
1/34
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A Kuratowski theorem for general surfaces

Minor of G : subgraph of H got from G by edge-contractions.
F(S): set of graphs embeddable in a surface S (minor closed)

ex: S0 the sphere, F(S0): set of planar graphs
O(S): set of minimal obstructions of F(S).

G ∈ F(S) iff no graph in O(S) is a minor of G

Kuratowski’s Theorem

A graph is planar iff it does not contain K5 or K3,3 as a minor.

Corollary: O(S0) is finite.

Generalization to any surface [Graph Minor VIII, 90]

For any (orientable or not) surface S , O(S) is finite.
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”Application”

Theorem [Graph Minor XIII, 95]

Let H be a fixed graph. There is a O(n3) algorithm deciding
whether a n-node graph G admits H as minor.

Corollary

For any surface S , there is a polynomial-time algorithm
deciding whether a graph G ∈ F(S).

Limitations

time-complexity: huge constant depending on |H |
#obstructions: projective plan=103 [Ar81], torus ≥ 3178

explicit obstruction set (constructive algo. [FL89])
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Surfaces

Surface: connected compact 2-manifold.

* Thanks to Ignasi for this slide and the next 4 slides
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Handles
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Cross-caps
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Genus of a surface

The surface classification Theorem: any compact,
connected and without boundary surface can be obtained
from the sphere S2 by adding handles and cross-caps.

Orientable surfaces: obtained by adding g ≥ 0 handles to
the sphere S0, obtaining the g -torus Sg with Euler genus
eg(Sg ) = 2g .

Non-orientable surfaces: obtained by adding h > 0
cross-caps to the sphere S0, obtaining a non-orientable
surface Ph with Euler genus eg(Ph) = h.
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Graphs on surfaces

An embedding of a graph G on a surface Σ is a drawing
of G on Σ without edge crossings.
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Graphs on surfaces

An embedding of a graph G on a surface Σ is a drawing
of G on Σ without edge crossings.

An embedding defines vertices, edges, and faces.

Euler Formula: |V | − |E |+ |F | = 2− eg

The Euler genus of a graph G , eg(G ), is the least Euler
genus of the surfaces in which G can be embedded.
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Some usefull relations

G ′ connected subgraph of G and Π embedding of G :
genus(G ′, Π) ≤ genus(G , Π)

v a cut-vertex of G = G1 ∪ G2 with G1 ∩ G2 = {v} and G2

non planar. Then, genus(G ) > genus(G1).

G1, G2 disjoint connected graphs and xy edge of G2. Let G
obtained from G1 ∪G2 by deleting xy and adding an edge from
x to G1 and from y to G1.
If G2 non planar, then, genus(G ) > genus(G1).
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Tree Decomposition of a graph G

a tree T and bags (Xt)t∈V (T )

every vertex of G is at least in one
bag;

both ends of an edge of G are at
least in one bag;

Given a vertex of G , all bags that
contain it, form a subtree.

Width = Size of larger Bag -1

Treewidth
tw(G ), minimum width
among any tree decomposition

Any bag is a separator

N. Nisse A Kuratowski theorem for general surfaces



11/34

A Kuratowski theorem for orientable surfaces

We focus on orientable surfaces.
genus(G ): minimum genus of an orientable embedding of G .

Fg : the set of graphs with genus ≤ g (minor closed)
ex: F0 : set of planar graphs

Og : the set of minimal obstructions of Fg .
G ∈ Fg iff no graph in Og is a minor of G

Theorem [Graph Minor VIII, 90]

For any g ≥ 0, Og is finite.
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Finitness of Og : Sketch of proof of [T97] (1/3)

If the treewidth of the graphs in Og is bounded ⇒ Og is finite.

Bounded treewidth graphs are WQO [RS90]

{G1, G2, · · · } infinite set of bounded treewidth graphs.
Then, ∃i , j such that Gi is a minor of Gj .

Assume Og is an infinite set of bounded tw graphs. Then,
∃H , G ∈ Og such that H is a minor of G . A contradiction.

A weaker but sufficient resut [M01]

S surface of euler-genus g . ∃N > 0 s.t., any H ∈ O(S) with
treewidth < w has at most N vertices.
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Finitness of Og : Sketch of proof of [T97] (2/3)

So, we aim at proving that the treewidth of the graphs in Og

is bounded.

How to characterize a graph with high treewidth?

If tw(G ) < k , then G does not contain a k ∗ k grid as a minor

A kind of converse holds

Grid exclusion Theorem [RS86, DJGT99]

If tw(G ) > r 4m2(r+2), then G contains either Km or the
r ∗ r -grid as a minor.
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Finitness of Og : Sketch of proof of [T97] (3/3)

So, if G ∈ Og has no ”big” grid as a minor, it has bounded tw.

No G ∈ Og has a ”big” grid as a minor [T97]

Let G be 2-connected, s.t. genus(G \ e) < genus(G ) = g ,
∀e ∈ E (G ). Then G contains no subdivision of Jd1100g3/2e

J3J1 J2

Note that Jk is a subgraph of a 4k ∗ 2k grid.
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Finitness of Og : Sketch of proof of [T97]

1) S surface of euler-genus g . ∃N > 0 s.t., any H ∈ O(S)
with treewidth < w has at most N vertices. [M01]

2) If tw(G ) > r 4m2(r+2), then G contains either Km or the
r ∗ r -grid as a minor. [RS86, DJGT99]

3) Let G be 2-connected, s.t. genus(G \ e) < genus(G ) = g ,
∀e ∈ E (G ). Then G contains no subdivision of Jd1100g3/2e [T97]

2) + 3) ⇒ 4) Graphs in Og have bounded treewidth
1) + 4) ⇒ For any g ≥ 0, Og is finite.
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Minimal obstructions of bounded treewidth

Theorem 1 [Mohar 01]

Let S be a surface of euler-genus g . ∃N > 0 s.t., any
H ∈ O(S) with treewidth < w has at most N vertices.
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Proof Th. 1 (bounded size of bounded tw obstr.)

Let S be any surface with euler genus g .
Assume H ∈ O(S) is arbitrary large with tw(H) ≤ w .
Let T be a tree-decomposition of H with width ≤ w .

First step. T has bounded degree.
Thus, T contains an arbitrary large path P .

2nd step. Using P , G ∈ F(S) major of H can be built

A contradiction.
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Proof Th. 1, first step

X a subgraph of a graph G s.t. V (X ) is a separator of G .

X -bridge

- either an edge in E (G ) \ E (X ), or
- a connected component of G \X together with all edges (and
their enpoint) with one end in V (G ) and the other in V (X ).

X is the set of black vertices. There are 6 X -bridges (right).
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Proof Th. 1, first step

X a subgraph of a graph G s.t. V (X ) is a separator of G .

X -bridge

- either an edge in E (G ) \ E (X ), or
- a connected component of G \X together with all edges (and
their enpoint) with one end in V (G ) and the other in V (X ).

Property

(T , (Xt)t∈V (T )) tree-decomposition of G and t0 ∈ V (T ).
The degree of t0 in T is less than the number of Xt0-bridges
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Proof Th. 1, count the X -bridges

G Π-embedded in S of Euler genus eg = 2− 2g (orientable). X ⊆ V (G ).

Note that by Euler Formula: V − E + F = 2− eg ⇒ 14− 23 + F = 0,
i.e., F = 9.
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Proof Th. 1, count the X -bridges

G Π-embedded in S of Euler genus eg = 2− 2g (orientable). X ⊆ V (G ).

For any Π-facial walk W , add edges between consecutive vertices in W
that are incident to edges in W from different X -bridges.
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Proof Th. 1, count the X -bridges

G Π-embedded in S of Euler genus eg = 2− 2g (orientable). X ⊆ V (G ).

For any Π-facial walk W , add edges between consecutive consecutive
vertices in W that are incident to edges in W from different X -bridges.
X ∗ the induced graph.
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Proof Th. 1, count the X -bridges

G Π-embedded in S of Euler genus eg = 2− 2g (orientable). X ⊆ V (G ).

Lem. Any X -bridge contains in a face of X ∗.
Each face of X ∗ is either included in a face of G or contains a X -bridge
Each edge of X ∗ is incident to exactly one face contaning a X -bridge.
Lem. If no x ∈ X is a cutvertex and ∀x , y ∈ X , a x , y -bridge is planar
only if it is an edge: by Euler Formula, # X -bridge ≤ f (g , |X |).
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Proof Th. 1: Summerize the first step

Let S be any surface with euler genus g .
Assume H ∈ O(S) is arbitrary large with tw(H) ≤ w .
Let T be a tree-decomposition of H with width ≤ w .

t0 ∈ V (T ). degree(t0) in T≤ # Xt0-bridges

no x ∈ Xt0 is a cutvertex and ∀x , y ∈ Xt0 , a x , y -bridge is
planar only if it is an edge because H ∈ O(S)
By previous lemma: # Xt0-bridge ≤ f(g,|Xt0|).

⇒ T has bounded degree: T contains an arbitrary large path.
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Proof Th. 1: 2nd step, what about this long path?

Menger Theorem+pigeonhole princ.: ∃(Xi )i≥1 large familly of bags s.t.

|Xi | = s ≤ w , s disjoint paths between the Xi , and 1 edge ∈ P1 ∩ Xi , ∀i .

1

X X X X1 2 i j

Ps

P

H ∈ O(S)⇒ G i got by contr. of the edge in P1 ∩ Xi embeddable in S

1

X X X X1 2 i j

Ps

P
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Proof Th. 1: 2nd step, what about this long path?

Th.: two surfaces with same genus are isomorphic

g , |Xi | bounded ∀i , ∃i , j such that Xj strongly isomorphic with Xi (with

same embedding) and Gj can be embedded in the same surface as Gi

j

X X X1 2 j

Ps

P1

Xi

Gi

G
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Proof Th. 1: 2nd step, what about this long path?

Hence, G (below) is embeddable in S . But H minor of G cannot ???

A Contradiction.

j1 2 jXi

Gi

G j

Ps

P1

XX X X
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Finitness of Og : Sketch of proof of [T97]

1) S surface of euler-genus g . ∃N > 0 s.t., any H ∈ O(S)
with treewidth < w has at most N vertices. [M01] OK

2) If tw(G ) > r 4m2(r+2), then G contains either Km or the
r ∗ r -grid as a minor. [RS86, DJGT99]

3) Let G be 2-connected, s.t. genus(G \ e) < genus(G ) = g ,
∀e ∈ E (G ). Then G contains no subdivision of Jd1100g3/2e [T97]

2) + 3) ⇒ 4) Graphs in Og have bounded treewidth
1) + 4) ⇒ For any g ≥ 0, Og is finite.
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Minimal obstructions do not contain ”big” grids

Theorem 2 [Thomassen 97]

Let G be 2-connected, s.t. genus(G \ e) < genus(G ) = g ,
∀e ∈ E (G ). Then G contains no subdivision of Jd1100g3/2e.

Assume G ∈ Og contains a subdivision of Jd1100g3/2e.

1 Find a ”big” and ”good” planar subgraph H

2 Show that for any embedding Π of G ,
”small” parts of H have genus 0.
That is Π induces a planar embedding of these parts.

Remove edge e of a ”small” part, G \ e embeddable in Sg

The corresponding embedding of the small part is planar
Extend it into an embeding of G into Sg . A contradiction.
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Proof of Th. 2: find good subgraph

A subdivision H of Jk is good in G if the union of H and those
H-bridges with an attachment not in the outer face of H is
planar.

G of genus g with a subdivision H ′ of Jm as a subgraph.
If m > 100k

√
g , H ′ contains a good (in G ) subdivision of Jk .

N. Nisse A Kuratowski theorem for general surfaces



25/34

Proof of Th. 2: find good subgraph

(Qj)j≤2g+2 pairwise disjoint sudivisions of Jk .
∀i , j , there is a path between Qi and Qj avoiding the others.

Assume all are not good
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Proof of Th. 2: find good subgraph

We build (Mi)i≤g+1 with M1 = Q1, and
Mi intersects at most 2i − 1 graphs Qj , and
genus(Mi) ≥ i − 1

Mi

x

y

Qj
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Proof of Th. 2: find good subgraph

Mi+1 got from Mi by adding Qj and corresponding bridges
Since Qj and its bridges are not planar, the genus increases
until a subgraph of G with genus G + 1. A contradiction.

Mi

x

y

Qj
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Minimal obstructions do not contain ”big” grids

Assume G ∈ Og contains a subdivision of Jd1100g3/2e.

G of genus g with a subdivision H ′ of Jm as a subgraph.
If m > 100k

√
g , H ′ contains a good (in G ) subdivision of Jk .

G of genus g with a good subdivision H of Jk as a subgraph.
If k ≥ 4g + 6, then any embedding of genus g induces a
planar embedding of Jk−4g−4.

Remove edge e of a ”small” part, G \ e embeddable in Sg

The corresponding embedding of the small part is planar
Extend it into an embeding of G into Sg . A contradiction.
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Finitness of Og : Sketch of proof of [T97]

1) S surface of euler-genus g . ∃N > 0 s.t., any H ∈ O(S)
with treewidth < w has at most N vertices. [M01] OK

2) If tw(G ) > r 4m2(r+2), then G contains either Km or the
r ∗ r -grid as a minor. [RS86, DJGT99]

3) Let G be 2-connected, s.t. genus(G \ e) < genus(G ) = g ,
∀e ∈ E (G ). Then G contains no subdivision of Jd1100g3/2e
[T97] OK

2) + 3) ⇒ 4) Graphs in Og have bounded treewidth
1) + 4) ⇒ For any g ≥ 0, Og is finite.
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Big treewidth graphs contain big grids

Theorem 3 [RS86, DJGT99]

2) If tw(G ) > r 4m2(r+2), then G contains either Km or the
r ∗ r -grid as a minor.
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Big treewidth graphs contain big grids

If many paths with ”good properties” G has a big grid

d ≥ r 2r+2. Let G contains a set H of r 2 − 1 disjoint paths,
and a set V = {V1, · · · , Vd} of d disjoint paths such that each
V ∈ V intersects all H ∈ H, and that any H ∈ H consists of
d disjoint segments such that Vi meets H only in its i th

segment. Then G has a r ∗ r grid as minor.

If G has big treewidth, it contains a big mesh.

If G contains no k-mesh of order h, then tw(G ) ≤ h + k − 1.

If big mesh, G has many paths with ”good properties”.
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How to build a big grid: Intuition

d ≥ r 2r+2. Let G contains a set H of r 2 − 1 disjoint paths,
and a set V = {V1, · · · , Vd} of d disjoint paths such that each
V ∈ V intersects all H ∈ H, and that any H ∈ H consists of
d disjoint segments such that Vi meets H only in its i th

segment. Then G has a r ∗ r grid as minor.

Because of the number of ”vertical” paths (inV) , sufficient
such paths can be found that intersect r horizontal paths (in
H) in the ”same order”.
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Structure in big treewidth graph

Externally k-connected set

X ⊆ V (G ) with |X | ≥ k and for any Y , Z ⊂ X , |Y | = |Z |,
there are |Y | disjoint Y -Z paths without internal vertices or
edges in X .

N. Nisse A Kuratowski theorem for general surfaces



30/34

Structure in big treewidth graph

If h ≥ k and G contains no externally k-connected set with h
vertices, then tw(G ) < h + k − 1

U ⊆ V (G) maximal such that G [U] has a tree-decomposition D of width < h + k − 1
and ∀ component C of G \ U, |N(C) ∩ U| ≤ h and N(C) ∩ U lies into a bag of D.

Assume U 6= V (G)

<h+1

<h+1

<h+1

<h+1

<h+1
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Structure in big treewidth graph

If h ≥ k and G contains no externally k-connected set with h
vertices, then tw(G ) < h + k − 1

U ⊆ V (G) maximal such that G [U] has a tree-decomposition D of width < h + k − 1
and ∀ component C of G \ U, |N(C) ∩ U| ≤ h and N(C) ∩ U lies into a bag of D.

Let C a component of G \ U and X = N(C) ∩ U. X not externally k-conneted, thus

by Menger th., let S be a Y -Z separator in C , with Y , Z ⊂ X and |S | < k.

Y

Z

<h+1<h+1

<h+1

<h+1

S <k
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Structure in big treewidth graph

If h ≥ k and G contains no externally k-connected set with h
vertices, then tw(G ) < h + k − 1

U ⊆ V (G) maximal such that G [U] has a tree-decomposition D of width < h + k − 1
and ∀ component C of G \ U, |N(C) ∩ U| ≤ h and N(C) ∩ U lies into a bag of D.

U can be extended, contradicting its maximality.

Z

YUS

ZUS

YUZUS

<h+1

<h+1

<h+1

<h+1

Y

N. Nisse A Kuratowski theorem for general surfaces



31/34

A better structure in big treewidth graph

A separation (A, B) is a k-mesh if

all edges of G [V (A ∩ B)] lie in A,

A contains a tree T with maximum degree 3

all vertices of A ∩ B lie in T with degree ≤ 2, and some has degree 1

V (A ∩ B) is externally k-connected in B

k

A
B

If G contains no k-mesh of order h ≥ k , tw(G ) < h + k − 1
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Proof of Th. 3

Theorem 3 [RS86, DJGT99]

2) If tw(G ) > r 4m2(r+2), then G contains either Km or the
r ∗ r -grid as a minor.

Let c = r4(r+2) and k = cm(m−1). ∃ a k-mesh of order m(2k − 1) + k − 1.

There are m disjoint subtrees each containing ≥ k vertices of A ∩ B.

A4

A1

A2

A3

A
B
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Proof of Th. 3

Theorem 3 [RS86, DJGT99]

2) If tw(G ) > r 4m2(r+2), then G contains either Km or the
r ∗ r -grid as a minor.

Intempt to find vertex disjoint paths between Ai and Aj for all i , j

If not, exhibit many paths with good properties to build a r ∗ r grid

A4

A1

A2

A3

A
B
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Finitness of Og : Sketch of proof of [T97]

1) S surface of euler-genus g . ∃N > 0 s.t., any H ∈ O(S)
with treewidth < w has at most N vertices. [M01] OK

2) If tw(G ) > r 4m2(r+2), then G contains either Km or the
r ∗ r -grid as a minor. [RS86, DJGT99] OK

3) Let G be 2-connected, s.t. genus(G \ e) < genus(G ) = g ,
∀e ∈ E (G ). Then G contains no subdivision of Jd1100g3/2e
[T97] OK

2) + 3) ⇒ 4) Graphs in Og have bounded treewidth
1) + 4) ⇒ For any g ≥ 0, Og is finite.
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