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Outline

1 Distributed and Compact Routing
Routing in a distributed way
Compact Routing
Using structural Properties: chordality
Our results

2 Cops and Robber Games
Definitions and related works
Cops and Robber in k-chordal graphs

3 Structural result and link with compact routing
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What is Routing?

Something/someone is at some node (the source) of a
network (city, country, Internet, etc.)

e.g., you at home or in a city,

an email that you want to send in your computer,

etc.

and needs to go to another node (the destination)
you want to go somewhere,

to send the email to someone,

etc.

Goal: to reach the destination quickly.

Kosowski, Li, Nisse, and Suchan Efficient routing in networks
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Why may Routing be difficult?

Jean-Claude wants to reach his destination

If the network is small, known, static, etc. Easy !!
Apply your favorite shortest path algorithm (e.g., Dijkstra)

Kosowski, Li, Nisse, and Suchan Efficient routing in networks
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Why may Routing be difficult?

What for David?

Rungis

If the network is Huge, only partially known, dynamic, etc.
What to do ??

Kosowski, Li, Nisse, and Suchan Efficient routing in networks
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How Internet works? Border Gateway Protocol

BGP: routing protocol of the Autonomous Systems’ (AS) network

Routing Tables (RT) attached to each AS

1 entry/destination: whole path stored (to avoid loops)

to deal with dynamicity: ASs send to each other paths they know

ASs may lie (Policy), paths may be too long

Kosowski, Li, Nisse, and Suchan Efficient routing in networks



6/27

Routing Games Application distributed compact chordality results

How Internet works? Border Gateway Protocol

BGP: routing protocol of the Autonomous Systems’ (AS) network

Routing Tables (RT) attached to each AS

1 entry/destination: whole path stored ⇒ huge, difficult to read

to deal with dynamicity: ASs send to each other paths they know

ASs may lie (Policy), paths may be too long

Kosowski, Li, Nisse, and Suchan Efficient routing in networks



6/27

Routing Games Application distributed compact chordality results

How Internet works? Border Gateway Protocol

BGP: routing protocol of the Autonomous Systems’ (AS) network

Routing Tables (RT) attached to each AS

1 entry/destination: whole path stored ⇒ huge, difficult to read

to deal with dynamicity: ASs send to each other paths they know

ASs may lie (Policy), paths may be too long

Kosowski, Li, Nisse, and Suchan Efficient routing in networks



7/27

Routing Games Application distributed compact chordality results

Challenges

BGP Ideally
Routing Tables size O(n log n) bits O(log n) bits

Paths Length depend on ASs policies Shortest paths
Update Time Long (≈ 5 min.) Fast (using only local information)

(n is the number of ASs)

Large-scale Networks have specific structural properties
small diameter, high clustering coefficient, power-law degree-distribution

hyperbolicity, chordality, etc.

Objectives
Understand (find new) Properties

Use it for algorithmic purposes (not only routing)

Model such networks

Simulate (static/dynamic behavior)

Kosowski, Li, Nisse, and Suchan Efficient routing in networks
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Compact Routing

Goal To deliver a message in a distributed way

Routing Scheme protocol that directs the traffic in a network

Routing Problem: definitions of:

Routing Tables RT

Information required in the message headers hd

Routing function f: compute next hop / may modify the header

Models

labelled/name independent node Identifiers are part of the design or not

design port model local labeling (port number) are part of the design or not

Kosowski, Li, Nisse, and Suchan Efficient routing in networks
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Performances Measures

Stretch

How far the route actually followed is from a shortest path

Multiplicative stretch: maxx,y∈V (G) ≤
|route(x,y)|
dist(x,y)

.

Additive stretch: maxx,y∈V (G) ≤ |route(x , y)| − dist(x , y).

Memory space

Space necessary to store local routing table (per node)

Size of the node Identifiers / message header (generally O(log n))

Time complexity

Distributed/Centralized protocol

Time to setup data structures

Time to update data structures

Kosowski, Li, Nisse, and Suchan Efficient routing in networks
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Example: Interval Routing [Santoro & Khatib, 82]

Nodes labeled using integers

Outgoing arc labeled with an interval of the name range

Message sent through the arc containing the destination

mult-stretch:
route(1,5)
d(1,5)

= 4

add-stretch:
route(1, 5)-d(1, 5)= 3

space per node:
O(∆ log n)

2

3

15

4
6

[1]

[1,2]

[1,3]

[5]

[2,6]

[3,6]

[4,6][6][1,5]

[6,4]
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Related Works

Names and Headers (if any) are of polylogarithmic size

network mult. routing table
stretch labelled name-independent

arbitrary shortest path O(n log n) [folk] Θ(n log n) [Gavoille,Pérennes]

(k ≥ 2) O(k) O(n1/k ) [Thorup,Zwick] Θ(n1/k ) [TZ/Abraham et al.]

trees shortest path O(log n) [TZ/Fraigniaud,Gavoille] Ω(
√
n) [Laing,Rajaraman]

2k − 1 Θ(n1/k ) [Laing/Abraham et al.]

doubling-α O(1) + ε O(log ∆) [Talwar/Slivkins] O(ε−α log n) [Abraham et al.]

dimension O(log n) [Chan et al./Abraham et al.]

planar 1 + ε O(log n) [Thorup]

H-minor free 1 + ε O(|H|! · 2|H| log n) [Abraham,Gavoille]

In general graphs, Θ(n log n) is optimal.
Can we do better than BGP?

Yes !! (we hope), using structural properties

Kosowski, Li, Nisse, and Suchan Efficient routing in networks
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Properties of large scale networks Chordality

Well known properties graph parameters

small diameter (logarithmic) (⇒ small hyperbolicity)
power law degree distribution

high clustering coefficient ⇒ few long induced cycles

Chordality of a graph G : length of greatest induced cycle in G

chordality = 7

not induced cycle (chords)
induced cycle (chordless)

Kosowski, Li, Nisse, and Suchan Efficient routing in networks
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Brief related work on chordality

Complexity chordality ≤ k?

NP-complete easy reduction from hamiltonian cycle
not FPT [CF’07] no algorithm f (k).poly(n) (unless P = NP)
FPT in planar graphs [KK’09] Graph Minor Theory

chordality ≤ k ⇒ treewidth ≤ O(∆k) [Bodlaender, Thilikos’97]

Compact routing schemes in graphs with chordality ≤ k

stretch RT’s size computation time

k + 1 O(k log2 n) poly(n) [Dourisboure’05]

header never changes
k − 1 O(∆ log n) O(D) [NRS’09]

distributed protocol to compute RT’s / no header
O(k log ∆) O(k log n) O(m2) [this paper]

or O(k) and O(∆ log n) generalization of [NRS’09]

Names and Headers (if any) are of polylogarithmic size

Kosowski, Li, Nisse, and Suchan Efficient routing in networks
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Simple Routing scheme [Nisse,Rapaport,Suchan 09]

Universal, Labelled scheme, no header

G a network and T a rooted spanning tree of G prefix order labeling
x a source node and y a destination node

If x = y , stop.
If there is w ∈ NG (x), an ancestor of y in T ,

choose w minimizing dT (w , y);
Otherwise, choose the parent of x in T .

root

x

y

25

3
45

78

9
10

15
13

17

20

22

26

23

24

2

11

126

14

18

19

21
16

1

[13−16]

[17−19]

[12]
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Simple Routing scheme [Nisse,Rapaport,Suchan 09]

Universal, Labelled scheme, no header

G a network and T a rooted spanning tree of G prefix order labeling
x a source node and y a destination node

If x = y , stop.
If there is w ∈ NG (x), an ancestor of y in T ,

choose w minimizing dT (w , y);
Otherwise, choose the parent of x in T .

Once T has been chosen

Space: labeling of nodes: any rooted subtree ⇔ interval
routing table: each node knows the interval of its neighbors
O(∆ log n) bits per node

Time: easy to compute in time O(D) in synchronous distributed way

Stretch: if T is a BFS-tree in a k-chordal graph: additive stretch ≤ k − 1

Kosowski, Li, Nisse, and Suchan Efficient routing in networks
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From Cops and robber to Routing via Treewidth

Compact routing scheme

using structure of k−chordal graphs

Kosowski, Li, Nisse, and Suchan Efficient routing in networks
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From Cops and robber to Routing via Treewidth

Compact routing scheme

using structure of k−chordal graphs

(including k−chordal graphs)

for graphs with particular structure

decomposition algorithm

related to tree−decompositions
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From Cops and robber to Routing via Treewidth

Compact routing scheme

using structure of k−chordal graphs

(including k−chordal graphs)

for graphs with particular structure

decomposition algorithm

related to tree−decompositions

Study of Cops and Robber games
in k−chordal graphs

design of a strategy to capture a robber

derived into a graph decomposition

Kosowski, Li, Nisse, and Suchan Efficient routing in networks
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Our results [KLNS12]

Theorem 1: Cops and Robber games

k − 1 cops are sufficient to capture a robber in k-chordal graphs

Theorem 2: main result

There is a O(m2)-algorithm that, in any m-edge graph G ,

either returns an induced cycle larger than k,

or compute a tree-decomposition with each bag being the
closed neighborhood of an induced path of length ≤ k − 1.

(⇒ treewidth ≤ O(∆.k) and treelength ≤ k)

Theorem 3: for any graph admitting such a tree-decomposition

there is a compact routing scheme using RT’s of size O(k log n)

bits, and achieving additive stretch O(k log ∆).

Kosowski, Li, Nisse, and Suchan Efficient routing in networks
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Cops & robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:

1 C places the cops;

2 R places the robber.

Step-by-step:

each cop traverses
at most 1 edge;

the robber traverses
at most 1 edge.

Robber captured:
A cop occupies the same vertex as the
robber.

Kosowski, Li, Nisse, and Suchan Efficient routing in networks
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Cop number

cn(G ) minimum number of cops to capture any robber

Determine cn(G) for the following graph G?

≤ 3

cn(G) ≤ 3 for any planar graph G [Aigner, Fromme, 84]

Computing cn(G) is NP-hard [FGKNS 10]

Kosowski, Li, Nisse, and Suchan Efficient routing in networks
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Cops & robber games: the graph structure helps!!

G with girth g (min induced cycle) and min degree d : cn(G) ≥ dg [Frankl 87]

∃ n-node graphs G (projective plane): cn(G) = Θ(
√
n) [Frankl 87]

G with dominating set k: cn(G) ≤ k [folklore]

Planar graph G : cn(G) ≤ 3 [Aigner, Fromme, 84]

Minor free graph G excluding a minor H: cn(G) ≤ |E(H)| [Andreae, 86]

G with genus g : cn(G) ≤ 3/2g + 3 [Schröder, 01]

G with treewidth t: cn(G) ≤ t/2 + 1 [Joret, Kaminsk,Theis 09]

G random graph (Erdös Reyni): cn(G) = O(
√
n) [Bollobas et al. 08]

any n-node graph G : cn(G) = O( n

2(1+o(1))
√

log n
) [Lu,Peng 09, Scott,Sudakov 10]

Conjecture: For any connected n-node graph G , cn(G) = O(
√
n). [Meyniel 87]

Theorem 1 [KLNS12]

G with chordality k : cn(G ) ≤ k − 1.

Since 25 years, many researchers study graphs structural properties and introduce variants in the game to try
solving the conjecture.
e.g., [Chiniforooshan 08, Bonato et al. 10, FGKNS 10, Alon,Mehrabian11, CCNV11, Clarke,McGillivray11]

see the recent survey book: The Game of Cops and Robbers on Graphs, A.Bonato and R.Nowakovski 2011

Kosowski, Li, Nisse, and Suchan Efficient routing in networks
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G with treewidth t: cn(G) ≤ t/2 + 1 [Joret, Kaminsk,Theis 09]

G random graph (Erdös Reyni): cn(G) = O(
√
n) [Bollobas et al. 08]

any n-node graph G : cn(G) = O( n

2(1+o(1))
√

log n
) [Lu,Peng 09, Scott,Sudakov 10]

Conjecture: For any connected n-node graph G , cn(G) = O(
√
n). [Meyniel 87]

Theorem 1 [KLNS12]

G with chordality k : cn(G ) ≤ k − 1.

Since 25 years, many researchers study graphs structural properties and introduce variants in the game to try
solving the conjecture.
e.g., [Chiniforooshan 08, Bonato et al. 10, FGKNS 10, Alon,Mehrabian11, CCNV11, Clarke,McGillivray11]

see the recent survey book: The Game of Cops and Robbers on Graphs, A.Bonato and R.Nowakovski 2011

Kosowski, Li, Nisse, and Suchan Efficient routing in networks



21/27

Routing Games Application definitions theorem 1

Caterpillar strategy reduce the robber area

initialization: all k cops in one arbitrary node P = {v1}
invariant: Cops always occupy an induced path P = {v1, · · · , vi}

algorithm:

extension: if w ∈ N(v1) ∪ N(vi ), Pw induced and N(w) ∩ Crobber 6= ∅

k

Kosowski, Li, Nisse, and Suchan Efficient routing in networks
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Separator

induced path <k+1

and its neighborhood
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Caterpillar strategy reduce the robber area

initialization: all k cops in one arbitrary node P = {v1}
invariant: Cops always occupy an induced path P = {v1, · · · , vi}
algorithm: retraction: if v1 or vi cannot be extended, else

extension: if w ∈ N(v1) ∪ N(vi ), Pw induced and N(w) ∩ Crobber 6= ∅
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Routing Games Application definitions theorem 1

Capture in k-chordal graphs: Caterpillar strategy

{v1, · · · , vi} occupied: if no retraction ⇒ induced cycle ≥ i + 1

1

1 1

1
1

1

Theorem 1 greedy algorithm

caterpillar strategy uses ≤ k − 1 cops in k-chordal graphs
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Routing Games Application

Outline

1 Distributed and Compact Routing
Routing in a distributed way
Compact Routing
Using structural Properties: chordality
Our results

2 Cops and Robber Games
Definitions and related works
Cops and Robber in k-chordal graphs

3 Structural result and link with compact routing
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Tree-decomposition/treewidth (unformal)

Pieces (subgraphs) with tree-like structure (bag=separator)

Tree−decomposition
Graph

Separator

Separator
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Pieces (subgraphs) with tree-like structure (bag=separator)
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Tree-decomposition/treewidth (unformal)

Pieces (subgraphs) with tree-like structure (bag=separator)
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Tree−decomposition

Computation: find a separator with desired properties, then induction
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Routing Games Application

Tree-decomposition with k-induced paths

From k-Caterpillar’s strategy
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Routing Games Application

Tree-decomposition with k-induced paths

k-Caterpillar strategy ⇒ decomposition with

separator= k-caterpillar

Theorem 2: main result [KLNS12]

There is a O(m2)-algorithm that, in any m-edge graph G ,

either returns an induced cycle larger than k ,

or compute a tree-decomposition with each bag being the
closed neighborhood of an induced path of length ≤ k − 1.

In case of k-chordal graphs:
⇒ treewidth ≤ O(∆.k) (improves [Bodlaender,Thilikos’97] result)
⇒ treelength ≤ k (already known)

⇒ hyperbolicity ≤ 3k/2 (better bound is known)
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Routing Games Application

Application to compact routing

stretch O(k log ∆) with RT’s of size O(k log n) bits [KLNS12]

BFS-tree T , tree-decomposition D with k-caterpillar separators

From s to d

1 follow the path to r in T

until find x such that

Bx is an ancestor of Bd in D

stretch: +k

2 in Bx , find y an ancestor of
d in T

stretch: +k log ∆

3 follow the path to d in T

stretch: +k
shortest s−d path d

Bd

r

s

Bx

BFS tree T

x

y
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Routing Games Application

Further Works
short term goals:

Implement the decomposition-algorithm and simulate on large scale models

What if other properties are included?

and then?

Structural Properties of Large-scale Networks

Efficient algorithms for ≥ 105-node graphs
(e.g., for hyperbolicity O(n4)-algorithms cannot work)

what about NP-hard problems? (e.g., chordality)
other “hidden” properties?

Distributed algorithms

How facing dynamicity?

models of dynamicity, localized algorithms

Cops and robber

Conjecture: For any connected n-node graph G , cn(G) = O(
√
n). [Meyniel 87]
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