A Kuratowski theorem for general surfaces Graph minors VIII, Robertson and Seymour, JCTB 90

Nicolas Nisse

MASCOTTE, INRIA Sophia Antipolis, I3S(CNRS/UNS).

JCALM, oct. 09, Sophia Antipolis

Talk mainly based on *Graphs on Surfaces* [Mohar,Thomassen]

・ 同 ト ・ ヨ ト ・ ヨ ト

A Kuratowski theorem for general surfaces

Minor of G: subgraph of H got from G by edge-contractions. $\mathcal{F}(S)$: set of graphs embeddable in a surface S (minor closed) ex: S₀ the sphere, $\mathcal{F}(S_0)$: set of planar graphs $\mathcal{O}(S)$: set of minimal obstructions of $\mathcal{F}(S)$. $G \in \mathcal{F}(S)$ iff no graph in $\mathcal{O}(S)$ is a minor of G

Kuratowski's Theorem

A graph is planar iff it does not contain K_5 or $K_{3,3}$ as a minor.

Corollary: $\mathcal{O}(S_0)$ is finite.

・ロト ・同ト ・ヨト ・ヨト

Generalization to any surface [Graph Minor VIII, 90] For any (orientable or not) surface S, O(S) is finite.

A Kuratowski theorem for general surfaces

Minor of G: subgraph of H got from G by edge-contractions. $\mathcal{F}(S)$: set of graphs embeddable in a surface S (minor closed) ex: S₀ the sphere, $\mathcal{F}(S_0)$: set of planar graphs $\mathcal{O}(S)$: set of minimal obstructions of $\mathcal{F}(S)$. $G \in \mathcal{F}(S)$ iff no graph in $\mathcal{O}(S)$ is a minor of G

Kuratowski's Theorem

A graph is planar iff it does not contain K_5 or $K_{3,3}$ as a minor.

Corollary: $\mathcal{O}(S_0)$ is finite.

・ロト ・日ト ・ヨト ・ヨト

Generalization to any surface [Graph Minor VIII, 90] For any (orientable or not) surface S, $\mathcal{O}(S)$ is finite. Minor of G: subgraph of H got from G by edge-contractions. $\mathcal{F}(S)$: set of graphs embeddable in a surface S (minor closed) ex: S₀ the sphere, $\mathcal{F}(S_0)$: set of planar graphs $\mathcal{O}(S)$: set of minimal obstructions of $\mathcal{F}(S)$. $G \in \mathcal{F}(S)$ iff no graph in $\mathcal{O}(S)$ is a minor of G

Kuratowski's Theorem

A graph is planar iff it does not contain K_5 or $K_{3,3}$ as a minor.

Corollary: $\mathcal{O}(S_0)$ is finite.

・ロト ・日ト ・ヨト ・ヨト

2/34

Generalization to any surface [Graph Minor VIII, 90 For any (orientable or not) surface S, $\mathcal{O}(S)$ is finite. Minor of G: subgraph of H got from G by edge-contractions. $\mathcal{F}(S)$: set of graphs embeddable in a surface S (minor closed) ex: S₀ the sphere, $\mathcal{F}(S_0)$: set of planar graphs $\mathcal{O}(S)$: set of minimal obstructions of $\mathcal{F}(S)$. $G \in \mathcal{F}(S)$ iff no graph in $\mathcal{O}(S)$ is a minor of G

Kuratowski's Theorem

A graph is planar iff it does not contain K_5 or $K_{3,3}$ as a minor.

Corollary: $\mathcal{O}(S_0)$ is finite.

・ロト ・日ト ・ヨト ・ヨト

Generalization to any surface [Graph Minor VIII, 90]

For any (orientable or not) surface S, $\mathcal{O}(S)$ is finite.

[Graph Minor XIII, 95]

(日) (종) (종) (종) (종)

Let *H* be a fixed graph. There is a $O(n^3)$ algorithm deciding whether a *n*-node graph *G* admits *H* as minor.

Corollary

For any surface S, there is a polynomial-time algorithm deciding whether a graph $G \in \mathcal{F}(S)$.

Limitations

- time-complexity: huge constant depending on |H|
- #obstructions: projective plan=103 [Ar81], torus \geq 3178
- explicit obstruction set (constructive algo. [FL89])

Surfaces

• Surface: connected compact 2-manifold.

イロト イヨト イヨト イヨト

4/34

* Thanks to Ignasi for this slide and the next 4 slides

Handles

Cross-caps

<□> <@> < E> < E> < E</p>

- The surface classification Theorem: any compact, connected and without boundary surface can be obtained from the sphere S^2 by adding handles and cross-caps.
- Orientable surfaces: obtained by adding $g \ge 0$ handles to the sphere S_0 , obtaining the g-torus S_g with Euler genus $eg(S_g) = 2g$.
- Non-orientable surfaces: obtained by adding h > 0 cross-caps to the sphere S₀, obtaining a non-orientable surface P_h with Euler genus eg(P_h) = h.

Graphs on surfaces

 An embedding of a graph G on a surface Σ is a drawing of G on Σ without edge crossings.

- An embedding of a graph G on a surface Σ is a drawing of G on Σ without edge crossings.
- An embedding defines vertices, edges, and faces.
- Euler Formula: |V| |E| + |F| = 2 eg
 - The Euler genus of a graph G, eg(G), is the least Euler genus of the surfaces in which G can be embedded.

G' connected subgraph of G and Π embedding of G: genus $(G', \Pi) \leq genus(G, \Pi)$

v a cut-vertex of $G = G_1 \cup G_2$ with $G_1 \cap G_2 = \{v\}$ and G_2 non planar. Then, $genus(G) > genus(G_1)$.

 G_1, G_2 disjoint connected graphs and xy edge of G_2 . Let G obtained from $G_1 \cup G_2$ by deleting xy and adding an edge from x to G_1 and from y to G_1 . If G_2 non planar, then, $genus(G) > genus(G_1)$.

Tree Decomposition of a graph G

a tree T and bags $(X_t)_{t \in V(T)}$

- every vertex of G is at least in one bag;
- both ends of an edge of G are at least in one bag;
- Given a vertex of *G*, all bags that contain it, form a **subtree**.

イロン イヨン イヨン イヨン

10/34

 $\mathsf{Width} = \mathsf{Size} \mathsf{ of} \mathsf{ larger} \mathsf{ Bag} \mathsf{ -1}$

Treewidth tw(G), minimum width among any tree decomposition

Any bag is a separator

We focus on orientable surfaces. genus(G): minimum genus of an orientable embedding of G.

Theorem

[Graph Minor VIII, 90]

(D) (A) (A) (A)

For any $g \ge 0$, \mathcal{O}_g is finite.

Finitness of \mathcal{O}_g : Sketch of proof of [T97] (1/3)

If the treewidth of the graphs in \mathcal{O}_g is bounded $\Rightarrow \mathcal{O}_g$ is finite.

 $\{G_1, G_2, \dots\}$ infinite set of bounded treewidth graphs. Then, $\exists i, j$ such that G_i is a minor of G_j .

Assume \mathcal{O}_g is an infinite set of bounded tw graphs. Then, $\exists H, G \in \mathcal{O}_g$ such that H is a minor of G. A contradiction.

A weaker but sufficient resut

S surface of euler-genus g. $\exists N>0$ s.t., any $H\in \mathcal{O}(S)$ with treewidth < w has at most N vertices.

・ロン ・回 と ・ ヨン ・ ヨン

Finitness of \mathcal{O}_g : Sketch of proof of [T97] (1/3)

If the treewidth of the graphs in \mathcal{O}_g is bounded $\Rightarrow \mathcal{O}_g$ is finite.

Bounded treewidth graphs are WQO

 $\{G_1, G_2, \dots\}$ infinite set of bounded treewidth graphs. Then, $\exists i, j$ such that G_i is a minor of G_j .

Assume \mathcal{O}_g is an infinite set of bounded tw graphs. Then, $\exists H, G \in \mathcal{O}_g$ such that H is a minor of G. A contradiction.

A weaker but sufficient resut

S surface of euler-genus g. $\exists N > 0$ s.t., any $H \in \mathcal{O}(S)$ with treewidth < w has at most N vertices.

・ロト ・同ト ・ヨト ・ヨト

[RS90]

Finitness of \mathcal{O}_g : Sketch of proof of [T97] (1/3)

If the treewidth of the graphs in \mathcal{O}_g is bounded $\Rightarrow \mathcal{O}_g$ is finite.

Bounded treewidth graphs are WQO

 $\{G_1, G_2, \dots\}$ infinite set of bounded treewidth graphs. Then, $\exists i, j$ such that G_i is a minor of G_j .

Assume \mathcal{O}_g is an infinite set of bounded tw graphs. Then, $\exists H, G \in \mathcal{O}_g$ such that H is a minor of G. A contradiction.

A weaker but sufficient resut

S surface of euler-genus g. $\exists N > 0$ s.t., any $H \in \mathcal{O}(S)$ with treewidth < w has at most N vertices.

・ロト ・同ト ・ヨト ・ヨト

[RS90]

[M01]

Finitness of \mathcal{O}_g : Sketch of proof of [T97] (2/3)

So, we aim at proving that the treewidth of the graphs in $\mathcal{O}_{\rm g}$ is bounded.

How to characterize a graph with high treewidth?

If tw(G) < k, then G does not contain a k * k grid as a minor

A kind of converse holds

tw(G) > r^{4m²(r+2)}, then G contains either K_m or the * r-grid as a minor.

・ロト ・同ト ・ヨト ・ヨト

Finitness of \mathcal{O}_g : Sketch of proof of [T97] (2/3)

So, we aim at proving that the treewidth of the graphs in $\mathcal{O}_{\rm g}$ is bounded.

How to characterize a graph with high treewidth?

If tw(G) < k, then G does not contain a k * k grid as a minor

A kind of converse holds

If $tw(G) > r^{4m^2(r+2)}$, then G contains either K_m or the r * r-grid as a minor.

・ロト ・日ト ・ヨト ・ヨト

Finitness of \mathcal{O}_g : Sketch of proof of [T97] (2/3)

So, we aim at proving that the treewidth of the graphs in $\mathcal{O}_{\rm g}$ is bounded.

How to characterize a graph with high treewidth?

If tw(G) < k, then G does not contain a k * k grid as a minor

A kind of converse holds

Grid exclusion Theorem

[RS86, DJGT99]

If $tw(G) > r^{4m^2(r+2)}$, then G contains either K_m or the r * r-grid as a minor.

Finitness of \mathcal{O}_g : Sketch of proof of [T97] (3/3)

So, if $G \in \mathcal{O}_g$ has no "big" grid as a minor, it has bounded tw.

No $G \in \mathcal{O}_{g}$ has a "big" grid as a minor [T97] Let G be 2-connected, s.t. $genus(G \setminus e) < genus(G) = g$, $\forall e \in E(G)$. Then G contains no subdivision of $J_{[1100g^{3/2}]}$

・ロト ・日ト ・ヨト ・ヨト

Finitness of \mathcal{O}_g : Sketch of proof of [T97] (3/3)

So, if $G \in \mathcal{O}_g$ has no "big" grid as a minor, it has bounded tw.

No $G \in \mathcal{O}_g$ has a "big" grid as a minor [T97] Let G be 2-connected, s.t. $genus(G \setminus e) < genus(G) = g$, $\forall e \in E(G)$. Then G contains no subdivision of $J_{\lceil 1100g^{3/2} \rceil}$

Note that J_k is a subgraph of a 4k * 2k grid.

Finitness of \mathcal{O}_g : Sketch of proof of [T97]

1) S surface of euler-genus g. $\exists N > 0$ s.t., any $H \in \mathcal{O}(S)$ with treewidth < w has at most N vertices. [M01]

2) If $tw(G) > r^{4m^2(r+2)}$, then G contains either K_m or the r * r-grid as a minor. [RS86, DJGT99]

3) Let G be 2-connected, s.t. $genus(G \setminus e) < genus(G) = g$, $\forall e \in E(G)$. Then G contains no subdivision of $J_{[1100g^{3/2}]}$ [T97]

2) + 3) \Rightarrow 4) Graphs in \mathcal{O}_g have bounded treewidth 1) + 4) \Rightarrow For any $g \ge 0$, \mathcal{O}_g is finite.

(日) (종) (종) (종) (종)

Minimal obstructions of bounded treewidth

Theorem 1

[Mohar 01]

Let S be a surface of euler-genus g. $\exists N > 0$ s.t., any $H \in \mathcal{O}(S)$ with treewidth < w has at most N vertices.

Let S be any surface with euler genus g. Assume $H \in \mathcal{O}(S)$ is arbitrary large with $tw(H) \leq w$. Let T be a tree-decomposition of H with width $\leq w$.

First step. T has bounded degree. Thus, T contains an arbitrary large path P.

2nd step. Using P, $G \in \mathcal{F}(S)$ major of H can be built

A contradiction.

(1日) (1日) (1日)

Proof Th. 1, first step

X a subgraph of a graph G s.t. V(X) is a separator of G.

X-bridge

- either an edge in $E(G) \setminus E(X)$, or
- a connected component of $G \setminus X$ together with all edges (and their enpoint) with one end in V(G) and the other in V(X).

X is the set of black vertices. There are 6 X-bridges (right).

・ロト ・ 同ト ・ ヨト ・ ヨト

X a subgraph of a graph G s.t. V(X) is a separator of G.

X-bridge

- either an edge in $E(G) \setminus E(X)$, or

- a connected component of $G \setminus X$ together with all edges (and their enpoint) with one end in V(G) and the other in V(X).

Property

 $(T, (X_t)_{t \in V(T)})$ tree-decomposition of G and $t_0 \in V(T)$. The degree of t_0 in T is less than the number of X_{t_0} -bridges

・ロト ・日ト ・ヨト ・ヨト

Note that by Euler Formula: $V - E + F = 2 - eg \Rightarrow 14 - 23 + F = 0$, i.e., F = 9.

For any Π -facial walk W, add edges between consecutive vertices in W that are incident to edges in W from different X-bridges.

- 4 回 ト 4 ヨ ト 4 ヨ ト

For any Π -facial walk W, add edges between consecutive vertices in W that are incident to edges in W from different X-bridges.

- 4 回 ト 4 ヨ ト 4 ヨ ト

For any Π -facial walk W, add edges between consecutive vertices in W that are incident to edges in W from different X-bridges.

・ 同 ト ・ ヨ ト ・ ヨ ト

For any Π -facial walk W, add edges between consecutive vertices in W that are incident to edges in W from different X-bridges.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof Th. 1, count the X-bridges

G Π -embedded in S of Euler genus eg = 2 - 2g (orientable). $X \subseteq V(G)$.

For any Π -facial walk W, add edges between consecutive consecutive vertices in W that are incident to edges in W from different X-bridges. X^* the induced graph.

(4月) (4日) (4日)

Proof Th. 1, count the X-bridges

G Π -embedded in S of Euler genus eg = 2 - 2g (orientable). $X \subseteq V(G)$.

Lem. Any X-bridge contains in a face of X^* . Each face of X^* is either included in a face of G or contains a X-bridge Each edge of X^* is incident to exactly one face containing a X-bridge. **Lem.** If no $x \in X$ is a cutvertex and $\forall x, y \in X$, a x, y-bridge is planar only if it is an edge: by Euler Formula, # X-bridge $\leq f(g, |X|)$.

・ロン ・回 と ・ヨン ・ ヨン

Let S be any surface with euler genus g. Assume $H \in \mathcal{O}(S)$ is arbitrary large with $tw(H) \leq w$. Let T be a tree-decomposition of H with width $\leq w$.

$t_0 \in V(T)$. degree(t_0) in T $\leq \# X_{t_0}$ -bridges

no $x \in X_{t_0}$ is a cutvertex and $\forall x, y \in X_{t_0}$, a x, y-bridge is planar only if it is an edge because $H \in \mathcal{O}(S)$ By previous lemma: $\# X_{t_0}$ -bridge $\leq \mathbf{f}(\mathbf{g}, |X_{t_0}|)$.

 \Rightarrow T has bounded degree: T contains an arbitrary large path.

・ロト ・日ト ・ヨト ・ヨト

Proof Th. 1: 2nd step, what about this long path?

Menger Theorem+pigeonhole princ.: $\exists (X_i)_{i\geq 1}$ large familly of bags s.t. $|X_i| = s \leq w$, s disjoint paths between the X_i , and 1 edge $\in P_1 \cap X_i$, $\forall i$.

 $H \in \mathcal{O}(S) \Rightarrow G^i$ got by contr. of the edge in $P_1 \cap X_i$ embeddable in S

A (1) > A (2) > A

Th.: two surfaces with same genus are isomorphic $g, |X_i|$ bounded $\forall i, \exists i, j$ such that X_j strongly isomorphic with X_i (with same embedding) and G_i can be embedded in the same surface as G_i

向下 イヨト イヨト

Hence, G (below) is embeddable in S. But H minor of G cannot ??? A Contradiction.

Finitness of \mathcal{O}_g : Sketch of proof of [T97]

1) S surface of euler-genus g. $\exists N > 0$ s.t., any $H \in \mathcal{O}(S)$ with treewidth < w has at most N vertices. [M01] OK

2) If $tw(G) > r^{4m^2(r+2)}$, then G contains either K_m or the r * r-grid as a minor. [RS86, DJGT99]

3) Let G be 2-connected, s.t. $genus(G \setminus e) < genus(G) = g$, $\forall e \in E(G)$. Then G contains no subdivision of $J_{[1100g^{3/2}]}$ [T97]

2) + 3) ⇒ 4) Graphs in \mathcal{O}_g have bounded treewidth 1) + 4) ⇒ For any $g \ge 0$, \mathcal{O}_g is finite.

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

[Thomassen 97]

Let G be 2-connected, s.t. $genus(G \setminus e) < genus(G) = g$, $\forall e \in E(G)$. Then G contains no subdivision of $J_{\lceil 1100g^{3/2} \rceil}$.

Assume G ∈ O_g contains a subdivision of J_[1100g^{3/2}].
Find a "big" and "good" planar subgraph H
Show that for any embedding Π of G, "small" parts of H have genus 0. That is Π induces a planar embedding of these parts.
Remove edge e of a "small" part, G \ e embeddable in S_g The corresponding embedding of the small part is planar Extend it into an embeding of G into S_g. A contradiction.

[Thomassen 97]

Let G be 2-connected, s.t. $genus(G \setminus e) < genus(G) = g$, $\forall e \in E(G)$. Then G contains no subdivision of $J_{\lceil 1100g^{3/2} \rceil}$.

Assume $G \in \mathcal{O}_g$ contains a subdivision of $J_{\lceil 1100g^{3/2} \rceil}$.

- Find a "big" and "good" planar subgraph H
- Show that for any embedding Π of G,
 "small" parts of H have genus 0.
 That is Π induces a planar embedding of these parts.

Remove edge e of a "small" part, $G \setminus e$ embeddable in S_g The corresponding embedding of the small part is planar Extend it into an embeding of G into S_g . A contradiction.

・ロト ・日ト ・ヨト ・ヨト

[Thomassen 97]

Let G be 2-connected, s.t. $genus(G \setminus e) < genus(G) = g$, $\forall e \in E(G)$. Then G contains no subdivision of $J_{\lceil 1100g^{3/2} \rceil}$.

Assume $G \in \mathcal{O}_g$ contains a subdivision of $J_{\lceil 1100g^{3/2} \rceil}$.

- Find a "big" and "good" planar subgraph H
- **2** Show that for any embedding Π of G,

"small" parts of H have genus 0.

That is Π induces a planar embedding of these parts.

Remove edge e of a "small" part, $G \setminus e$ embeddable in S_g The corresponding embedding of the small part is planar Extend it into an embeding of G into S_g . A contradiction.

・ロン ・回 と ・ヨン ・ ヨン

A subdivision H of J_k is good in G if the union of H and those H-bridges with an attachment not in the outer face of H is planar.

G of genus *g* with a subdivision *H'* of J_m as a subgraph. If $m > 100k\sqrt{g}$, *H'* contains a good (in *G*) subdivision of J_k .

 $(Q_j)_{j \le 2g+2}$ pairwise disjoint sudivisions of J_k . $\forall i, j$, there is a path between Q_i and Q_j avoiding the others.

Assume all are not good

We build $(M_i)_{i \le g+1}$ with $M_1 = Q_1$, and M_i intersects at most 2i - 1 graphs Q_j , and $genus(M_i) \ge i - 1$

N. Nisse A Kuratowski theorem for general surfaces

 M_{i+1} got from M_i by adding Q_j and corresponding bridges Since Q_j and its bridges are not planar, the genus increases until a subgraph of G with genus G + 1. A contradiction.

Assume $G \in \mathcal{O}_g$ contains a subdivision of $J_{\lceil 1100g^{3/2} \rceil}$.

G of genus *g* with a subdivision *H'* of J_m as a subgraph. If $m > 100k\sqrt{g}$, *H'* contains a good (in *G*) subdivision of J_k .

G of genus *g* with a good subdivision *H* of J_k as a subgraph. If $k \ge 4g + 6$, then any embedding of genus *g* induces a planar embedding of J_{k-4g-4} .

Remove edge e of a "small" part, $G \setminus e$ embeddable in S_g The corresponding embedding of the small part is planar Extend it into an embeding of G into S_g . A contradiction.

Finitness of \mathcal{O}_g : Sketch of proof of [T97]

1) S surface of euler-genus g. $\exists N > 0$ s.t., any $H \in \mathcal{O}(S)$ with treewidth < w has at most N vertices. [M01] OK

2) If $tw(G) > r^{4m^2(r+2)}$, then G contains either K_m or the r * r-grid as a minor. [RS86, DJGT99]

3) Let G be 2-connected, s.t. $genus(G \setminus e) < genus(G) = g$, $\forall e \in E(G)$. Then G contains no subdivision of $J_{\lceil 1100g^{3/2} \rceil}$ [T97] OK

2) + 3) ⇒ 4) Graphs in \mathcal{O}_g have bounded treewidth 1) + 4) ⇒ For any $g \ge 0$, \mathcal{O}_g is finite.

イロト イヨト イヨト イヨト

Big treewidth graphs contain big grids

Theorem 3

[RS86, DJGT99]

28/34

2) If $tw(G) > r^{4m^2(r+2)}$, then G contains either K_m or the r * r-grid as a minor.

Big treewidth graphs contain big grids

• If many paths with "good properties" G has a big grid

 $d \ge r^{2r+2}$. Let G contains a set \mathcal{H} of $r^2 - 1$ disjoint paths, and a set $\mathcal{V} = \{V_1, \cdots, V_d\}$ of d disjoint paths such that each $V \in \mathcal{V}$ intersects all $H \in \mathcal{H}$, and that any $H \in \mathcal{H}$ consists of d disjoint segments such that V_i meets H only in its i^{th} segment. Then G has a r * r grid as minor.

• If G has big treewidth, it contains a big mesh.

If G contains no k-mesh of order h, then $tw(G) \le h + k - 1$.

• If big mesh, G has many paths with "good properties".

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

 $d \ge r^{2r+2}$. Let G contains a set \mathcal{H} of $r^2 - 1$ disjoint paths, and a set $\mathcal{V} = \{V_1, \cdots, V_d\}$ of d disjoint paths such that each $V \in \mathcal{V}$ intersects all $H \in \mathcal{H}$, and that any $H \in \mathcal{H}$ consists of d disjoint segments such that V_i meets H only in its i^{th} segment. Then G has a r * r grid as minor.

Because of the number of "vertical" paths (inV), sufficient such paths can be found that intersect r horizontal paths (in H) in the "same order".

Externally k-connected set

 $X \subseteq V(G)$ with $|X| \ge k$ and for any $Y, Z \subset X$, |Y| = |Z|, there are |Y| disjoint Y-Z paths without internal vertices or edges in X.

(1日) (1日) (1日)

Structure in big treewidth graph

If $h \ge k$ and G contains no externally k-connected set with h vertices, then tw(G) < h + k - 1

 $U \subseteq V(G)$ maximal such that G[U] has a tree-decomposition \mathcal{D} of width < h + k - 1and \forall component C of $G \setminus U$, $|N(C) \cap U| \leq h$ and $N(C) \cap U$ lies into a bag of \mathcal{D} . Assume $U \neq V(G)$

Structure in big treewidth graph

If $h \ge k$ and G contains no externally k-connected set with h vertices, then tw(G) < h + k - 1

 $U \subseteq V(G)$ maximal such that G[U] has a tree-decomposition \mathcal{D} of width < h + k - 1and \forall component C of $G \setminus U$, $|N(C) \cap U| \leq h$ and $N(C) \cap U$ lies into a bag of \mathcal{D} .

Let C a component of $G \setminus U$ and $X = N(C) \cap U$. X not externally k-conneted, thus by Menger th., let S be a Y-Z separator in C, with $Y, Z \subset X$ and |S| < k.

Structure in big treewidth graph

If $h \ge k$ and *G* contains no externally *k*-connected set with *h* vertices, then tw(G) < h + k - 1

 $U \subseteq V(G)$ maximal such that G[U] has a tree-decomposition \mathcal{D} of width < h + k - 1and \forall component C of $G \setminus U$, $|N(C) \cap U| \leq h$ and $N(C) \cap U$ lies into a bag of \mathcal{D} .

 \boldsymbol{U} can be extended, contradicting its maximality.

A better structure in big treewidth graph

A separation (A, B) is a k-mesh if

- all edges of $G[V(A \cap B)]$ lie in A,
- A contains a tree T with maximum degree 3
- all vertices of $A \cap B$ lie in T with degree ≤ 2 , and some has degree 1
- $V(A \cap B)$ is externally k-connected in B

If G contains no k-mesh of order $h \ge k$, tw(G) < h + k - 1 $|_{31/34}$

Proof of Th. 3

Theorem 3

[RS86, DJGT99]

32/34

2) If $tw(G) > r^{4m^2(r+2)}$, then G contains either K_m or the r * r-grid as a minor.

Let $c = r^{4(r+2)}$ and $k = c^{m(m-1)}$. \exists a k-mesh of order m(2k-1) + k - 1. There are m disjoint subtrees each containing $\geq k$ vertices of $A \cap B$.

Proof of Th. 3

Theorem 3

[RS86, DJGT99]

32/34

2) If $tw(G) > r^{4m^2(r+2)}$, then G contains either K_m or the r * r-grid as a minor.

Intempt to find vertex disjoint paths between A_i and A_j for all i, jIf not, exhibit many paths with good properties to build a r * r grid

Finitness of \mathcal{O}_g : Sketch of proof of [T97]

1) S surface of euler-genus g. $\exists N > 0$ s.t., any $H \in \mathcal{O}(S)$ with treewidth < w has at most N vertices. [M01] OK

2) If $tw(G) > r^{4m^2(r+2)}$, then G contains either K_m or the r * r-grid as a minor. [RS86, DJGT99] OK

3) Let G be 2-connected, s.t. $genus(G \setminus e) < genus(G) = g$, $\forall e \in E(G)$. Then G contains no subdivision of $J_{\lceil 1100g^{3/2} \rceil}$ [T97] OK

2) + 3) \Rightarrow 4) Graphs in \mathcal{O}_g have bounded treewidth 1) + 4) \Rightarrow For any $g \ge 0$, \mathcal{O}_g is finite.

イロト イヨト イヨト イヨト

References

- Graphs on Surfaces, Mohar and Thomassen, Johns Hopkins Univ. Press, 2001
- Graph Theory, Diestel, Graduate texts in Maths. 2005
- A Kuratowski theorem for the projective plan, Archdeacon, JGT 81
- Highly connected sets abd the excluded grid theorem, Diestel, Jensen, Gorbunov and Thomassen, JCTB 99
- An Analogue of the Myhill-Nerode Theorem and its Use in Computing Finite-Basis Charaterizations, Fellow and Langston, FOCS 89
- Sur le probleme des courbes gauches en Topologie, Kuratowski, Fund. Math. 30
- Graph minors and graphs on surfaces, Mohar, Survey in Combinatorics 01
- Graph Minors IV, Tree-width and well-quasi-ordering, Robertson and Seymour, JCTB 90
- Graph Minors V, Excluding a Planar Graph, —, JCTB 86
- Graph Minors VIII, A Kuratowski Theorem for General Surfaces, —, JCTB 90
- Graph Minors XIII, the Disjoint Paths Problem, —, JCTB 95
- A simpler Proof of the Excluded Minor Theorem for Higher Surfaces, Thomassen, JCTB 97

・ロン ・回 と ・ヨン ・ ヨン