Localization in graphs and sequential metric dimension

Julien Bensmail, Dorian Mazauric, Fionn Mc Inerney, <u>Nicolas Nisse</u> and Stéphane Pérennes

Université Côte d'Azur, Inria, CNRS, I3S, France

Xidian University, Xi'an, September 5th, 2019

2 Sequential localization of an immobile target

3 Metric dimension in oriented graphs

Precisely locate using few information

Fix any three points A, B and C in the plane. For any point v, (dist(A, v), dist(B, v), dist(C, v)) is sufficient to locate v ! !

How to generalize to graph metric?

A target is hidden at some (unknown) vertex t of a graph G = (V, E)Probing a vertex $v \in V(G) \Rightarrow$ the distance $dist_G(t, v)$ between v and t.

Resolving set : set of vertices to probe s.t. the target is uniquely located

A target is hidden at some (unknown) vertex t of a graph G = (V, E)Probing a vertex $v \in V(G) \Rightarrow$ the distance $dist_G(t, v)$ between v and t.

Resolving set : set of vertices to probe s.t. the target is uniquely located

A target is hidden at some (unknown) vertex t of a graph G = (V, E)Probing a vertex $v \in V(G) \Rightarrow$ the distance $dist_G(t, v)$ between v and t.

Resolving set : set of vertices to probe s.t. the target is uniquely located

A target is hidden at some (unknown) vertex t of a graph G = (V, E)Probing a vertex $v \in V(G) \Rightarrow$ the distance $dist_G(t, v)$ between v and t.

Resolving set : set of vertices to probe s.t. the target is uniquely located

A target is hidden at some (unknown) vertex t of a graph G = (V, E)Probing a vertex $v \in V(G) \Rightarrow$ the distance $dist_G(t, v)$ between v and t.

Resolving set : set of vertices to probe s.t. the target is uniquely located

A target is hidden at some (unknown) vertex t of a graph G = (V, E)Probing a vertex $v \in V(G) \Rightarrow$ the distance $dist_G(t, v)$ between v and t.

Resolving set : set of vertices to probe s.t. the target is uniquely located

A target is hidden at some (unknown) vertex t of a graph G = (V, E)Probing a vertex $v \in V(G) \Rightarrow$ the distance $dist_G(t, v)$ between v and t.

Resolving set : set of vertices to probe s.t. the target is uniquely located

A target is hidden at some (unknown) vertex t of a graph G = (V, E)Probing a vertex $v \in V(G) \Rightarrow$ the distance $dist_G(t, v)$ between v and t.

Resolving set : set of vertices to probe s.t. the target is uniquely located

Set $R = \{v_1, \cdots, v_i\} \subseteq V$ s.t. $(dist_G(v, v_i))_{j \leq i}$ pairwise distinct $\forall v \in V$.

Metric Dimension MD(G): min. size of a resolving set in G. $(MD(G) \le |V|)$

example : for any tree T, MD(T) = #leaves - #" branching nodes"

Computing MD(G) [Harary, Melter 76, Slater 75] is NP-c in planar graphs [Díaz *et al.* 17], W[2]-hard [Hartung,Nichterlein 13], FPT in tree-length [Belmonte *et al.* 17]...

Bensmail, Mazauric, Mc Inerney, Nisse, Pérennes Localization in graphs and sequential metric dimension.

2 Sequential localization of an immobile target

3 Metric dimension in oriented graphs

Sequentiel variant : Seager (2013) : Probe only ONE vertex per turn.

Sequentiel variant : Seager (2013) : Probe only ONE vertex per turn.

Sequentiel variant : Seager (2013) : Probe only ONE vertex per turn.

Each turn brings some new information

Sequentiel variant : Seager (2013) : Probe only ONE vertex per turn.

Sequentiel variant : Seager (2013) : Probe only ONE vertex per turn.

5/23

Sequentiel variant : Seager (2013) : Probe only ONE vertex per turn.

Target found in < n turns in any *n*-node graph : Probe each vertex (but one) one by one

Sequentiel variant : Seager (2013) : Probe only ONE vertex per turn.

Target found in < n turns in any *n*-node graph :

Probe each vertex (but one) one by one

Goal : Minimize # of turns to locate an immobile target hidden in G.

Bensmail, Mazauric, Mc Inerney, Nisse, Pérennes

Localization in graphs and sequential metric dimension.

Note : One universal vertex is not depicted on the figure

Note : One universal vertex is not depicted on the figure

Note : One universal vertex is not depicted on the figure

Note : One universal vertex is not depicted on the figure

What if more than one vertex can be probed per turn?

Sequential Metric Dimension of G

Given k, ℓ, G , is it possible to locate the **immobile** target in G in at most ℓ turns by probing at most $k \ge 1$ vertices each turn.

 $\lambda_k(G)$: min. # turns to locate an immobile target, probing k vertices per turn.

What if more than one vertex can be probed per turn?

Sequential Metric Dimension of G

Given k, ℓ, G , is it possible to locate the **immobile** target in G in at most ℓ turns by probing at most $k \ge 1$ vertices each turn.

 $\lambda_k(G)$: min. # turns to locate an immobile target, probing k vertices per turn. **Remark**: for any $G, k \ge 1$, $\lambda_k(G) \le \lceil \frac{MD(G)}{k} \rceil$

(at each turn, probe k vertices of an optimal resolving set)

What if more than one vertex can be probed per turn?

Sequential Metric Dimension of G

Given k, ℓ, G , is it possible to locate the **immobile** target in G in at most ℓ turns by probing at most $k \ge 1$ vertices each turn.

 $\lambda_k(G)$: min. # turns to locate an immobile target, probing k vertices per turn. **Remark**: for any $G, k \ge 1$, $\lambda_k(G) \le \lceil \frac{MD(G)}{k} \rceil$

Metric Dimension MD(G) = ?

What if more than one vertex can be probed per turn?

Sequential Metric Dimension of G

Given k, ℓ, G , is it possible to locate the **immobile** target in G in at most ℓ turns by probing at most $k \ge 1$ vertices each turn.

 $\lambda_k(G)$: min. # turns to locate an immobile target, probing k vertices per turn. **Remark**: for any $G, k \ge 1$, $\lambda_k(G) \le \lceil \frac{MD(G)}{k} \rceil$

Metric Dimension MD(G) = 19

What if more than one vertex can be probed per turn?

Sequential Metric Dimension of G

Given k, ℓ, G , is it possible to locate the **immobile** target in G in at most ℓ turns by probing at most $k \ge 1$ vertices each turn.

 $\lambda_k(G)$: min. # turns to locate an immobile target, probing k vertices per turn. **Remark**: for any $G, k \ge 1$, $\lambda_k(G) \le \lceil \frac{MD(G)}{k} \rceil$

Metric Dimension MD(G) = 19

 $\lambda_4(G) \leq \left\lceil \frac{19}{4} \right\rceil = 5.$ But...

7/23

What if more than one vertex can be probed per turn?

Sequential Metric Dimension of G

Given k, ℓ, G , is it possible to locate the **immobile** target in G in at most ℓ turns by probing at most $k \ge 1$ vertices each turn.

 $\lambda_k(G)$: min. # turns to locate an immobile target, probing k vertices per turn. **Remark**: for any $G, k \ge 1$, $\lambda_k(G) \le \lceil \frac{MD(G)}{k} \rceil$

Metric Dimension MD(G) = 19

$$\lambda_4(G) \leq \left\lceil \frac{19}{4} \right\rceil = 5.$$

But...

7/23

What if more than one vertex can be probed per turn?

Sequential Metric Dimension of G

Given k, ℓ, G , is it possible to locate the **immobile** target in G in at most ℓ turns by probing at most $k \ge 1$ vertices each turn.

 $\lambda_k(G)$: min. # turns to locate an immobile target, probing k vertices per turn. **Remark**: for any $G, k \ge 1$, $\lambda_k(G) \le \lceil \frac{MD(G)}{k} \rceil$

Metric Dimension MD(G) = 19

 $\lambda_4(G) \leq \lceil \frac{19}{4} \rceil = 5.$ But...

In one turn, only five locations remain possible

What if more than one vertex can be probed per turn?

Sequential Metric Dimension of G

Given k, ℓ, G , is it possible to locate the **immobile** target in G in at most ℓ turns by probing at most $k \ge 1$ vertices each turn.

 $\lambda_k(G)$: min. # turns to locate an immobile target, probing k vertices per turn. **Remark**: for any $G, k \ge 1$, $\lambda_k(G) \le \lceil \frac{MD(G)}{k} \rceil$

Metric Dimension MD(G) = 19

$$\lambda_4(G) \leq \lceil \frac{19}{4} \rceil = 5.$$

But...
 $\lambda_4(G) = 2 < \lceil \frac{19}{4} \rceil.$

What if more than one vertex can be probed per turn?

Sequential Metric Dimension of G

Given k, ℓ, G , is it possible to locate the **immobile** target in G in at most ℓ turns by probing at most $k \ge 1$ vertices each turn.

 $\lambda_k(G)$: min. # turns to locate an immobile target, probing k vertices per turn. **Remark**: for any $G, k \ge 1$, $\lambda_k(G) \le \lceil \frac{MD(G)}{k} \rceil$

Metric Dimension MD(G) = 19 $\lambda_4(G) = 2 < \lceil \frac{19}{4} \rceil$.

Lemma : for any $k \ge 1$

 $\lambda_k(G)$ may be arbitrary smaller than

$$\frac{MD(G)}{k}$$

Bensmail, Mazauric, Mc Inerney, Nisse, Pérennes Localization in graphs and sequential metric dimension.

 $\lambda_k(G)$: min. # turns to locate an immobile target, probing k vertices per turn.

Our contribution in general graphs :

Computational complexity

• Let $k \ge 1$ be a **fixed** integer.

The problem that takes any graph G with **diameter** 2 and an integer $\ell \ge 1$ as inputs and decides if $\lambda_k(G) \le \ell$ is NP-complete.

• Let $\ell \geq 1$ be a **fixed** integer.

The problem that takes any graph G with **diameter** 2 and an integer $k \ge 1$ as inputs and decides if $\lambda_k(G) \le \ell$ is NP-complete.

Polynomial-time algorithm

[Bensmail et al. 2018]

[Bensmail et al. 2018]

• Let $k, \ell \ge 1$ be two fixed integers. The problem of deciding if $\lambda_k(G) \le \ell$, for any *n*-node graph *G*, can be solved in time $n^{O(k\ell)}$.

 $\lambda_k(G)$: min. # turns to locate an immobile target, probing k vertices per turn.

Our contribution in TREES :

Computational complexity

 The problem that takes any tree T and two integers k, ℓ ≥ 1 as inputs and decides if λ_k(T) ≤ ℓ is NP-complete.

Polynomial-time algorithms

[Bensmail et al. 2018]

[Bensmail et al. 2018]

• There exists a polynomial-time +1-approximation to compute $\lambda_k(T)$.

Precisely, there exists an algorithm that computes, in time $O(n \log n)$, a localization strategy using ℓ turns, probing k vertices per turn in any *n*-node tree T, with $\lambda_k(T) \leq \ell \leq \lambda_k(T) + 1$.

 Let k ≥ 1 be a fixed integer. The problem of deciding if λ_k(T) ≤ ℓ, for any n-node tree T and any ℓ ≥ 1, can be solved in time O(n^{k+2} log n). **Sketch**: Reduction from Hitting Set: Given $k \ge 1$, a set $\mathcal{B} = \{b_1, \dots, b_n\}$ of elements and a set of subsets $\mathcal{S} = \{S_1, \dots, S_m\} \subseteq 2^{\mathcal{B}}$ with $|S_i| = \sigma$ for any $1 \le i \le m$, is there a set $F \subseteq \mathcal{B}$ with $F \cap S_i$ for all $i \le m$ and $|F| \le k$?
Sketch: Reduction from Hitting Set: Given $k \ge 1$, a set $\mathcal{B} = \{b_1, \dots, b_n\}$ of elements and a set of subsets $\mathcal{S} = \{S_1, \dots, S_m\} \subseteq 2^{\mathcal{B}}$ with $|S_i| = \sigma$ for any $1 \le i \le m$, is there a set $F \subseteq \mathcal{B}$ with $F \cap S_i$ for all $i \le m$ and $|F| \le k$?

Tree T_{γ} (γ depends on n, k) s.t. $\lambda_k(T_{\gamma}) \leq 1 + \lceil \frac{\sigma-1}{k} \rceil + \lceil \frac{\gamma-1}{k} \rceil$ iff such a set F exists

Sketch: Reduction from Hitting Set: Given $k \ge 1$, a set $\mathcal{B} = \{b_1, \dots, b_n\}$ of elements and a set of subsets $\mathcal{S} = \{S_1, \dots, S_m\} \subseteq 2^{\mathcal{B}}$ with $|S_i| = \sigma$ for any $1 \le i \le m$, is there a set $F \subseteq \mathcal{B}$ with $F \cap S_i$ for all $i \le m$ and $|F| \le k$?

Sketch: Reduction from Hitting Set: Given $k \ge 1$, a set $\mathcal{B} = \{b_1, \dots, b_n\}$ of elements and a set of subsets $\mathcal{S} = \{S_1, \dots, S_m\} \subseteq 2^{\mathcal{B}}$ with $|S_i| = \sigma$ for any $1 \le i \le m$, is there a set $F \subseteq \mathcal{B}$ with $F \cap S_i$ for all $i \le m$ and $|F| \le k$?

e.g., $b_i, b_{i''} \in S_j$, $b_1, b_{i'}, b_n \notin S_j$

Sketch: Reduction from Hitting Set: Given $k \ge 1$, a set $\mathcal{B} = \{b_1, \dots, b_n\}$ of elements and a set of subsets $\mathcal{S} = \{S_1, \dots, S_m\} \subseteq 2^{\mathcal{B}}$ with $|S_i| = \sigma$ for any $1 \le i \le m$, is there a set $F \subseteq \mathcal{B}$ with $F \cap S_i$ for all $i \le m$ and $|F| \le k$?

Recall that locating in "big" stars is "long"

Sketch: Reduction from Hitting Set: Given $k \ge 1$, a set $\mathcal{B} = \{b_1, \dots, b_n\}$ of elements and a set of subsets $\mathcal{S} = \{S_1, \dots, S_m\} \subseteq 2^{\mathcal{B}}$ with $|S_i| = \sigma$ for any $1 \le i \le m$, is there a set $F \subseteq \mathcal{B}$ with $F \cap S_i$ for all $i \le m$ and $|F| \le k$?

If $b_i \notin S_j$, the target may still be in any leaf of the σ stars of level j.

Sketch: Reduction from Hitting Set: Given $k \ge 1$, a set $\mathcal{B} = \{b_1, \dots, b_n\}$ of elements and a set of subsets $\mathcal{S} = \{S_1, \dots, S_m\} \subseteq 2^{\mathcal{B}}$ with $|S_i| = \sigma$ for any $1 \le i \le m$, is there a set $F \subseteq \mathcal{B}$ with $F \cap S_i$ for all $i \le m$ and $|F| \le k$?

If $b_i \notin S_j$, the target may still be in any leaf of the σ stars of level j. If $b_i \in S_j$, one star of level j is removed from possible locations.

Sketch: Reduction from Hitting Set: Given $k \ge 1$, a set $\mathcal{B} = \{b_1, \dots, b_n\}$ of elements and a set of subsets $\mathcal{S} = \{S_1, \dots, S_m\} \subseteq 2^{\mathcal{B}}$ with $|S_i| = \sigma$ for any $1 \le i \le m$, is there a set $F \subseteq \mathcal{B}$ with $F \cap S_i$ for all $i \le m$ and $|F| \le k$?

If $b_i \notin S_j$, the target may still be in any leaf of the σ stars of level j. If $b_i \in S_j$, one star of level j is removed from possible locations.

Probing a Hitting set at first turn \Rightarrow remove one star in each level

9/23

Sketch: Reduction from Hitting Set: Given $k \ge 1$, a set $\mathcal{B} = \{b_1, \dots, b_n\}$ of elements and a set of subsets $\mathcal{S} = \{S_1, \dots, S_m\} \subseteq 2^{\mathcal{B}}$ with $|S_i| = \sigma$ for any $1 \le i \le m$, is there a set $F \subseteq \mathcal{B}$ with $F \cap S_i$ for all $i \le m$ and $|F| \le k$?

Probing a Hitting set at first turn \Rightarrow remove one star in each level

The difficulty only comes from the FIRST turn!

Bensmail, Mazauric, Mc Inerney, Nisse, Pérennes Localization in graphs and sequential metric dimension.

After the first turn, it becomes "easy".

Indeed : probe any vertex

After the first turn, it becomes "easy". Indeed : probe any vertex

+1-approximation in trees

After the first turn, it becomes "easy". Indeed : probe any vertex

So, after this first turn, the instance becomes :

A rooted tree, with all leaves at same distance from the root, and the target on some leaf.

10/23

(1) Find in which subtree the target hide (2) recursively search in this subtree.

(1) Find in which subtree the target hide (2) recursively search in this subtree.

Key point : Probing a single vertex in a subtree says if the target is in this subtree or not.

(1) Find in which subtree the target hide (2) recursively search in this subtree.

Key point : Probing a single vertex in a subtree says if the target is in this subtree or not.

1th **approach** : Probe one vertex per subtree until finding the "good" one.

(1) Find in which subtree the target hide (2) recursively search in this subtree.

Key point : Probing a single vertex in a subtree says if the target is in this subtree or not.

1th **approach** : Probe one vertex per subtree until finding the "good" one.

(1) Find in which subtree the target hide (2) recursively search in this subtree.

Key point : Probing a single vertex in a subtree says if the target is in this subtree or not.

1th **approach** : Probe one vertex per subtree until finding the "good" one.

(1) Find in which subtree the target hide (2) recursively search in this subtree.

Key point : Probing a single vertex in a subtree says if the target is in this subtree or not.

1th **approach** : Probe one vertex per subtree until finding the "good" one. **Question** : In which order to probe the subtrees?

(1) Find in which subtree the target hide (2) recursively search in this subtree.

Key point : Probing a single vertex in a subtree says if the target is in this subtree or not.

1th **approach** : Probe one vertex per subtree until finding the "good" one. **Question** : In which order to probe the subtrees?

11/23

Theorem : In a rooted tree with all leaves at same distance from the root and the target at some leaf, an optimal strategy can be computed in time $O(n \log n)$

(1) Find in which subtree the target hide (2) recursively search in this subtree.

Key point : Probing a single vertex in a subtree says if the target is in this subtree or not.

 1^{th} **approach** : Probe one vertex per subtree until finding the "good" one. **Question** : In which order to probe the subtrees? \Rightarrow by non-increasing order of their λ_k^* : probe first the subtrees that are long to search

(1) Find in which subtree the target hide (2) recursively search in this subtree.

 1^{th} **approach** : Probe one vertex per subtree (in non-increasing order of their λ_k^*) until finding the "good" one.

(1) Find in which subtree the target hide (2) recursively search in this subtree.

 1^{th} **approach** : Probe one vertex per subtree (in non-increasing order of their λ_k^*) until finding the "good" one. \Rightarrow Not optimal :(

(1) Find in which subtree the target hide (2) recursively search in this subtree.

 1^{th} **approach** : Probe one vertex per subtree (in non-increasing order of their λ_k^*) until finding the "good" one. \Rightarrow Not optimal :(

Subtelty : what is the difference between these two graphs?

possible locations are the leaves

(1) Find in which subtree the target hide (2) recursively search in this subtree.

1th **approach** : Probe one vertex per subtree (in non-increasing order of their λ_k^*) until finding the "good" one. \Rightarrow Not optimal :(

Subtelty : what is the difference between these two graphs?

possible locations are the leaves

(1) Find in which subtree the target hide (2) recursively search in this subtree.

 1^{th} **approach** : Probe one vertex per subtree (in non-increasing order of their λ_k^*) until finding the "good" one. \Rightarrow Not optimal :(

Subtelty : what is the difference between these two graphs?

possible locations are the leaves

 \Rightarrow During Phase (1) : probing more than one vertex in some subtrees may "accelerate" the search in these subtrees.

(1) Find in which subtree the target hide (2) recursively search in this subtree.

Optimal approach : Probe one or some vertices per subtree (in non-increasing order of their λ_k^*) until finding the "good" one.

The number of vertices to probe in each subtree in Phase (1) is decided by the (a bit) technical part of our Dynamic Programming algorithm.

Open questions

- Can we compute λ_k(T) in FPT time in trees (i.e., in time f(k) * poly(n))?
- Complexity of deciding if λ_k(G) ≤ ℓ in other graph classes (interval graphs, chordal graphs, bounded treewidth, etc.)

Other variant : when the target can move

At each turn, after k vertices have been probed, the target may move to a neighbor of its current position

- Already many results on this variant
- but also many open questions

...sorry, no time to go further on it

2 Sequential localization of an immobile target

Metric Dimension in Oriented Graphs

Orientation of *G* : each edge $\{u, v\}$ becomes exactly one arc among uv or vu. Probing a vertex $v \in V(G) \Rightarrow$ the distance $dist_G(v, t)$ FROM v TO t.

Resolving set : set of vertices to probe s.t. the target is uniquely located Set $R = \{v_1, \dots, v_i\} \subseteq V$ s.t. $(dist_D(v_i, v))_{j \leq i}$ pairwise distinct $\forall v \in V$.

Remark : A priori, $dist_D(v, t)$ may be ∞ . \rightarrow ONLY strongly connected orientations.

Metric Dimension in Oriented Graphs

Orientation of *G* : each edge $\{u, v\}$ becomes exactly one arc among uv or vu. Probing a vertex $v \in V(G) \Rightarrow$ the distance $dist_G(v, t)$ FROM v TO t.

Resolving set : set of vertices to probe s.t. the target is uniquely located

Set $R = \{v_1, \dots, v_i\} \subseteq V$ s.t. $(dist_D(v_i, v))_{j \leq i}$ pairwise distinct $\forall v \in V$.

Remark : A priori, $dist_D(v, t)$ may be ∞ . \rightarrow ONLY strongly connected orientations.

MD(D): min. size of a resolving set in a strong oriented graph D.

Few related work

- upper bounds [Chartrand et al 00]
- NP-complete in strong oriented graphs [Rajan et al. 14]
- complete graphs [Lozano 13], Cayley digraphs [Fehr et al. 06], de Bruijn and Kautz [Rajan et al. 14]

Worst/Best Oriented Metric Dimension (WOMD/BOMD)

Given a class \mathcal{G} of undirected *n*-node graphs, • $WOMD(\mathcal{G}) = \sup_{\substack{D \text{ strong orientation of } G \in \mathcal{G}}} \frac{MD(D)}{n}$ • $BOMD(\mathcal{G}) = \inf_{\substack{D \text{ strong orientation of } G \in \mathcal{G}}} \frac{MD(D)}{n}$

Worst/Best Oriented Metric Dimension (WOMD/BOMD)

Very few previous work

- tournaments : WOMD(K_n) = 1/2
- \mathcal{H}_n , class of Hamiltonian *n*-node graphs : $BOMD(\mathcal{H}_n) = 1/n$.

Every Hamiltonian graph has an orientation D with MD(D) = 1.

[Chartrand et al. 01]

Our contributions

Focus on Worst Orientations (WOMD) for various graph classes.

 \mathcal{G}_{Δ} : class of graphs with maximum degree $\leq \Delta$.

- $\frac{2}{5} \leq WOMD(\mathcal{G}_3) \leq \frac{1}{2}$
- $\frac{1}{2} \leq WOMD(\mathcal{G}_4) \leq \frac{6}{7}$
- $\lim_{\Delta \to \infty} WOMD(\mathcal{G}_{\Delta}) = 1$

Grids : class of cartesian grids.

• $\frac{1}{2} \leq WOMD(Grids) \leq \frac{2}{3}$

 $WOMD^*$ defined as WOMD but over Eulerian orientations (in-degree=out-degree).

Tori : class of cartesian tori.

• $WOMD^*(Tori) = \frac{1}{2}$

17/23

Easy lemmas but very useful

Lower bound

S set of vertices with exactly same in-neighbors

 \Rightarrow Every resolving set contains $\geq |S| - 1$ vertices in S.

Easy lemmas but very useful

Lower bound

S set of vertices with exactly same in-neighbors

 \Rightarrow Every resolving set contains $\geq |S| - 1$ vertices in S.

Upper bound : D = (V, A) be any strong oriented graph

 $\begin{array}{l} G_{aux} \text{ undirected graph with vertex-set } V \\ \{u,v\} \in E(G_{aux}) \Leftrightarrow N_D^-(u) \cap N_D^-(v) \neq \emptyset \text{ (intersecting in-neighborhoods).} \end{array}$

Lemma : Every (non-empty) vertex cover of G_{aux} is a resolving set for D

Easy lemmas but very useful

Lower bound

S set of vertices with exactly same in-neighbors

 \Rightarrow Every resolving set contains $\geq |S| - 1$ vertices in S.

Upper bound : D = (V, A) be any strong oriented graph

 $\begin{array}{l} G_{aux} \text{ undirected graph with vertex-set } V \\ \{u,v\} \in E(G_{aux}) \Leftrightarrow N_D^-(u) \cap N_D^-(v) \neq \emptyset \text{ (intersecting in-neighborhoods).} \end{array}$

Lemma : Every (non-empty) vertex cover of G_{aux} is a resolving set for D

Application: If G_{aux} has max. degree Δ' , then $\chi(G_{aux}) \leq \Delta' + 1$ (chromatic number), so $\alpha(G_{aux}) \leq \frac{\Delta'}{\Delta'+1}n$, and so $MD(D) \leq \frac{\Delta'}{\Delta'+1}n$ for every strong orientation D of G. 18/23

Lower Bounds for \mathcal{G}_{Δ}

Lower bound : S set of vertices with exactly same in-neighbors

 \Rightarrow Every resolving set contains $\geq |S| - 1$ vertices in S.

Maximum degree $\Delta = d + 1 \geq 3$

 "Complete" *d*-ary tree depth *k* (Force a "large" resolving set)

19/23
Lower Bounds for \mathcal{G}_{Δ}

Lower bound : S set of vertices with exactly same in-neighbors

 \Rightarrow Every resolving set contains $\geq |S| - 1$ vertices in S.

Maximum degree $\Delta = d+1 \geq 3$

- "Complete" *d*-ary tree depth *k* (Force a "large" resolving set)
- Add a "reversed" complete d-ary tree depth k 1

(ensure strong connectedness)

Lower Bounds for \mathcal{G}_{Δ}

Lower bound : S set of vertices with exactly same in-neighbors

 \Rightarrow Every resolving set contains $\geq |S| - 1$ vertices in S.

Maximum degree $\Delta = d+1 \geq 3$

- "Complete" *d*-ary tree depth *k* (Force a "large" resolving set)
- Add a "reversed" complete d-ary tree depth k - 1 (ensure strong connectedness)
- Contract green edges (reduce the size, preserving resolving set)

Lower Bounds for \mathcal{G}_{Δ}

Lower bound : S set of vertices with exactly same in-neighbors

 \Rightarrow Every resolving set contains $\geq |S| - 1$ vertices in S.

Maximum degree $\Delta = d+1 \geq 3$

- "Complete" *d*-ary tree depth *k* (Force a "large" resolving set)
- Add a "reversed" complete d-ary tree depth k - 1 (ensure strong connectedness)
- Contract green edges (reduce the size, preserving resolving set)

Do the maths :

$$\begin{split} &\lim_{k\to\infty}\frac{MD}{|V|}\geq \frac{2}{5} \text{ for } \Delta=3\\ &\lim_{k\to\infty}\frac{MD}{|V|}\geq \frac{1}{2} \text{ for } \Delta=4\\ &\lim_{\Delta\to\infty}\frac{MD}{|V|}=1 \end{split}$$

Bensmail, Mazauric, Mc Inerney, Nisse, Pérennes

Localization in graphs and sequential metric dimension.

Lower Bounds for Grids and Tori

Lower bound : S set of vertices with exactly same in-neighbors \Rightarrow Every resolving set contains $\ge |S| - 1$ vertices in S.

Lemma : For $\mathcal{G} \in \{Grids, Tori\}, WOMD(\mathcal{G}) \geq \frac{1}{2}$

Localization in graphs and sequential metric dimension.

Upper Bound for Tori : ad-hoc proof

Thm : Eulerian orientation $ec{\mathcal{T}}$ of the torus $(d^+=d^-=2) \Rightarrow MD(ec{\mathcal{T}}) \leq n/2$

Start with a MIS X (in **black**), local modifications till resolving set of same size.

While X is not a resolving set, problems in vertex-disjoint "bad squares" u and v have same in-neighbours.

Upper Bound for Tori : ad-hoc proof

Thm : Eulerian orientation $ec{T}$ of the torus $(d^+ = d^- = 2) \Rightarrow MD(ec{T}) \leq n/2$

Start with a MIS X (in **black**), local modifications till resolving set of same size.

While X is not a resolving set, problems in vertex-disjoint "bad squares" u and v have same in-neighbours.

Replace n_v by u in X, sequentially in all "bad squares", makes X a resolving set (proof by case analysis).

Bensmail, Mazauric, Mc Inerney, Nisse, Pérennes

Localization in graphs and sequential metric dimension.

Upper Bound for Grid : another ad-hoc proof :(

Thm : Any orientation \vec{G} of a grid $\Rightarrow MD(\vec{G}) \leq 2n/3$

Start with a set X (in **black**), local modifications till resolving set of same size.

Again, proof by case analysis...

Further work on Directed Metric Dimension

This is a preliminary work.

- Many bounds to be tightened (Grids, subcubic graphs...)
- Improve tools for upper bounds
- Generalize tools and results to planar graphs.

Further work on Directed Metric Dimension

This is a preliminary work.

- Many bounds to be tightened (Grids, subcubic graphs...)
- Improve tools for upper bounds
- Generalize tools and results to planar graphs.

Why focusing on strong orientations?

- Not strong orientations seem to require different approaches
- Allowing infinite vertex (source not in resolving set) seems to change many things (ongoing work in trees with Julien and UFC)
- Link with MIS?

Further work on Directed Metric Dimension

This is a preliminary work.

- Many bounds to be tightened (Grids, subcubic graphs...)
- Improve tools for upper bounds
- Generalize tools and results to planar graphs.

Why focusing on strong orientations?

- Not strong orientations seem to require different approaches
- Allowing infinite vertex (source not in resolving set) seems to change many things (ongoing work in trees with Julien and UFC)
- Link with MIS?

Thank you, 谢谢, Merci!