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Metric Dimension of graphs

Precisely locate using few information

Fix any three points A,B and C in the plane. For any point v ,
(dist(A, v), dist(B, v), dist(C , v)) is sufficient to locate v ! !

How to generalize to graph metric ?
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Metric Dimension of graphs

A target is hidden at some (unknown) vertex t of a graph G = (V ,E)
Probing a vertex v ∈ V (G) ⇒ the distance distG (t, v) between v and t.

Resolving set : set of vertices to probe s.t. the target is uniquely located

Set R = {v1, · · · , vi} ⊆ V s.t. (distG (v , vi ))j≤i pairwise distinct ∀v ∈ V .

Metric Dimension MD(G) : min. size of a resolving set in G . (MD(G) ≤ |V |)

example : for any tree T , MD(T ) = #leaves −#”branching nodes”

Computing MD(G) [Harary, Melter 76, Slater 75] is NP-c in planar graphs [D́ıaz et al. 17],
W[2]-hard [Hartung,Nichterlein 13], FPT in tree-length [Belmonte et al. 17]...
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Sequential Metric Dimension

Sequentiel variant : Seager (2013) : Probe only ONE vertex per turn.
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Sequential Metric Dimension

Sequentiel variant : Seager (2013) : Probe only ONE vertex per turn.

(3)
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3

Each turn brings some new information
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Target found in < n turns in any n-node graph :
Probe each vertex (but one) one by one
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Sequential Metric Dimension

Sequentiel variant : Seager (2013) : Probe only ONE vertex per turn.

(3)

(3)

(3,4)(3,4,2)
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2

Target found in < n turns in any n-node graph :
Probe each vertex (but one) one by one

Goal : Minimize # of turns to locate an immobile target hidden in G .
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Sequential Metric Dimension & Game of Guess Who ?
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Note : One universal vertex is not depicted on the figure
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Sequential Metric Dimension [Bensmail, Mazauric, Mc Inerney, N., Pérennes, 2018]

What if more than one vertex can be probed per turn ?

Sequential Metric Dimension of G

Given k, `,G , is it possible to locate the immobile target in G in at most `
turns by probing at most k ≥ 1 vertices each turn.

λk(G) : min. # turns to locate an immobile target, probing k vertices per turn.

Bensmail, Mazauric, Mc Inerney, Nisse, Pérennes Localization in graphs and sequential metric dimension.



7/23

Sequential Metric Dimension [Bensmail, Mazauric, Mc Inerney, N., Pérennes, 2018]

What if more than one vertex can be probed per turn ?

Sequential Metric Dimension of G

Given k, `,G , is it possible to locate the immobile target in G in at most `
turns by probing at most k ≥ 1 vertices each turn.

λk(G) : min. # turns to locate an immobile target, probing k vertices per turn.

Remark : for any G , k ≥ 1, λk(G) ≤ dMD(G)
k
e

(at each turn, probe k vertices of an optimal resolving set)
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Metric Dimension MD(G) = ?
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Metric Dimension MD(G) = 19

λ4(G) ≤ d 19
4
e = 5.

But...
In one turn, only five locations remain possible
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Sequential Metric Dimension [Bensmail, Mazauric, Mc Inerney, N., Pérennes, 2018]
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Sequential Metric Dimension [Bensmail, Mazauric, Mc Inerney, N., Pérennes, 2018]

What if more than one vertex can be probed per turn ?

Sequential Metric Dimension of G

Given k, `,G , is it possible to locate the immobile target in G in at most `
turns by probing at most k ≥ 1 vertices each turn.

λk(G) : min. # turns to locate an immobile target, probing k vertices per turn.

Remark : for any G , k ≥ 1, λk(G) ≤ dMD(G)
k
e

Metric Dimension MD(G) = 19
λ4(G) = 2 < d 19

4
e.

Lemma : for any k ≥ 1

λk(G) may be arbitrary smaller than dMD(G)
k
e
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Sequential Metric Dimension [Bensmail, Mazauric, Mc Inerney, N., Pérennes, 2018]

λk(G) : min. # turns to locate an immobile target, probing k vertices per turn.

Our contribution in general graphs :

Computational complexity [Bensmail et al. 2018]

Let k ≥ 1 be a fixed integer.

The problem that takes any graph G with diameter 2 and an integer
` ≥ 1 as inputs and decides if λk(G) ≤ ` is NP-complete.

Let ` ≥ 1 be a fixed integer.

The problem that takes any graph G with diameter 2 and an integer
k ≥ 1 as inputs and decides if λk(G) ≤ ` is NP-complete.

Polynomial-time algorithm [Bensmail et al. 2018]

Let k, ` ≥ 1 be two fixed integers. The problem of deciding if λk(G) ≤ `,
for any n-node graph G , can be solved in time nO(k`).
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Sequential Metric Dimension [Bensmail, Mazauric, Mc Inerney, N., Pérennes, 2018]

λk(G) : min. # turns to locate an immobile target, probing k vertices per turn.

Our contribution in TREES :

Computational complexity [Bensmail et al. 2018]

The problem that takes any tree T and two integers k, ` ≥ 1 as inputs
and decides if λk(T ) ≤ ` is NP-complete.

Polynomial-time algorithms [Bensmail et al. 2018]

There exists a polynomial-time +1-approximation to compute λk(T ).

Precisely, there exists an algorithm that computes, in time O(n log n), a
localization strategy using ` turns, probing k vertices per turn in any
n-node tree T , with λk(T ) ≤ ` ≤ λk(T ) + 1.

Let k ≥ 1 be a fixed integer. The problem of deciding if λk(T ) ≤ `, for
any n-node tree T and any ` ≥ 1, can be solved in time O(nk+2 log n).

Bensmail, Mazauric, Mc Inerney, Nisse, Pérennes Localization in graphs and sequential metric dimension.
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Deciding λk(T ) NP-hard in trees [Bensmail, Mazauric, Mc Inerney, N., Pérennes, 2018]

Sketch : Reduction from Hitting Set : Given k ≥ 1, a set B = {b1, · · · , bn}
of elements and a set of subsets S = {S1, · · · ,Sm} ⊆ 2B with |Si | = σ for any
1 ≤ i ≤ m, is there a set F ⊆ B with F ∩ Si for all i ≤ m and |F | ≤ k ?
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Tree Tγ (γ depends on n, k) s.t. λk (Tγ) ≤ 1 + dσ−1
k
e+ d γ−1

k
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Deciding λk(T ) NP-hard in trees [Bensmail, Mazauric, Mc Inerney, N., Pérennes, 2018]
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star (γ leaves)

e.g., bi , bi′′ ∈ Sj , b1, bi′ , bn /∈ Sj
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Deciding λk(T ) NP-hard in trees [Bensmail, Mazauric, Mc Inerney, N., Pérennes, 2018]

Sketch : Reduction from Hitting Set : Given k ≥ 1, a set B = {b1, · · · , bn} of elements

and a set of subsets S = {S1, · · · , Sm} ⊆ 2B with |Si | = σ for any 1 ≤ i ≤ m, is there a set F ⊆ B with

F ∩ Si for all i ≤ m and |F | ≤ k ?

b1
i

b2
i

b3
i

b2j
i

b2m+1
i

b1
i’

b2
i’

b3
i’

b2ji'

b2m+1
i’

b1
n

b2
n

b3
n

b2j
n

b2m+1
n

r

b1
1

b2
1

b3
1

b2j
1

b2m+1
1

b1
i’’

b2
i’’

b3
i’’

b2ji’’

b2m+1
i’’

element bi

set S1

set Sj

i th branch ∼ element bi

“level” 2j ∼ set Sj
bi ∈ Sj ⇔ bi2j center of

star (γ leaves)
⇒ σ stars/level

Recall that locating in “big” stars is “long”
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Deciding λk(T ) NP-hard in trees [Bensmail, Mazauric, Mc Inerney, N., Pérennes, 2018]

Sketch : Reduction from Hitting Set : Given k ≥ 1, a set B = {b1, · · · , bn} of elements

and a set of subsets S = {S1, · · · , Sm} ⊆ 2B with |Si | = σ for any 1 ≤ i ≤ m, is there a set F ⊆ B with

F ∩ Si for all i ≤ m and |F | ≤ k ?

b1
i

b2
i

b3
i

b2j
i

b2m+1
i

b1
i’

b2
i’

b3
i’

b2ji'

b2m+1
i’

b1
n

b2
n

b3
n

b2j
n

b2m+1
n
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b1
1

b2
1

b3
1

b2j
1

b2m+1
1

b1
i’’

b2
i’’

b3
i’’

b2ji’’

b2m+1
i’’

d=2m+x

i th branch ∼ element bi

“level” 2j ∼ set Sj
bi ∈ Sj ⇔ bi2j center of

star (γ leaves)
⇒ σ stars/level

Probing (the last vertex
of) some Branch i
identifies (in worst case)
some level j .

If bi /∈ Sj , the target may still be in any leaf of the σ stars of level j .
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i’’
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i’’

b2ji’’

b2m+1
i’’

d=2m+x

i th branch ∼ element bi

“level” 2j ∼ set Sj
bi ∈ Sj ⇔ bi2j center of

star (γ leaves)
⇒ σ stars/level

Probing (the last vertex
of) some Branch i
identifies (in worst case)
some level j .

If bi /∈ Sj , the target may still be in any leaf of the σ stars of level j .
If bi ∈ Sj , one star of level j is removed from possible locations.
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d=2m+x

i th branch ∼ element bi

“level” 2j ∼ set Sj
bi ∈ Sj ⇔ bi2j center of

star (γ leaves)
⇒ σ stars/level

Probing (the last vertex
of) some Branch i
identifies (in worst case)
some level j .

If bi /∈ Sj , the target may still be in any leaf of the σ stars of level j .
If bi ∈ Sj , one star of level j is removed from possible locations.

Probing a Hitting set at first turn ⇒ remove one star in each level
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Deciding λk(T ) NP-hard in trees [Bensmail, Mazauric, Mc Inerney, N., Pérennes, 2018]

Sketch : Reduction from Hitting Set : Given k ≥ 1, a set B = {b1, · · · , bn} of elements

and a set of subsets S = {S1, · · · , Sm} ⊆ 2B with |Si | = σ for any 1 ≤ i ≤ m, is there a set F ⊆ B with

F ∩ Si for all i ≤ m and |F | ≤ k ?
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1
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1
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1

b1
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b2
i’’

b3
i’’

b2ji’’

b2m+1
i’’

d=2m+x

i th branch ∼ element bi

“level” 2j ∼ set Sj
bi ∈ Sj ⇔ bi2j center of

star (γ leaves)
⇒ σ stars/level

Probing (the last vertex
of) some Branch i
identifies (in worst case)
some level j .

Probing a Hitting set at first turn ⇒ remove one star in each level

The difficulty only comes from the FIRST turn !
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+1-approximation in trees [Bensmail, Mazauric, Mc Inerney, N., Pérennes, 2018]

After the first turn, it becomes “easy”.

Indeed : probe any vertex

So, after this first turn, the instance becomes :
A rooted tree, with all leaves at same distance from the root, and the target on
some leaf.

Bensmail, Mazauric, Mc Inerney, Nisse, Pérennes Localization in graphs and sequential metric dimension.



10/23

+1-approximation in trees [Bensmail, Mazauric, Mc Inerney, N., Pérennes, 2018]

After the first turn, it becomes “easy”.

Indeed : probe any vertex

d

possible locations

So, after this first turn, the instance becomes :
A rooted tree, with all leaves at same distance from the root, and the target on
some leaf.
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+1-approximation in trees [Bensmail, Mazauric, Mc Inerney, N., Pérennes, 2018]

After the first turn, it becomes “easy”.

Indeed : probe any vertex

d

possible locations

So, after this first turn, the instance becomes :
A rooted tree, with all leaves at same distance from the root, and the target on
some leaf.

d

possible locations = leaves
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+1-approximation in trees [Bensmail, Mazauric, Mc Inerney, N., Pérennes, 2018]

Theorem : In a rooted tree with all leaves at same distance from the root and
the target at some leaf, an optimal strategy can be computed in time O(n log n)

(1) Find in which subtree the target hide (2) recursively search in this subtree.

d

possible locations are the 
leaves
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+1-approximation in trees [Bensmail, Mazauric, Mc Inerney, N., Pérennes, 2018]

Theorem : In a rooted tree with all leaves at same distance from the root and
the target at some leaf, an optimal strategy can be computed in time O(n log n)

(1) Find in which subtree the target hide (2) recursively search in this subtree.

d

possible locations are the 
leaves

orange leaves are STRICTLY FURTHER from the probed (red) 
vertex than blue leaves 

Key point : Probing a single vertex in a subtree says if the target is in this
subtree or not.
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+1-approximation in trees [Bensmail, Mazauric, Mc Inerney, N., Pérennes, 2018]

Theorem : In a rooted tree with all leaves at same distance from the root and
the target at some leaf, an optimal strategy can be computed in time O(n log n)

(1) Find in which subtree the target hide (2) recursively search in this subtree.

d

possible locations are the 
leaves

target 
not 

here

target 
not 

here

target 
not 

here

k=3 in the example

Key point : Probing a single vertex in a subtree says if the target is in this
subtree or not.
1th approach : Probe one vertex per subtree until finding the “good” one.
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Key point : Probing a single vertex in a subtree says if the target is in this
subtree or not.
1th approach : Probe one vertex per subtree until finding the “good” one.
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+1-approximation in trees [Bensmail, Mazauric, Mc Inerney, N., Pérennes, 2018]

Theorem : In a rooted tree with all leaves at same distance from the root and
the target at some leaf, an optimal strategy can be computed in time O(n log n)

(1) Find in which subtree the target hide (2) recursively search in this subtree.

d

possible locations are the 
leaves

target 
not 

here

target 
not 

here

target 
in this

subtree !!!
SEARCH in it

k=3 in the example

Key point : Probing a single vertex in a subtree says if the target is in this
subtree or not.
1th approach : Probe one vertex per subtree until finding the “good” one.
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leaves

k=3 in the example

Key point : Probing a single vertex in a subtree says if the target is in this
subtree or not.
1th approach : Probe one vertex per subtree until finding the “good” one.
Question : In which order to probe the subtrees ?
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Theorem : In a rooted tree with all leaves at same distance from the root and
the target at some leaf, an optimal strategy can be computed in time O(n log n)

(1) Find in which subtree the target hide (2) recursively search in this subtree.

d

possible locations are the 
leaves

k=3 in the example

�3(T1) = 3�3(T1) = 3 �3(T2) = 3�3(T2) = 3�3(T3) = 2�3(T3) = 2 �3(T4) = 2�3(T4) = 2 �3(T5) = 2�3(T5) = 2�3(T8) = 1�3(T8) = 1�3(T7) = 1�3(T7) = 1 �3(T6) = 2�3(T6) = 2** * * * ***

Key point : Probing a single vertex in a subtree says if the target is in this
subtree or not.
1th approach : Probe one vertex per subtree until finding the “good” one.
Question : In which order to probe the subtrees ?
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+1-approximation in trees [Bensmail, Mazauric, Mc Inerney, N., Pérennes, 2018]

Theorem : In a rooted tree with all leaves at same distance from the root and
the target at some leaf, an optimal strategy can be computed in time O(n log n)

(1) Find in which subtree the target hide (2) recursively search in this subtree.

d

possible locations are the 
leaves

k=3 in the example

�3(T1) = 3�3(T1) = 3 �3(T2) = 3�3(T2) = 3�3(T3) = 2�3(T3) = 2 �3(T4) = 2�3(T4) = 2 �3(T5) = 2�3(T5) = 2�3(T8) = 1�3(T8) = 1�3(T7) = 1�3(T7) = 1 �3(T6) = 2�3(T6) = 2** * * * ***

Key point : Probing a single vertex in a subtree says if the target is in this
subtree or not.
1th approach : Probe one vertex per subtree until finding the “good” one.
Question : In which order to probe the subtrees ? ⇒ by non-increasing order
of their λ∗k : probe first the subtrees that are long to search
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+1-approximation in trees [Bensmail, Mazauric, Mc Inerney, N., Pérennes, 2018]

Theorem : In a rooted tree with all leaves at same distance from the root and
the target at some leaf, an optimal strategy can be computed in time O(n log n)

(1) Find in which subtree the target hide (2) recursively search in this subtree.

1th approach : Probe one vertex per subtree (in non-increasing order of their
λ∗k ) until finding the “good” one.
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Theorem : In a rooted tree with all leaves at same distance from the root and
the target at some leaf, an optimal strategy can be computed in time O(n log n)

(1) Find in which subtree the target hide (2) recursively search in this subtree.

1th approach : Probe one vertex per subtree (in non-increasing order of their
λ∗k ) until finding the “good” one. ⇒ Not optimal :(
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+1-approximation in trees [Bensmail, Mazauric, Mc Inerney, N., Pérennes, 2018]

Theorem : In a rooted tree with all leaves at same distance from the root and
the target at some leaf, an optimal strategy can be computed in time O(n log n)

(1) Find in which subtree the target hide (2) recursively search in this subtree.

1th approach : Probe one vertex per subtree (in non-increasing order of their
λ∗k ) until finding the “good” one. ⇒ Not optimal :(

Subtelty : what is the difference between these two graphs ?

possible locations are the leaves

�⇤
3(S5) =�⇤
3(S5) = ? �⇤

3(S6) =�⇤
3(S6) = ?
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+1-approximation in trees [Bensmail, Mazauric, Mc Inerney, N., Pérennes, 2018]

Theorem : In a rooted tree with all leaves at same distance from the root and
the target at some leaf, an optimal strategy can be computed in time O(n log n)

(1) Find in which subtree the target hide (2) recursively search in this subtree.

1th approach : Probe one vertex per subtree (in non-increasing order of their
λ∗k ) until finding the “good” one. ⇒ Not optimal :(

Subtelty : what is the difference between these two graphs ?

possible locations are the leaves

�⇤
3(S5) = 2�⇤
3(S5) = 2 �⇤

3(S6) = 2�⇤
3(S6) = 2

with a single vertex 
probed at the first 

turn

but at least two vertices 
must be probed at the 

first turn
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+1-approximation in trees [Bensmail, Mazauric, Mc Inerney, N., Pérennes, 2018]

Theorem : In a rooted tree with all leaves at same distance from the root and
the target at some leaf, an optimal strategy can be computed in time O(n log n)

(1) Find in which subtree the target hide (2) recursively search in this subtree.

1th approach : Probe one vertex per subtree (in non-increasing order of their
λ∗k ) until finding the “good” one. ⇒ Not optimal :(

Subtelty : what is the difference between these two graphs ?

possible locations are the leaves

�⇤
3(S5) = 2�⇤
3(S5) = 2 �⇤

3(S6) = 2�⇤
3(S6) = 2

with a single vertex 
probed at the first 

turn

but at least two vertices 
must be probed at the 

first turn

⇒ During Phase (1) : probing more than one vertex in some subtrees may
“accelerate” the search in these subtrees.
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+1-approximation in trees [Bensmail, Mazauric, Mc Inerney, N., Pérennes, 2018]

Theorem : In a rooted tree with all leaves at same distance from the root and
the target at some leaf, an optimal strategy can be computed in time O(n log n)

(1) Find in which subtree the target hide (2) recursively search in this subtree.

Optimal approach : Probe one or some vertices per subtree (in non-increasing
order of their λ∗k ) until finding the “good” one.

The number of vertices to probe in each subtree in Phase (1) is decided by the
(a bit) technical part of our Dynamic Programming algorithm.
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Further work on sequential metric dimension

Open questions

Can we compute λk(T ) in FPT time in trees (i.e., in time
f (k) ∗ poly(n)) ?

Complexity of deciding if λk(G) ≤ ` in other graph classes (interval
graphs, chordal graphs, bounded treewidth, etc.)

Other variant : when the target can move

At each turn, after k vertices have been probed, the target may move to a
neighbor of its current position

Already many results on this variant

but also many open questions

...sorry, no time to go further on it
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Outline

1 Metric dimension

2 Sequential localization of an immobile target

3 Metric dimension in oriented graphs
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Metric Dimension in Oriented Graphs

Orientation of G : each edge {u, v} becomes exactly one arc among uv or vu.

Probing a vertex v ∈ V (G) ⇒ the distance distG (v , t) FROM v TO t.

Resolving set : set of vertices to probe s.t. the target is uniquely located

Set R = {v1, · · · , vi} ⊆ V s.t. (distD(vi , v))j≤i pairwise distinct ∀v ∈ V .

Remark : A priori, distD(v , t) may be ∞.
→ ONLY strongly connected orientations.

MD(D) : min. size of a resolving set in a strong oriented graph D.

Few related work

upper bounds [Chartrand et al 00]

NP-complete in strong oriented graphs [Rajan et al. 14]

complete graphs [Lozano 13], Cayley digraphs [Fehr et al. 06], de Bruijn and
Kautz [Rajan et al. 14]
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Worst/Best Oriented Metric Dimension (WOMD/BOMD)

Given a class G of undirected n-node graphs,

WOMD(G) = sup
D strong orientation of G∈G

MD(D)
n

BOMD(G) = inf
D strong orientation of G∈G

MD(D)
n

Very few previous work [Chartrand et al. 01]

tournaments : WOMD(Kn) = 1/2

Hn, class of Hamiltonian n-node graphs : BOMD(Hn) = 1/n.

Every Hamiltonian graph has an orientation D with MD(D) = 1.

(1) (2) (3)

(4)

A

(0)

(7) (6) (5)
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Our contributions

Focus on Worst Orientations (WOMD) for various graph classes.

G∆ : class of graphs with maximum degree ≤ ∆.

2
5
≤WOMD(G3) ≤ 1

2

1
2
≤WOMD(G4) ≤ 6

7

lim
∆→∞

WOMD(G∆) = 1

Grids : class of cartesian grids.

1
2
≤WOMD(Grids) ≤ 2

3

WOMD∗ defined as WOMD but over Eulerian orientations
(in-degree=out-degree).

Tori : class of cartesian tori.

WOMD∗(Tori) = 1
2
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Easy lemmas but very useful

Lower bound

S set of vertices with exactly same in-neighbors
⇒ Every resolving set contains ≥ |S | − 1 vertices in S .

(2,3,1)

S

Upper bound : D = (V ,A) be any strong oriented graph

Gaux undirected graph with vertex-set V
{u, v} ∈ E(Gaux)⇔ N−D (u) ∩ N−D (v) 6= ∅ (intersecting in-neighborhoods).

Lemma : Every (non-empty) vertex cover of Gaux is a resolving set for D

Application : If Gaux has max. degree ∆′, then χ(Gaux ) ≤ ∆′ + 1 (chromatic number),

so α(Gaux ) ≤ ∆′

∆′+1
n, and so MD(D) ≤ ∆′

∆′+1
n for every strong orientation D of G .
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⇒ Every resolving set contains ≥ |S | − 1 vertices in S .

(2,3,1)

S

Upper bound : D = (V ,A) be any strong oriented graph

Gaux undirected graph with vertex-set V
{u, v} ∈ E(Gaux)⇔ N−D (u) ∩ N−D (v) 6= ∅ (intersecting in-neighborhoods).

Lemma : Every (non-empty) vertex cover of Gaux is a resolving set for D

Application : If Gaux has max. degree ∆′, then χ(Gaux ) ≤ ∆′ + 1 (chromatic number),

so α(Gaux ) ≤ ∆′

∆′+1
n, and so MD(D) ≤ ∆′

∆′+1
n for every strong orientation D of G .
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Lower Bounds for G∆

Lower bound : S set of vertices with exactly same in-neighbors
⇒ Every resolving set contains ≥ |S | − 1 vertices in S .

r r'

Maximum degree ∆ = d + 1 ≥ 3

“Complete” d-ary tree depth k
(Force a “large” resolving set)

Add a “reversed” complete
d-ary tree depth k − 1

(ensure strong connectedness)

Contract green edges

(reduce the size, preserving
resolving set)
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Lower Bounds for G∆

Lower bound : S set of vertices with exactly same in-neighbors
⇒ Every resolving set contains ≥ |S | − 1 vertices in S .

r r'

Maximum degree ∆ = d + 1 ≥ 3

“Complete” d-ary tree depth k
(Force a “large” resolving set)

Add a “reversed” complete
d-ary tree depth k − 1

(ensure strong connectedness)

Contract green edges

(reduce the size, preserving
resolving set)

Do the maths :

lim
k→∞

MD
|V | ≥

2
5

for ∆ = 3

lim
k→∞

MD
|V | ≥

1
2

for ∆ = 4

lim
∆→∞

MD
|V | = 1
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Lower Bounds for Grids and Tori

Lower bound : S set of vertices with exactly same in-neighbors
⇒ Every resolving set contains ≥ |S | − 1 vertices in S .

Lemma : For G ∈ {Grids,Tori}, WOMD(G) ≥ 1
2

j a k b l c

a m b n c o

o d m e n f

d p e q f r

r g p h q i

g k h l i j
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Upper Bound for Tori : ad-hoc proof

Thm : Eulerian orientation ~T of the torus (d+ = d− = 2) ⇒ MD( ~T ) ≤ n/2

Start with a MIS X (in black), local modifications till resolving set of same size.

u

v

n

n

u

v

While X is not a resolving set, problems in vertex-disjoint “bad squares”

u and v have same in-neighbours.

Replace nv by u in X , sequentially in all “bad squares”, makes X a
resolving set (proof by case analysis).

u

v

a

b

n

n

u

v

cd

u

v

a

b

n

n

u

v

c
d

u

v

a

b

n

n

u

v

cd

u

v

a

b

n

n

u

v

d

e

u

v

a

b

n

n

u

v

c
d

e

u

v

a

b

n

n

u

v

c
d

e

f

g

c

u

v

a

b

n

n

u

v

c
d

e

u

v

a

b

n

n

u

v

c
d

e
h

h

i j j

k

l

m

k n
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Upper Bound for Grid : another ad-hoc proof :(

Thm : Any orientation ~G of a grid ⇒ MD( ~G) ≤ 2n/3

Start with a set X (in black), local modifications till resolving set of same size.

w

y

u

v

q

xaa

bb

zz

aaaa

bbbb

a`a`

b`b`

z`z`w

y

u

v

q

x

w

y

u

v

q

xaa

bb

zz

aaaa

bbbb

a`a`

b`b`

z`z`

aa

bb

zz

aaaa

bbbb

a`a`

b`b`

z`z`w

x

y

u

v

aa

bb

zz

aaaa

bbbb

a`a`

b`b`

z`z` q

Again, proof by case analysis...
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Further work on Directed Metric Dimension

This is a preliminary work.

Many bounds to be tightened (Grids, subcubic graphs...)

Improve tools for upper bounds

Generalize tools and results to planar graphs.

Why focusing on strong orientations ?

Not strong orientations seem to require different approaches

Allowing infinite vertex (source not in resolving set) seems to change
many things (ongoing work in trees with Julien and UFC)

Link with MIS ?

Thank you, 谢谢 , Merci !
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