Propriété de monotonie des stratégies d'encerclement non-déterministes

Frédéric Mazoit¹ Nicolas Nisse²

LABRI, Université Bordeaux I, France. LRI, Université Paris-Sud, France.

Journées Graphes et Algorithmes, Orléans, novembre 2006

Introduction

Encerclement dans les graphes

Dans un graphe simple, non-orienté,

- un fugitif;
- une équipe d'agents;

Trouver une stratégie qui capture le fugitif en utilisant le moins d'agents possible.

Motivation

- sécurité dans les réseaux de type internet, spéléologie...
- notion en étroite relation avec
 - les décompositions arborescentes et linéaires

Introduction

Encerclement dans les graphes

Dans un graphe simple, non-orienté,

- un fugitif;
- une équipe d'agents;

Trouver une stratégie qui capture le fugitif en utilisant le moins d'agents possible.

Motivation

- sécurité dans les réseaux de type internet, spéléologie...
- notion en étroite relation avec : les décompositions arborescentes et linéaires.

Introduction

Encerclement dans les graphes

Dans un graphe simple, non-orienté,

- un fugitif;
- une équipe d'agents;

Trouver une stratégie qui capture le fugitif en utilisant le moins d'agents possible.

Problème

- intérêt des stratégies monotone
- Résultat : la variante non-déterministe des stratégies d'encerclement est monotone

Les agents et le fugitif sont sur les sommets du graphe.

Le Fugitif

- est invisible, arbitrairement rapide et omnisicient.
- se déplace d'un sommet à un autre en suivant les arêtes du graphe, s'il ne croise pas d'agent.

Opérations possibles :

- placer un agent sur un sommet du graphe
- supprimer un agent d'un sommet du graphe

Le fugitif est capturé s'il occupe le même sommet qu'un agent.

Stratégie d'encerclement

- séquence d'opérations élémentaires
- qui doit capturer le fugitif quoiqu'il fasse.

But : trouver le nombre minimum d'agents nécessaires s(G).

Stratégie d'encerclement

- séquence d'opérations élémentaires
- qui doit capturer le fugitif quoiqu'il fasse.

But : trouver le nombre minimum d'agents nécessaires s(G).

Exemple: un chemin

Stratégie d'encerclement

- séquence d'opérations élémentaires
- qui doit capturer le fugitif quoiqu'il fasse.

But : trouver le nombre minimum d'agents nécessaires s(G).

Exemple: un chemin

placer rouge sur v₁

Stratégie d'encerclement

- séquence d'opérations élémentaires
- qui doit capturer le fugitif quoiqu'il fasse.

But : trouver le nombre minimum d'agents nécessaires s(G).

Exemple: un chemin

placer rouge sur v_1 ,placer bleu sur v_2

Stratégie d'encerclement

- séquence d'opérations élémentaires
- qui doit capturer le fugitif quoiqu'il fasse.

But : trouver le nombre minimum d'agents nécessaires s(G).

Exemple: un chemin

placer rouge sur v_1 ,placer bleu sur v_2 , supprimer rouge de v_1

Stratégie d'encerclement

- séquence d'opérations élémentaires
- qui doit capturer le fugitif quoiqu'il fasse.

But : trouver le nombre minimum d'agents nécessaires s(G).

Exemple: un chemin

placer rouge sur v_1 , placer bleu sur v_2 , supprimer rouge de v_1 , placer rouge sur v_3 ...

Stratégie d'encerclement

- séquence d'opérations élémentaires
- qui doit capturer le fugitif quoiqu'il fasse.

But : trouver le nombre minimum d'agents nécessaires s(G).

Exemple: un chemin

placer rouge sur v_1 , placer bleu sur v_2 , supprimer rouge de v_1 , placer rouge sur v_3 ...

Stratégie d'encerclement

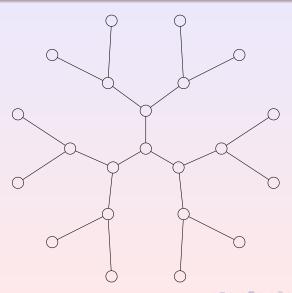
- séquence d'opérations élémentaires
- qui doit capturer le fugitif quoiqu'il fasse.

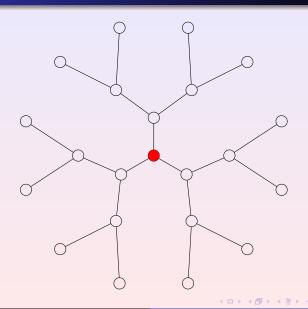
But : trouver le nombre minimum d'agents nécessaires s(G).

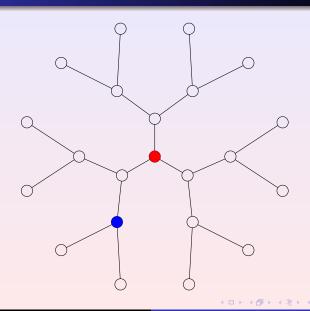
Exemple: un chemin

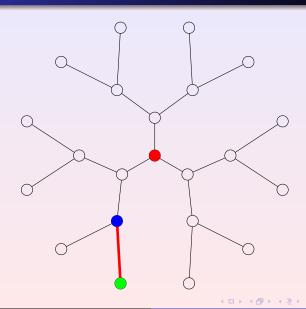
placer rouge sur v_1 , placer bleu sur v_2 , supprimer rouge de v_1 , placer rouge sur v_3 ...

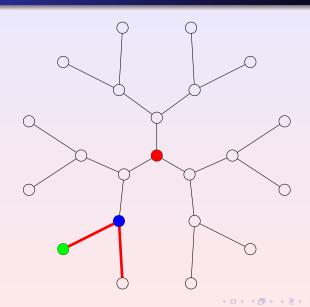
4/17

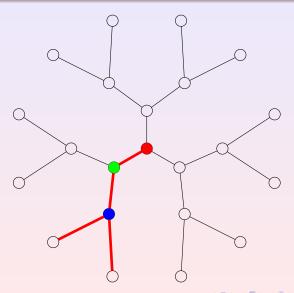


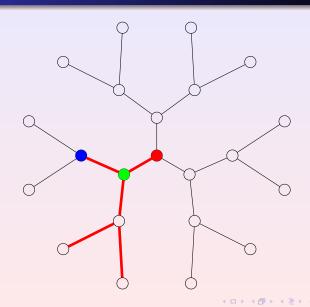


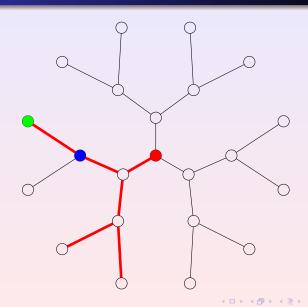


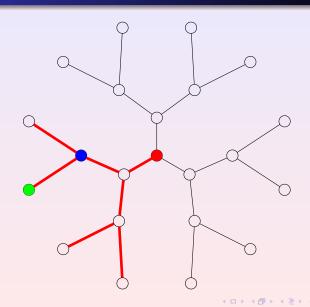


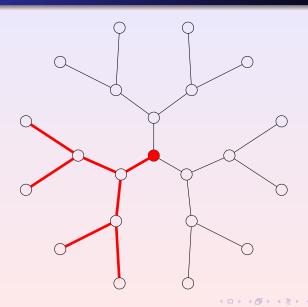


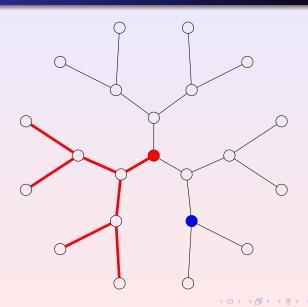


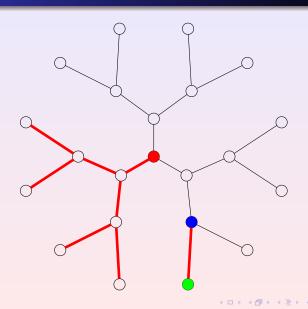


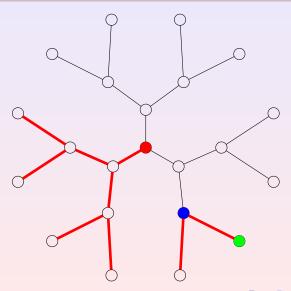


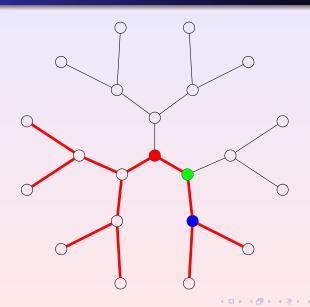


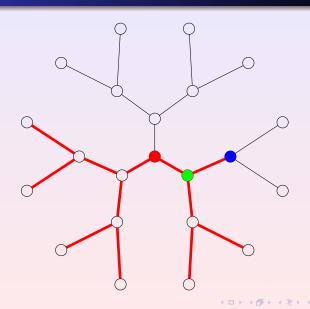


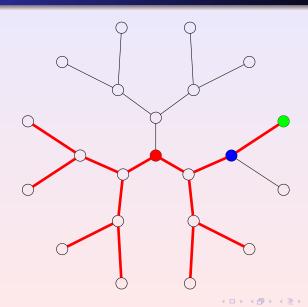


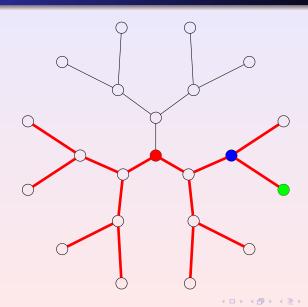


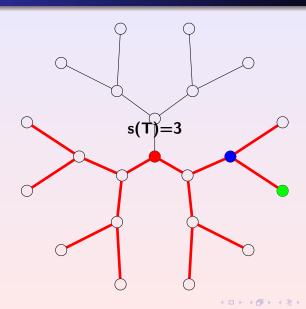












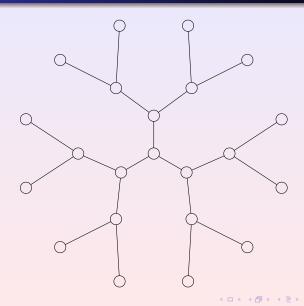
Encerclement visible

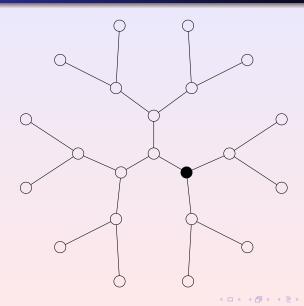
Visibilité du fugitif

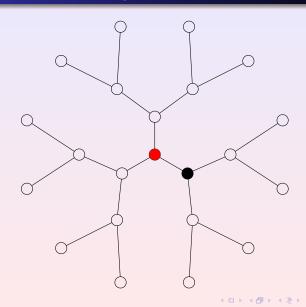
Le fugitif est visible si, à chaque étape, les agents connaissent sa position (en fait la composante connexe où il se trouve). La stratégie peut donc être orientée d'après la position du fugitif.

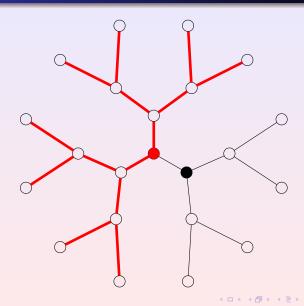
Paramètre associé

Soit $\operatorname{vs}(G)$ l'encerclement d'un fugitif visible dans le graphe G. De manière évidente, $\operatorname{vs}(G) \leq \operatorname{s}(G)$.

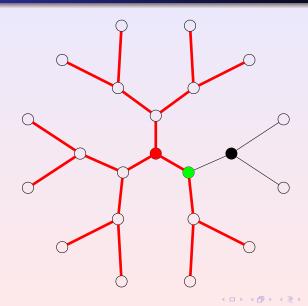




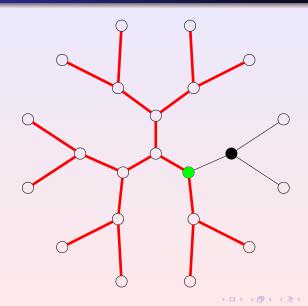




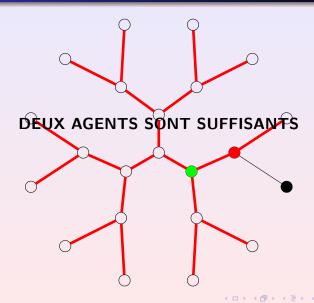
Encerclement d'un fugitif visible dans un arbre



Encerclement d'un fugitif visible dans un arbre



Encerclement d'un fugitif visible dans un arbre



Compléxité et Monotonie

Décider si $\mathbf{s}(G) \leq k$ est NP-difficile

• **Megiddo** et al, J.of ACM, 1988 The complexity of searching a graph.

Décider si $\mathbf{vs}(G) \le k$ est $\frac{\mathsf{NP-difficile}}{\mathsf{NP-difficile}}$

• **Seymour et Thomas**, J. of Comb. Th., 1993. *Graph searching and a min-max theorem for tree-width*

Question : le problème est-il dans NP? Une stratégie est un certificat. Taille d'une stratégie?

Compléxité et Monotonie

Décider si $\mathbf{s}(G) \leq k$ est NP-difficile

• **Megiddo** et al, J.of ACM, 1988 The complexity of searching a graph.

Décider si $vs(G) \le k$ est NP-difficile

• **Seymour et Thomas**, J. of Comb. Th., 1993. *Graph searching and a min-max theorem for tree-width*

Question : le problème est-il dans NP? Une stratégie est un certificat. Taille d'une stratégie?

Monotonie

Une stratégie est monotone si la zone accessible au fugitif décroit.

Chaque sommet n'est occupé qu'une fois par un agent. Il n'y a pas de recontamination.

Une stratégie monotone est un certificat de taille polynomiale.

Question : La recontamination aide-t'elle? Existe-t'il toujours une stratégie monotone utilisant le nombre optimal d'agent?

Monotonie

Une stratégie est monotone si la zone accessible au fugitif décroit.

Chaque sommet n'est occupé qu'une fois par un agent. Il n'y a pas de recontamination.

Une stratégie monotone est un certificat de taille polynomiale.

Monotonie

Une stratégie est monotone si la zone accessible au fugitif décroit.

Chaque sommet n'est occupé qu'une fois par un agent. Il n'y a pas de recontamination.

Une stratégie monotone est un certificat de taille polynomiale.

Question : La recontamination aide-t'elle? Existe-t'il toujours une stratégie monotone utilisant le nombre optimal d'agent?

Cas d'un fugitif invisible

- **Bienstock et Seymour**, J.of Alg., 1991 *Monotonicity in graph searching.*
- LaPaugh, J.of ACM, 1993
 Recontamination does not help to search a graph.

Preuves constructives : LaPaugh

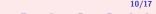
- stratégie avec $\leq k$ agents
- \Rightarrow stratégie monotone avec $\le k$

Cas d'un fugitif invisible

- **Bienstock et Seymour**, J.of Alg., 1991 *Monotonicity in graph searching.*
- LaPaugh, J.of ACM, 1993
 Recontamination does not help to search a graph.

Preuves constructives: Bienstock et Seymour

- stratégie avec $\leq k$ agents
- \Rightarrow croisade de largeur $\le k$
- \Rightarrow croisade *monotone* de largeur $\le k$
- \Rightarrow stratégie monotone avec $\le k$



Cas d'un fugitif visible

• **Seymour et Thomas**, J. of Comb. Th., 1993. *Graph searching and a min-max theorem for tree-width*

Preuve non constructive:

- pas de stratégie monotone avec $\leq k$ agents
- \Rightarrow stratégie pour le fugitif contre $\leq k$ agents "monotones"
- \Rightarrow stratégie pour le fugitif contre $\leq k$ agents
- \Rightarrow pas de stratégie avec $\le k$

Conséquences

- NP-complet
- lien entre encerclement invisible et largeur linéaire pw: s(G) = pw(G) + 1
- lien entre encerclement visible et largeur arborescente ${f tw}$: ${f vs}(G)={f tw}(G)+1$

Encerclement non-déterministe

Fugitif invisible
Un Oracle voit le fugitif

Opération supplémentaire

Les agents peuvent demander la position du fugitif à l'oracle.

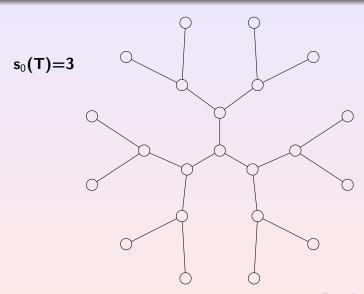
Séquence d'opérations élémentaires :

- placer un agent sur un sommet du graphe;
- supprimer un agent d'un sommet du graphe;
- poser une question à l'oracle.

encerclement q-limité

Compromis nombre d'agents / nombre de questions posées encerclement (non-déterministe) q-limité, $s_q(G)$

- $\mathbf{s}_0(G) = \mathbf{pw}(G) + 1$, encerclement de G;
- $\mathbf{s}_{\infty}(G) = \mathbf{tw}(G) + 1$, encerclement visible de G.

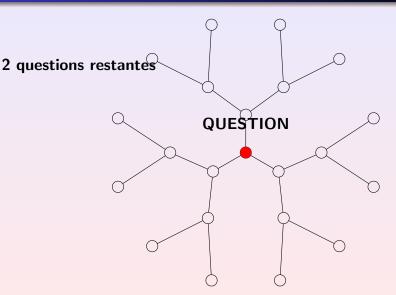


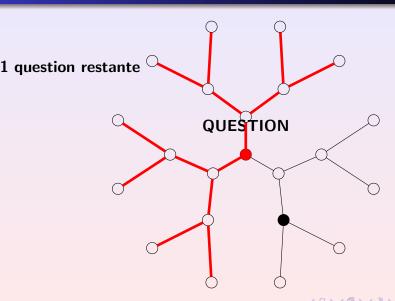
2 questions restantes

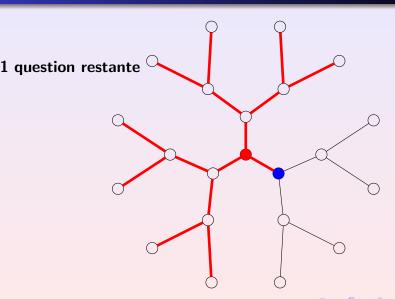
13/17

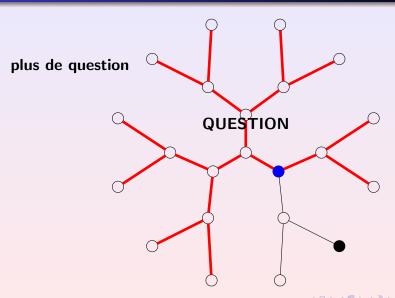
2 questions restantes

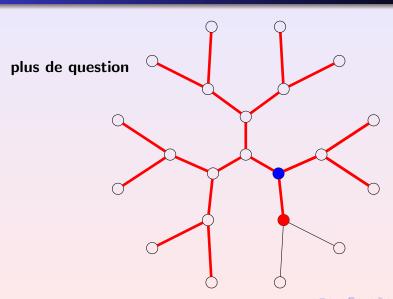
13/17



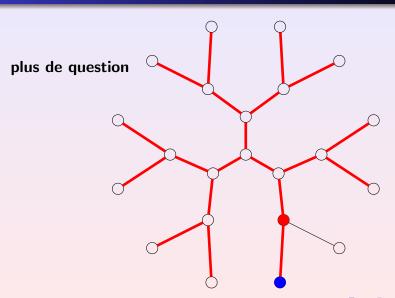


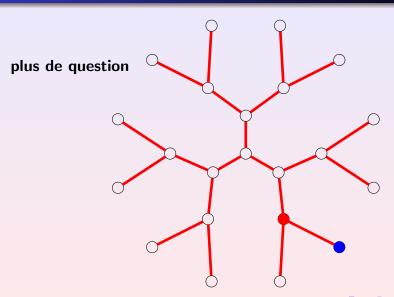


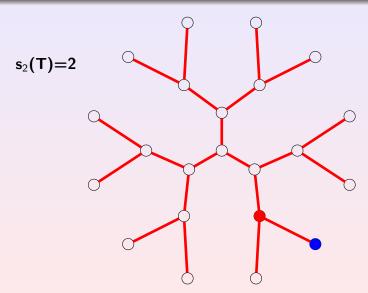




13/17







13/17

Journées graphes et algo de Bordeaux

Encerclement non-déterministe monotone

Theorem[Fomin, Fraigniaud, Nisse, 2005]:

- Interprétation de l'encerclement non-déterministe monotone en terme de décomposition de graphe;
- ② Déterminer si $\mathbf{s}_q(G) \leq k$ est NP-difficile
- 3 Algorithme exponentiel exact qui calcule $\mathbf{s}_q(G)$

Question : Est-ce que la recontamination aide? (la réponse est "Non" pour q=0 et $q=\infty$.)

Notre résultat

Pour tout $q \ge 0$ et tout graphe G, la recontamination n'aide pas à capturer un fugitif dans G en posant au plus q questions.

Remarques:

- Preuve constructive qui unifie les preuves existantes;
- Décider si $\mathbf{s}_q(G) \leq k$ est dans NP;
- L'algorithme de Fomin et al. calcule $\mathbf{s}_q(G)$.

Idée de la preuve

structure intermédiaire inspirée du tree-labelling [Robertson and Seymour, Graph Minor X] : arbre d'encerclement

Soit G un graphe connexe, $q \ge 0$ et $k \ge 1$.

- \exists une strategie non-déterministe utilisant $\leq k$ agents et $\leq q$ questions;
- **2** \exists un arbre d'encerclement q-branché de larqueur $\leq k$;
- 3 \exists un arbre d'encerclement monotone q-branché de larqueur $\leq k$;
- **4** In the strategie non-déterministe monotone utilisant $\leq k$ agents et $\leq q$ questions;

Conclusion et Perspectives

A propos de monotonie

Généraliser notre résultat à d'autres variantes d'encerclement : dans les graphes orientés

A propos de l'encerclement non-déterministe

Algorithme polynomial dans le cas des arbres? Algorithmes paramétrés?