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Motivation / First Game

Several antennas (cameras), with some radius of detection, are spread at Inria

A camera returns whether it sees the target or not.
Determine the location of a “target” depending on the answers of all cameras ?

Example in the plane : A target seen by both blue (resp., green, resp., by red
and not black) cameras must be in the blue (resp., green, red) area.

Question : How to place a minimum amount of cameras to detect the
location of any “intruder” (according to some precision) ?
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Localization in Graphs / Identifying Code

Metric space : a graph G = (V ,E)

Camera at v ∈ V : says if is at NG [v ] (closed neighborhood of v) or not.

Identifying Code : vertices to place cameras s.t., the target is always located

Set I = {v1, · · · , vi} ⊆ V s.t. (|NG [vj ] ∩ {v}|)j≤i pairwise distinct ∀v ∈ V .

(yes)

(yes)

(yes)

(no)

(no)
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IC introduced in [Karpovsky,Chakrabarty,Levitin 98]. Computing a smallest IC is
NP-complete [Charon,Hudry,Lobstein 03]. IC has been studied a lot
[Foucaud,Mertzios,Naserasr,Parreau,Valicov 17 ; Dantas,Havet,Sampaio 17...].
Here, we consider “more powerful cameras”.
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2nd Game : Exact distances (in the plane)

An antenna gives the (exact) distance to the target
Determine the location of the target depending on the answers of all antennas ?

Triangulation

In the plane, 3 antennas (non-colinear) are sufficient to locate any target !

What if the metric space is a graph ?
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2nd Game : Exact distances in Graphs

An antenna gives the (exact) graph’s distance to the target in G = (V ,E).

(0,1)
(1,0)

(1,2)

(2,1)

(2,2)

(1) (2) (3) (4)

(1,1,1,1)

(2,2,2,2)(2,2,2,0)(2,2,0,2)(2,0,2,2)(0,2,2,2)

A

B

A
A B C D

(0)

Resolving set : vertices to place antennas s.t., the target is always located

Set R = {v1, · · · , vi} ⊆ V s.t. (distG (v , vi ))j≤i pairwise distinct ∀v ∈ V .

Metric Dimension MD(G) : min. size of a resolving set in G . (MD(G) ≤ |V |)

Computing MD(G) [Harary,Melter 76, Slater 75] is NP-c in planar graphs [D́ıaz et al. 17],

W[2]-hard [Hartung,Nichterlein 13], FPT in tree-length [Belmonte et al. 17]...
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3rd Game : Sequential + Exact distances in Graphs

An antenna gives the (exact) graph’s distance to the target in G = (V ,E).

Every vertex contains an antenna, but only k ∈ N∗ vertices can be probed at each step.

(0,2,2,2,2)

(3,3,1,1,1)

(2,2,2,2,2)

(1,1,1,1,1)(1,1,3,3,3)

A

B

(2,0,2,2,2)

(2,2,0,2,2)

(2,2,2,0,2)

(2,2,2,2,0)

D

C

E

MD(G) = 5 : to locate the target in 1 step, 5 vertices must be probed.
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A
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D

C

E

A B

MD(G) = 5 : to locate the target in 1 step, 5 vertices must be probed.

If 2 vertices can be probed per step.
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(1,3) (3,1)
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(1,3)

(1,3)

(3,1)

(3,1) (2,2)

A B

A

B
(2,0)
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MD(G) = 5 : to locate the target in 1 step, 5 vertices must be probed.

If 2 vertices can be probed per step. 2 steps are sufficient !

Remark : If k vertices can be probed per step. dMD(G)/ke steps are sufficient !
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3rd Game : Sequential + Exact distances in Graphs

An antenna gives the (exact) graph’s distance to the target in G = (V ,E).

Every vertex contains an antenna, but only k ∈ N∗ vertices can be probed at each step.

(1,3) (3,1)
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(1,3)

(1,3)

(3,1)

(3,1) (2,2)

A B

A
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(2,0)
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MD(G) = 5 : to locate the target in 1 step, 5 vertices must be probed.

If 2 vertices can be probed per step. 2 steps are sufficient !

TEASER ! ! ! this guy will tell you everything you should know about :
[Bensmail, Mazauric, Mc Inerney, N., Pérennes 2018]

λk (G) = min. # of steps probing ≤ k vertices per step to locate the target.
κ`(G) = min. # of vertices probed per step during at ≤ ` steps to locate the target.
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4th Game : Finally our topic
Sequential + Exact distances in Graphs + moving target

Assume a single vertex can be probed at each step

If the target cannot move in C3

(0)

(1)

(1)

(0)

(1)

In ≤ 2 steps, the target is located.

If the target can move (along one
edge) after every probe

(0)
(1)

(1)

No way to locate the target in C3 !

Question : Is it possible to eventually locate a moving target probing ≤ k vertices
per step ?

Bosek et al. Localization GameS in Graphs



7/14

4th Game : Finally our topic
Sequential + Exact distances in Graphs + moving target

Assume a single vertex can be probed at each step

If the target cannot move in C3

(0)

(1)

(1)

(0)

(1)

In ≤ 2 steps, the target is located.

If the target can move (along one
edge) after every probe

(0)
(1)

(1)

No way to locate the target in C3 !

Question : Is it possible to eventually locate a moving target probing ≤ k vertices
per step ?

Bosek et al. Localization GameS in Graphs



7/14

4th Game : Finally our topic
Sequential + Exact distances in Graphs + moving target

Assume a single vertex can be probed at each step

If the target cannot move in C3

(0)

(1)

(1)

(0)

(1)

In ≤ 2 steps, the target is located.

If the target can move (along one
edge) after every probe

(0)
(1)

(1)

No way to locate the target in C3 !

Question : Is it possible to eventually locate a moving target probing ≤ k vertices
per step ?

Bosek et al. Localization GameS in Graphs



8/14

Locating a moving target [Seager 2012]

Let k ∈ N∗ and G be a graph. Two-Player turn-by-turn game (Player 2=target).

Initially, Player 2 hides the target at some vertex. Then, at every step :

Player 1 probes k vertices (receiving the distances between the target and the
probed vertices). If the target is located, Player 1 wins !

Otherwise, Player 2 may move the target to a neighboor of its current location.

Let ζ(G) be the minimum k such that Player 1 can win in G , probing ≤ k vertices per
step, whatever Player 2 does.

∀ graph G , ζ(G) ≤ MD(G) (probing MD(G) vertices, P1 wins in one step)

∀ graph G with max. degree ∆, ζ(G) ≤ b (∆+1)2

4
c+ 1 [Haslegrave,Johnson,Koch 17]

∀ tree T , ζ(T ) ≤ 2 and ζ(T ) = 2 iff T has the tree below as subtree [Seager 14]
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Our results (1/2) [Bosek,Gordinowicz,Grytczuk,N.,Sokó,Śleszyńska-Nowak 2017]

Complexity

Given G , k, deciding if ζ(G) ≤ k is NP-hard in the class of graphs with diameter 2.

Classes of graphs G with bounded ζ(G)

for any graph G , ζ(G) ≤ pw(G) where pw(G) is the pathwidth of G .
(equality in interval graphs)

Let R2 = (V ,E) be the graph with V = R2 and {u, v} ∈ E iff distR2 (u, v) = 1.

Then, ζ(R2) = 2. Moreover,

probing 2 vertices/step locates the target in 2 steps ;

probing 3 vertices/step locates the target in 1 step ;

∀ε > 0, probing 1 vertex/step locates the target up to distance ε.

for any outer-planar n-node graph G , ζ(G) ≤ 3 (in O(n2) steps)

Given a graph G , let Ġ be the graph obtained from G by adding a universal vertex.

Unbounded ζ

There is a family (Tk )k∈N of trees such that ζ(Ṫk ) ≥ k for all k ∈ N.

(Ṫk is planar and with treewidth 2)

Bosek et al. Localization GameS in Graphs
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For any outer-planar graph G , ζ(G ) ≤ 3 (in O(n2) steps)

Outer-planar : G can be drawn s.t. planar + vertices on the outer-face (tw(G) ≤ 2).

Theorem [folklore ?] : G outerplanar iff G has no K4 nor K2,3 as minor

Bosek et al. Localization GameS in Graphs
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For any outer-planar graph G , ζ(G ) ≤ 3 (in O(n2) steps)

Outer-planar : G can be drawn s.t. planar + vertices on the outer-face (tw(G) ≤ 2).
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v1
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v3v4
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For any outer-planar graph G , ζ(G ) ≤ 3 (in O(n2) steps)
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v1
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v3v4

The strategy is recursive using separators of size ≤ 2.
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For any outer-planar graph G , ζ(G ) ≤ 3 (in O(n2) steps)

Outer-planar : G can be drawn s.t. planar + vertices on the outer-face (tw(G) ≤ 2).

v

if dist(v3,target)<dist(v,target)
new Situation 2 (with v,v4)

and ``R" is reduced
Else dist(v4,target)<dist(v,target)

new Situation 2 (with v3,v4)

v1
v2

v3v4

The strategy is recursive using separators of size ≤ 2.
tedious case-by-case analysis illustrated in the example
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One vertex v has just been probed. The target is known to be in R (white vertices), a
union of connected components of G \ {v}.
⇒ check the components of R one by one, until finding the one hiding the target.
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For any outer-planar graph G , ζ(G ) ≤ 3 (in O(n2) steps)

Outer-planar : G can be drawn s.t. planar + vertices on the outer-face (tw(G) ≤ 2).

v
u

Second Configuration (separator of size 2)

Two vertex v , u have just been probed. The target is known to be in R (white
vertices), a union of connected components of G \ {v , u}. Moreover, there is a
u, v -path in V \ R.
⇒ check the components of R one by one, until finding the one hiding the target.
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∃ family of planar graphs G (tw(G) = 2), with ζ(G ) unbounded

Key point : change of point of view ! ! A new game :

Let k ∈ N∗ and G be a graph. Two-Player turn-by-turn game (Player 2=target).

Initially, Player 2 hides the target at some vertex. Then, at every step :

Player 1 probes a set P of k vertices. If the target is in N[P], Player 1 wins !

Otherwise, Player 2 may move the target to a neighboor of its current location.
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Let B(G) be the min. k s.t. P1 can eventually win in G (“cutting the whole bush”).

Claim 1 (it is sufficient to prove that B unbounded in trees)

For any graph G , B(G) ≤ ζ(Ġ) (Ġ obtained from G by adding a universal vertex)

Claim 2 (B is unbounded in trees)

Let Tk be the tree obtained from the complete (12k + 1)-ary rooted tree with height
6k by subdividing each edge twice. Then, B(Tk ) > k.

The proof of Claim 2 uses the fact that any (“almost” balanced) bi-coloration of Tk

leaves a “large” bi-colored matching.
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Weaker antennas : Relative distances [Foucaud,Klasing,Slater 2014]

Assume that probing one vertex (antenna) does not give the distance to the target
(unless the target occupies a probed vertex), but “relatively” probing 2 vertices
determines which one is closer to the target (or whether they are at equal distance).

Centroidal Basis [Foucaud,Klasing,Slater 2014]

For any graph G , let CB(G) be the minimum number of vertices to be “relatively”
probed to locate the target in one step.

Reminder : with exact distances, MD(Pn) = 1 for every n-node path Pn

∀n,
√

2n ≤ CB(Pn) = 2
√
n + o(

√
n) [Foucaud,Klasing,Slater 2014, Pérennes 2017]

Stéphane cannot sleep anymore because computing CB(Pn) seems very difficult !

Let us consider the Localization game with relative probes.

Initially, Player 2 hides the target at some vertex. Then, at every step :

Player 1 relatively probes k vertices (receiving the relative distances between the
target and the probed vertices). If the target is located, Player 1 wins !

Otherwise, Player 2 may move the target to a neighboor of its current location.

Let ζ∗(G) be the minimum k such that Player 1 can win in G , relatively probing ≤ k
vertices per step, whatever Player 2 does.

Bosek et al. Localization GameS in Graphs



12/14

Weaker antennas : Relative distances [Foucaud,Klasing,Slater 2014]

Assume that probing one vertex (antenna) does not give the distance to the target
(unless the target occupies a probed vertex), but “relatively” probing 2 vertices
determines which one is closer to the target (or whether they are at equal distance).

Centroidal Basis [Foucaud,Klasing,Slater 2014]

For any graph G , let CB(G) be the minimum number of vertices to be “relatively”
probed to locate the target in one step.

Reminder : with exact distances, MD(Pn) = 1 for every n-node path Pn

∀n,
√

2n ≤ CB(Pn) = 2
√
n + o(

√
n) [Foucaud,Klasing,Slater 2014, Pérennes 2017]
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Our results (2/2) [Bosek,Gordinowicz,Grytczuk,N.,Sokó,Śleszyńska-Nowak 2017]

For any graph G , ζ(G) ≤ ζ∗(G) (by definition)

Complexity (similar proof as for ζ)

Given G , k, deciding if ζ∗(G) ≤ k is NP-hard in the class of graphs with diameter 2.

Classes of graphs G with bounded ζ∗(G)

for any graph G , ζ∗(G) ≤ pw(G) + 1 where pw(G) is the pathwidth of G .

Let R2 = (V ,E) be the graph with V = R2 and {u, v} ∈ E iff distR2 (u, v) = 1.

Then, ∀ε > 0, probing 2 vertices/step locates the target up to distance 2
√

2 + ε.

for any outer-planar graph G , ζ∗(G) ≤ 3 (the proof above (for ζ) actually holds for ζ∗)
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Conclusion / Further Work

Outer-planar graphs Prove or disprove

For every outer-planar graph G , ζ(G) ≤ 2 ? ζ∗(G) ≤ 2 ?
What if, in the “relative variant”, the target is not detected in a probed vertex ?

Complexity of deciding if ζ(G) (resp. ζ∗(G)) ≤ k

PSPACE-hard ? EXP-TIME-complete ?

Computation / Bounds / Complexity

of ζ(G) in other graphs’ classes ? ζ∗(T ) in paths, trees ?
parameterized complexity in some graph classes ?

Given k, `, can an (immobile) target be located by (relatively) probing ≤ k vertices, in
≤ ` steps ?

will give you a talk on it !
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