

[ ateton, AT sla
sndon: AGIATIAGIALSALL5:ALG ferry:A250:420
130.207.0.0/16: 1925.89.89 1078..2637
.207.0.0/16: B 2

13.0.0.04.79.2.1
14.21.254.0123: 208,30.223.5 1239 646
5673570, 0/1€ 183.5 5585 Tos78 11537 10400 2637

@ Routing Tables (RT) attached to each AS
@ 1 entry/destination: whole path stored (to avoid loops)

6/27
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How Internet works? Border Gateway Protocol

BGP: routing protocol of the Autonomous Systems’ (AS) network

Let's go to Rians!

£y

@ Routing Tables (RT) attached to each AS
@ 1 entry/destination: whole path stored = huge, difficult to read
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How Internet works? Border Gateway Protocol

BGP: routing protocol of the Autonomous Systems’ (AS) network

Biot: D04 D4
Kice: D504D103;48;06202,06098
Bar(e\one e Ai ASANLLS ASALATIAPT

Let's go to Rians!

£y

Message From StMaximin to INRIA
The route | know to Rians is via Paris !!

Fadarbon ABIAL DAY AbAS AT4:A96 8641813

‘ Rians:A8;A7;Paris;AT;A8;DN7;D23;D3;02003

[ ateton, AT sla
ndon: ABIAT AGALSALLEALG ferry:A250:A20
130207.0.0116: 192.5.89.89 1075, 2637

13,000 479.21 33
13.21.254.0/23; 208,30.223.5 1239 6461 2
156726770 6116 195 8565 10573 11537 1040D 2637

@ Routing Tables (RT) attached to each AS
@ 1 entry/destination: whole path stored = huge, difficult to read

@ to deal with dynamicity: ASs send to each other paths they know
ASs may lie (Policy), paths may be too long  6/27
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Challenges

BGP Ideally
Routing Tables size O(nlog n) bits O(log n) bits
Paths Length depend on ASs policies Shortest paths
Update Time Long (= 5 min.) Fast (using only local information)

(n is the number of ASs)

Large-scale Networks have specific structural properties

@ small diameter, high clustering coefficient, power-law degree-distribution

@ hyperbolicity, chordality, etc.

Objectives

@ Understand (find new) Properties

@ Use it for algorithmic purposes (not only routing)
@ Model such networks
]

Simulate (static/dynamic behavior) /21
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Compact Routing

Goal To deliver a message in a distributed way
Routing Scheme protocol that directs the traffic in a network
kortinumberl
pl
MESSAGE
HEADER P2
destination name D NODE V
useful information hd (pi,hd')=f(D,hd,RT)
Routing Table RT
DATA S

Pi pk

@ Routing Tables RT

@ Information required in the message headers hd

@ Routing function f: compute next hop / may modify the header

i

@ labelled/name independent node ldentifiers are part of the design or not

@ design port model local labeling (port number) are part of the design or not | 8/27
i
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Performances Measures

How far the route actually followed is from a shortest path

BT q ) |route(x,y)|
@ Multiplicative stretch: max, yev(G) < Ty
@ Additive stretch: max, yev(c) < |route(x, y)| — dist(x, y).

@ Space necessary to store local routing table (per node)

@ Size of the node ldentifiers / message header (generally O(log n))

v

Time complexity

@ Distributed/Centralized protocol
@ Time to setup data structures

@ Time to update data structures

9/27
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Example: Interval Routing [Santoro & Khatib, 82]

@ Nodes labeled using integers

@ Outgoing arc labeled with an interval of the name range

Message sent through the arc containing the destination J
mult-stretch: [6,4]
route(1,5) _ 4 /

d(1,5)
add-stretch:
route(1,5)-d(1,5)= 3
space per node: 6 5] 4
O(Alog n) O O

[15] [6] [13] [46]

10/27
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Related Works

Names and Headers (if any) are of polylogarithmic size

network mult. routing table
stretch labelled name-independent
arbitrary shortest path O(n log n) [folk] @(n log n) [Gavoille,Pérennes]
(k > 2) O(k) O(nl k) [Thorup,Zwick] @(nl k) [TZ/Abraham et al.]
trees shortest path O(|Og n) [TZ/Fraigniaud,Gavoille] Q(\/E) [Laing,Rajaraman]

A =1 @(nl k) [Laing/Abraham et al.]
doubling-« 0(1) + ¢ O(log A) [Talwar/Slivkins] O(e~%log n) [Abraham et al.]
dimension O(|Og n) [Chan et al./Abraham et al.]

planar 1+e O(log n) [Thorup]
H-minor free 1+e O(|H‘| . 2“‘” |Og n) [Abraham,Gavoille]

11/27
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Related Works

Names and Headers (if any) are of polylogarithmic size

network mult. routing table
stretch labelled name-independent
arbitrary shortest path O(n log n) [folk] @(n log n) [Gavoille,Pérennes]
(k > 2) O(k) O(nl k) [Thorup,Zwick] @(nl k) [TZ/Abraham et al.]
trees shortest path O(|Og n) [TZ/Fraigniaud,Gavoille] Q(\/E) [Laing,Rajaraman]

A =1 @(nl k) [Laing/Abraham et al.]
doubling-« 0(1) + ¢ O(log A) [Talwar/Slivkins] O(e~%log n) [Abraham et al.]
dimension O(|Og n) [Chan et al./Abraham et al.]

planar 1+e O(log n) [Thorup]
H-minor free 1+e O(|H‘| . 2“‘” |Og n) [Abraham,Gavoille]

In general graphs, ©(nlog n) is optimal.
Can we do better than BGP?
Yes !! (we hope), using structural properties

11/27
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Properties of large scale networks Chordality
Well known properties graph parameters
small diameter (logarithmic) (= small hyperbolicity)
power law degree distribution
high clustering coefficient = few long induced cycles

12/27
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Properties of large scale networks Chordality

Well known properties graph parameters

small diameter (logarithmic) (= small hyperbolicity)
power law degree distribution
high clustering coefficient = few long induced cycles

Chordality of a graph G: length of greatest induced cycle in G

not 1nduced cycle (chords)

MMM\ ‘mmm induced cycle (chordless)
| ANAVANANANAVANEED |

chordality =7

12/27
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Brief related work on chordality

Complexity chordality < k?
NP-complete easy reduction from hamiltonian cycle
not FPT [CF'07] no algorithm f(k).poly(n) (unless P = NP)
FPT in planar graphs [KK'09] Graph Minor Theory

chordality < k = treewidth < O(AK)  [Bodlaender, Thilikos'97]

Kosowski, Li, , and Suchan Efficient routing in networks
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Brief related work on chordality

Complexity chordality < k?
NP-complete easy reduction from hamiltonian cycle
not FPT [CF'07] no algorithm f(k).poly(n) (unless P = NP)
FPT in planar graphs [KK'09] Graph Minor Theory

chordality < k = treewidth < O(AK)  [Bodlaender, Thilikos'97]

Compact routing schemes in graphs with chordality < k

stretch RT’s size | computation time
k+1 O(k |0g2 n) poly(n) [Dourisboure’05]
header never changes
k—1 ‘ O(A log n) ‘ O(D) ‘ [NRS’09]
distributed protocol to compute RT's / no header
O(k log A) ‘ O(k log n) O(m2) ‘ [this paper]
or O(k) and O(A log n) generalization of [NRS'09]
Names and Headers (if any) are of polylogarithmic size | 13/27
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Slmple Routing scheme [Nisse,Rapaport,Suchan 09]

Universal, Labelled scheme, no header

G a network and T a rooted spanning tree of G prefix order labeling
X a source node and y a destination node

14/27
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Slmple Routing scheme [Nisse,Rapaport,Suchan 09]

Universal, Labelled scheme, no header

G a network and T a rooted spanning tree of G

prefix order labeling
X a source node and y a destination node

If x =y, stop.

If there is w € Ng(x), an ancestor of y in T,
choose w minimizing dr(w,y);

Otherwise, choose the parent of x in T.

14/27
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Slmple Routing scheme [Nisse,Rapaport,Suchan 09]

Universal, Labelled scheme, no header

G a network and T a rooted spanning tree of G prefix order labeling
X a source node and y a destination node

If x =y, stop.

If there is w € Ng(x), an ancestor of y in T,
choose w minimizing dr(w,y);

Otherwise, choose the parent of x in T.

Once T has been chosen

Space: labeling of nodes: any rooted subtree < interval
routing table: each node knows the interval of its neighbors
O(A log n) bits per node

Time: easy to compute in time O(D) in synchronous distributed way

Stretch: if T is a BFS-tree in a k-chordal graph: additive stretch < k — 1

14/27
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From Cops and robber to Routing via Treewidth

Compact routing scheme

using structure of k—chordal graphs
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From Cops and robber to Routing via Treewidth

decomposition algorithm
related to tree—decompositions

for graphs with particular structure

(including k—chordal graphs)

Compact routing scheme

using structure of k—chordal graphs
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From Cops and robber to Routing via Treewidth

Study of Cops and Robber games
in k—chordal graphs
design of a strategy to capture a robber

derived into a graph decomposition

decomposition algorithm
related to tree—decompositions

for graphs with particular structure

(including k—chordal graphs)

Compact routing scheme

using structure of k—chordal graphs

15/27
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Our results [KLNS12]

Theorem 1: Cops and Robber games
k — 1 cops are sufficient to capture a robber in k-chordal graphs

Theorem 2: main result

There is a O(m?)-algorithm that, in any m-edge graph G,
@ either returns an induced cycle larger than k,

@ or compute a tree-decomposition with each bag being the
closed neighborhood of an induced path of length < k — 1.

(= treewidth < O(A.k) and treelength < k)

Theorem 3: for any graph admitting such a tree-decomposition

there is a compact routing scheme using RT's of size O(k log n)
bits, and achieving additive stretch O(k log A). 16/27
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© Distributed and Compact Routing
@ Routing in a distributed way
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@ Our results
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@ Cops and Robber in k-chordal graphs
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Cops & robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:
© C places the cops;
@ R places the robber.
Step-by-step:

@ each cop traverses
at most 1 edge;

@ the robber traverses
at most 1 edge.

Robber captured:
A cop occupies the same vertex as the
robber.

18/27
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Cop number

cn(G) minimum number of cops to capture any robber

Determine cn(G) for the following graph G?

19/27
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Cop number

cn(G) minimum number of cops to capture any robber

Determine cn(G) for the following graph G? <3

cn(G) < 3 for any planar graph G [Aigner, Fromme, 84]

19/27
Computing cn(G) is NP-hard [FGKNS 10]
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Cops & robber games: the graph structure helps!!

@ G with girth g (min induced cycle) and min degree d: cn(G) > dé [Frankl 87]
@ 3 n-node graphs G (projective plane): cn(G) = ©(1/n) [Frankl 87]
@ G with dominating set k: cn(G) < k [folklore]
@ Planar graph G: cn(G) <3 [Aigner, Fromme, 84]
@ Minor free graph G excluding a minor H: cn(G) < |E(H)| [Andreae, 86]
@ G with genus g: cn(G) < 3/2g +3 [Schréder, 01]
@ G with treewidth t: cn(G) < t/2+1 [Joret, Kaminsk, Theis 09]
@ G random graph (Erdds Reyni): cn(G) = O(+1/n) [Bollobas et al. 08]
@ any n-node graph G: cn(G) = O(m) [Lu,Peng 09, Scott,Sudakov 10]
Conjecture: For any connected n-node graph G, cn(G) = O(+/n). [Meyniel 87]

Kosowski, Li, , and Suchan Efficient routing in networks
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@ G random graph (Erdds Reyni): cn(G) = O(+1/n) [Bollobas et al. 08]
@ any n-node graph G: cn(G) = O(m) [Lu,Peng 09, Scott,Sudakov 10]
Conjecture: For any connected n-node graph G, cn(G) = O(+/n). [Meyniel 87]

Theorem 1 [KLNS12]

G with chordality k: cn(G) < k — 1.

Since 25 years, many researchers study graphs structural properties and introduce variants in the game to try
solving the conjecture.
e.g., [Chiniforooshan 08, Bonato et al. 10, FGKNS 10, Alon,Mehrabian11, CCNV11, Clarke,McGillivray11]

see the recent survey book: The Game of Cops and Robbers on Graphs, A.Bonato and R.Nowakovski 2011 20/27
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Caterpillar strategy reduce the robber area

initialization: all k cops in one arbitrary node P = {v; }
invariant: Cops always occupy an induced path P = {vy, -, v;}

21/27
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Caterpillar strategy reduce the robber area

initialization: all k cops in one arbitrary node P = {v; }
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algorithm:

extension: if w € N(vi) U N(v;), Pw induced and N(w) N Cropper 7 0
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algorithm:
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Separator
induced path <k+1
and its neighborhood
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Caterpillar strategy reduce the robber area

initialization: all k cops in one arbitrary node P = {v; }

invariant: Cops always occupy an induced path P = {vy, -, v;}

algorithm: retraction: if vi or v; cannot be extended, else
extension: if w € N(vi) U N(v;), Pw induced and N(w) N Cropper 7 0
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Games definitions theorem 1

Capture in k-chordal graphs: Caterpillar strategy

{v1,---,vj} occupied: if no retraction = induced cycle > i +1

Theorem 1 greedy algorithm

caterpillar strategy uses < k — 1 cops in k-chordal graphs 22/27
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Application
Outline

© Distributed and Compact Routing
@ Routing in a distributed way
@ Compact Routing
@ Using structural Properties: chordality
@ Our results

© Cops and Robber Games
@ Definitions and related works
@ Cops and Robber in k-chordal graphs

© Structural result and link with compact routing
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Application

Tree-decomposition /treewidth (unformal)

Pieces (subgraphs) with tree-like structure (bag=separator)

OO

Tree—decomposition
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Application

Tree-decomposition with k-induced paths

k-Caterpillar strategy = decomposition with
separator= k-caterpillar

Theorem 2: main result [KLNS12]

There is a O(m?)-algorithm that, in any m-edge graph G,

@ either returns an induced cycle larger than k,

@ or compute a tree-decomposition with each bag being the
closed neighborhood of an induced path of length < k — 1.

v

In case of k-chordal graphs:

= treewidth < O(A.k) (improves [Bodlaender, Thilikos'97] result)
= treelength < k (already known)
= hyperbolicity < 3k/2 (better bound is known)

25/27
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Application

Application to compact routing

stretch O(k log A) with RT's of size O(k log n) bits [KLNS12]

BFS-tree T, tree-decomposition D with k-caterpillar separators

r

From s to d

@ follow the path to rin T
until find x such that

BFS tree T

B, is an ancestor of By in D
stretch: +k
@ in By, find y an ancestor of
dinT
stretch: +klog A
© follow the pathto din T
stretch: +k

shortest s—d path
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Application

Further Works

short term goals:

Implement the decomposition-algorithm and simulate on large scale models

What if other properties are included?

and then?

Structural Properties of Large-scale Networks

Efficient algorithms for > 10%-node graphs
(e.g., for hyperbolicity O(n*)-algorithms cannot work)
what about NP-hard problems? (e.g., chordality)
other “hidden” properties?

Distributed algorithms

How facing dynamicity?

models of dynamicity, localized algorithms
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Distributed algorithms

How facing dynamicity?

models of dynamicity, localized algorithms

—

Cops and robber

Conjecture: For any connected n-node graph G, cn(G) = O(y/n). [Meyniel 87] 27/27
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