Dimension Métrique des Graphes Orientés

Julien Bensmail Fionn Mc Inerney Nicolas Nisse
Université Côte d'Azur, Inria, CNRS, I3S

AlgoTel, Saint Laurent de la Cabrerisse, 6 juin 2019

Metric Dimension of graphs

Precisely locate using few information How to generalize to graph metric?

Metric Dimension of graphs

A target is hidden at some (unknown) vertex t of a graph $G=(V, E)$ Probing a vertex $v \in V(G) \Rightarrow$ the distance $\operatorname{dist}_{G}(t, v)$ between v and t.

Resolving set: set of vertices to probe s.t. the target is uniquely located

Set $R=\left\{v_{1}, \cdots, v_{i}\right\} \subseteq V$ s.t. $\left(\operatorname{dist}_{G}\left(v, v_{i}\right)\right)_{j \leq i}$ pairwise distinct $\forall v \in V$.

Metric Dimension of graphs

A target is hidden at some (unknown) vertex t of a graph $G=(V, E)$ Probing a vertex $v \in V(G) \Rightarrow$ the distance $\operatorname{dist}_{G}(t, v)$ between v and t.

Resolving set : set of vertices to probe s.t. the target is uniquely located
 Set $R=\left\{v_{1}, \cdots, v_{i}\right\} \subseteq V$ s.t. $\left(\operatorname{dist}_{G}\left(v, v_{i}\right)\right)_{j \leq i}$ pairwise distinct $\forall v \in V$.

Metric Dimension of graphs

A target is hidden at some (unknown) vertex t of a graph $G=(V, E)$ Probing a vertex $v \in V(G) \Rightarrow$ the distance $\operatorname{dist}_{G}(t, v)$ between v and t.

Resolving set: set of vertices to probe s.t. the target is uniquely located
 Set $R=\left\{v_{1}, \cdots, v_{i}\right\} \subseteq V$ s.t. $\left(\operatorname{dist}_{G}\left(v, v_{i}\right)\right)_{j \leq i}$ pairwise distinct $\forall v \in V$.

Metric Dimension of graphs

A target is hidden at some (unknown) vertex t of a graph $G=(V, E)$ Probing a vertex $v \in V(G) \Rightarrow$ the distance $\operatorname{dist}_{G}(t, v)$ between v and t.

Resolving set : set of vertices to probe s.t. the target is uniquely located
 Set $R=\left\{v_{1}, \cdots, v_{i}\right\} \subseteq V$ s.t. $\left(\operatorname{dist}_{G}\left(v, v_{i}\right)\right)_{j \leq i}$ pairwise distinct $\forall v \in V$.

Metric Dimension of graphs

A target is hidden at some (unknown) vertex t of a graph $G=(V, E)$ Probing a vertex $v \in V(G) \Rightarrow$ the distance $\operatorname{dist}_{G}(t, v)$ between v and t.

Resolving set : set of vertices to probe s.t. the target is uniquely located
 Set $R=\left\{v_{1}, \cdots, v_{i}\right\} \subseteq V$ s.t. $\left(\operatorname{dist}_{G}\left(v, v_{i}\right)\right)_{j \leq i}$ pairwise distinct $\forall v \in V$.

Metric Dimension of graphs

A target is hidden at some (unknown) vertex t of a graph $G=(V, E)$ Probing a vertex $v \in V(G) \Rightarrow$ the distance $\operatorname{dist}_{G}(t, v)$ between v and t.

Resolving set: set of vertices to probe s.t. the target is uniquely located
 Set $R=\left\{v_{1}, \cdots, v_{i}\right\} \subseteq V$ s.t. $\left(\operatorname{dist}_{G}\left(v, v_{i}\right)\right)_{j \leq i}$ pairwise distinct $\forall v \in V$.

Metric Dimension of graphs

A target is hidden at some (unknown) vertex t of a graph $G=(V, E)$ Probing a vertex $v \in V(G) \Rightarrow$ the distance $\operatorname{dist}_{G}(t, v)$ between v and t.

Resolving set: set of vertices to probe s.t. the target is uniquely located
 Set $R=\left\{v_{1}, \cdots, v_{i}\right\} \subseteq V$ s.t. $\left(\operatorname{dist}_{G}\left(v, v_{i}\right)\right)_{j \leq i}$ pairwise distinct $\forall v \in V$.

Metric Dimension of graphs

A target is hidden at some (unknown) vertex t of a graph $G=(V, E)$ Probing a vertex $v \in V(G) \Rightarrow$ the distance $\operatorname{dist}_{G}(t, v)$ between v and t.

set of vertices to probe s.t. the target is uniquely located

Set $R=\left\{v_{1}, \cdots, v_{i}\right\} \subseteq V$ s.t. $\left(\operatorname{dist}_{G}\left(v, v_{i}\right)\right)_{j \leq i}$ pairwise distinct $\forall v \in V$.

Metric Dimension $M D(G)$: min. size of a resolving set in $G . \quad(M D(G) \leq|V|)$ example : for any tree $T, M D(T)=$ \#leaves - \#" branching nodes"

Computing $\operatorname{MD}(G)$ [Harary, Melter 76, Slater 75] is NP-c in planar graphs [Díaz et al. 17], W[2]-hard [Hartung,Nichterlein 13], FPT in tree-length [Belmonte et al. 17]...

Sequential Metric Dimension

Fast localization of an Immobile target :

Minimize number of turns when probing $k \leq M D(G)$ per turn?

- NP-complete, for any fixed $k \geq 1$, in general graphs;
- In trees : NP-complete (k part of the input), +1-approximation.

Sequential Metric Dimension

Fast localization of an

target :
Minimize number of turns when probing $k \leq M D(G)$ per turn?

- NP-complete, for any fixed $k \geq 1$, in general graphs;
- In trees : NP-complete (k part of the input), +1-approximation.

Localization of a moving target in a graph G :
$\zeta(G)$: min. number of probes per turn to locate the target moving in G ?

- $\zeta(T) \leq 2$ for any tree T. Characterization of trees with $\zeta(T)=2$ [Seager 14]
- Deciding if $\zeta(G) \leq k$ is NP-hard ; [Bosek et al. 18]
- $\zeta(G) \leq p w(G)$ for any graph G, but $\zeta(G)$ unbounded in the class of graphs with treewidth ≤ 2;
[Bosek et al. 18]
- $\zeta(G) \leq 2$ for any outerplanar graph G.

Metric Dimension in Oriented Graphs

Orientation of G : each edge $\{u, v\}$ becomes exactly one arc among $u v$ or $v u$. Probing a vertex $v \in V(G) \Rightarrow$ the distance $\operatorname{dist}_{G}(v, t)$ FROM v TO t.

Resolving set : set of vertices to probe s.t. the target is uniquely located
Set $R=\left\{v_{1}, \cdots, v_{i}\right\} \subseteq V$ s.t. $\left(\operatorname{dist}_{D}\left(v_{i}, v\right)\right)_{j \leq i}$ pairwise distinct $\forall v \in V$.
Remark : A priori, $\operatorname{dist}_{D}(v, t)$ may be ∞.
\rightarrow ONLY strongly connected orientations.

Metric Dimension in Oriented Graphs

Orientation of G : each edge $\{u, v\}$ becomes exactly one arc among $u v$ or $v u$. Probing a vertex $v \in V(G) \Rightarrow$ the distance $\operatorname{dist}_{G}(v, t)$ FROM v TO t.

set of vertices to probe s.t. the target is uniquely located

Set $R=\left\{v_{1}, \cdots, v_{i}\right\} \subseteq V$ s.t. $\left(\operatorname{dist}_{D}\left(v_{i}, v\right)\right)_{j \leq i}$ pairwise distinct $\forall v \in V$.
Remark : A priori, $\operatorname{dist}_{D}(v, t)$ may be ∞. \rightarrow ONLY strongly connected orientations.
$M D(D)$: min. size of a resolving set in a strong oriented graph D.

Few related work

- upper bounds [Chartrand et al 00]
- NP-complete in strong oriented graphs [Rajan et al. 14]
- complete graphs [Lozano 13], Cayley digraphs [Fehr et al. 06], de Bruijn and Kautz [Rajan et al. 14]

Worst/Best Oriented Metric Dimension (WOMD/BOMD)

Given a class \mathcal{G} of undirected n-node graphs,

- $\operatorname{WOMD}(\mathcal{G})=\sup _{D \text { strong orientation of } G \in \mathcal{G}} \frac{M D(D)}{n}$
- $\operatorname{BOMD}(\mathcal{G})=\inf _{D \text { strong orientation of } G \in \mathcal{G}} \frac{M D(D)}{n}$

Worst/Best Oriented Metric Dimension (WOMD/BOMD)

Given a class \mathcal{G} of undirected n-node graphs,

$$
\begin{aligned}
& \text { - } \operatorname{WOMD}(\mathcal{G})=\sup _{D \text { strong orientation of } G \in \mathcal{G}} \frac{M D(D)}{n} \\
& \text { - } B O M D(\mathcal{G})=\inf _{D \text { strong orientation of } G \in \mathcal{G}} \frac{M D(D)}{n}
\end{aligned}
$$

- tournaments: $\operatorname{WOMD}\left(K_{n}\right)=1 / 2$
- \mathcal{H}_{n}, class of Hamiltonian n-node graphs: $\operatorname{BOMD}\left(\mathcal{H}_{n}\right)=1 / n$. Every Hamiltonian graph has an orientation D with $M D(D)=1$.

Our contributions

Focus on Worst Orientations (WOMD) for various graph classes.
\mathcal{G}_{Δ} : class of graphs with maximum degree $\leq \Delta$.

- $\frac{2}{5} \leq W O M D\left(\mathcal{G}_{3}\right) \leq \frac{1}{2}$
- $\frac{1}{2} \leq W O M D\left(\mathcal{G}_{4}\right) \leq \frac{6}{7}$
- $\lim _{\Delta \rightarrow \infty} \operatorname{WOMD}\left(\mathcal{G}_{\Delta}\right)=1$

Grids : class of cartesian grids.

- $\frac{1}{2} \leq W O M D($ Grids $) \leq \frac{2}{3}$

WOMD* defined as WOMD but over Eulerian orientations
(in-degree=out-degree).

Tori : class of cartesian tori.

- WOMD $^{*}($ Tori $)=\frac{1}{2}$

Easy lemmas but very useful

Lower bound
S set of vertices with exactly same in-neighbors

$$
\Rightarrow \text { Every resolving set contains } \geq|S|-1 \text { vertices in } S \text {. }
$$

Easy lemmas but very useful

Lower bound

S set of vertices with exactly same in-neighbors
\Rightarrow Every resolving set contains $\geq|S|-1$ vertices in S.

Upper bound : $D=(V, A)$ be any strong oriented graph

$G_{a u x}$ undirected graph with vertex-set V

$$
\{u, v\} \in E\left(G_{a u x}\right) \Leftrightarrow N_{D}^{-}(u) \cap N_{D}^{-}(v) \neq \emptyset \text { (intersecting in-neighborhoods). }
$$

Lemma : Every (non-empty) vertex cover of $G_{a u x}$ is a resolving set for D
Application : If $G_{a u x}$ has max. degree Δ^{\prime}, then $\chi\left(G_{a u x}\right) \leq \Delta^{\prime}+1$ (chromatic number), so $\alpha\left(G_{\text {aux }}\right) \leq \frac{\Delta^{\prime}}{\Delta^{\prime}+1} n$, and so $M D(D) \leq \frac{\Delta^{\prime}}{\Delta^{\prime}+1} n$ for any strong orientation D of G.

Lower Bounds for \mathcal{G}_{Δ}

Lower bound : S set of vertices with exactly same in-neighbors
\Rightarrow Every resolving set contains $\geq|S|-1$ vertices in S.
Maximum degree $\Delta=d+1 \geq 3$

- "Complete" d-ary tree depth k (Force a "large" resolving set)

Lower Bounds for \mathcal{G}_{Δ}

Lower bound : S set of vertices with exactly same in-neighbors
\Rightarrow Every resolving set contains $\geq|S|-1$ vertices in S.
Maximum degree $\Delta=d+1 \geq 3$

- "Complete" d-ary tree depth k (Force a "large" resolving set)
- Add a "reversed" complete d-ary tree depth $k-1$ (ensure strong connectedness)

Lower Bounds for \mathcal{G}_{Δ}

Lower bound : S set of vertices with exactly same in-neighbors
\Rightarrow Every resolving set contains $\geq|S|-1$ vertices in S.
Maximum degree $\Delta=d+1 \geq 3$

- "Complete" d-ary tree depth k (Force a "large" resolving set)
- Add a "reversed" complete d-ary tree depth $k-1$ (ensure strong connectedness)
- Contract green edges (reduce the size, preserving resolving set)

Lower Bounds for \mathcal{G}_{Δ}

Lower bound : S set of vertices with exactly same in-neighbors
\Rightarrow Every resolving set contains $\geq|S|-1$ vertices in S.
Maximum degree $\Delta=d+1 \geq 3$

- "Complete" d-ary tree depth k (Force a "large" resolving set)
- Add a "reversed" complete d-ary tree depth $k-1$ (ensure strong connectedness)
- Contract green edges (reduce the size, preserving resolving set)

Do the maths :

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \frac{M D}{|V|} \geq \frac{2}{5} \text { for } \Delta=3 \\
& \lim _{k \rightarrow \infty} \frac{M D}{|V|} \geq \frac{1}{2} \text { for } \Delta=4 \\
& \lim _{\Delta \rightarrow \infty} \frac{M D}{|V|}=1
\end{aligned}
$$

Lower Bounds for Grids and Tori

Lower bound : S set of vertices with exactly same in-neighbors
\Rightarrow Every resolving set contains $\geq|S|-1$ vertices in S.
Lemma: For $\mathcal{G} \in\{$ Grids, Tori $\}, \operatorname{WOMD}(\mathcal{G}) \geq \frac{1}{2}$

Upper Bound for Tori : ad-hoc proof

Thm : Eulerian orientation \vec{T} of the torus $\left(d^{+}=d^{-}=2\right) \Rightarrow M D(\vec{T}) \leq n / 2$
Start with a MIS X (in black), local modifications till resolving set of same size.

While X is not a resolving set, problems in vertex-disjoint "bad squares" u and v have same in-neighbours.

Upper Bound for Tori : ad-hoc proof

Thm : Eulerian orientation \vec{T} of the torus $\left(d^{+}=d^{-}=2\right) \Rightarrow M D(\vec{T}) \leq n / 2$
Start with a MIS X (in black), local modifications till resolving set of same size.

While X is not a resolving set, problems in vertex-disjoint "bad squares" u and v have same in-neighbours.
Replace n_{v} by u in X, sequentially in all "bad squares", makes X a resolving set (proof by case analysis).

Upper Bound for Grid : another ad-hoc proof :(

Thm : Any orientation \vec{G} of a grid $\Rightarrow M D(\vec{G}) \leq 2 n / 3$
Start with a set X (in black), local modifications till resolving set of same size.

Again, proof by case analysis...

Further work

This is a preliminary work.

- Many bounds to be tightened (Grids, subcubic graphs...)
- Improve tools for upper bounds
- Generalize tools and results to planar graphs.

Further work

This is a preliminary work.

- Many bounds to be tightened (Grids, subcubic graphs...)
- Improve tools for upper bounds
- Generalize tools and results to planar graphs.

Why focusing on strong orientations?

- Not strong orientations seem to require different approaches
- Allowing infinite vertex (source not in resolving set) seems to change many things (ongoing work in trees with Julien and UFC)
- Link with MIS ?

Further work

This is a preliminary work.

- Many bounds to be tightened (Grids, subcubic graphs...)
- Improve tools for upper bounds
- Generalize tools and results to planar graphs.

Why focusing on strong orientations?

- Not strong orientations seem to require different approaches
- Allowing infinite vertex (source not in resolving set) seems to change many things (ongoing work in trees with Julien and UFC)
- Link with MIS ?

Thank you!

