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A Kuratowski theorem for general surfaces

Minor of G: subgraph of H got from G by edge-contractions.
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A Kuratowski theorem for general surfaces

Minor of G: subgraph of H got from G by edge-contractions.
F(S): set of graphs embeddable in a surface S (minor closed)
ex: Sp the sphere, F(Sp): set of planar graphs
O(S): set of minimal obstructions of F(S).
G € F(S) iff no graph in O(S) is a minor of G
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A Kuratowski theorem for general surfaces

Minor of G: subgraph of H got from G by edge-contractions.
F(S): set of graphs embeddable in a surface S (minor closed)
ex: Sp the sphere, F(Sp): set of planar graphs
O(S): set of minimal obstructions of F(S).
G € F(S) iff no graph in O(S) is a minor of G

Kuratowski's Theorem
A graph is planar iff it does not contain Ks or K33 as a minor.

Corollary: O(S) is finite.
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A Kuratowski theorem for general surfaces

Minor of G: subgraph of H got from G by edge-contractions.
F(S): set of graphs embeddable in a surface S (minor closed)
ex: Sp the sphere, F(Sp): set of planar graphs
O(S): set of minimal obstructions of F(S).
G € F(S) iff no graph in O(S) is a minor of G

Kuratowski's Theorem
A graph is planar iff it does not contain Ks or K33 as a minor.

Corollary: O(S) is finite.

Generalization to any surface [Graph Minor VIII, 90]
For any (orientable or not) surface S, O(S) is finite.
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" Application”

Theorem [Graph Minor XIII, 95]

Let H be a fixed graph. There is a O(n*) algorithm deciding
whether a n-node graph G admits H as minor.

V.

Corollary

For any surface S, there is a polynomial-time algorithm
deciding whether a graph G € F(S).

Limitations
@ time-complexity: huge constant depending on |H|
@ #obstructions: projective plan=103 [Ar81], torus > 3178

@ explicit obstruction set (constructive algo. [FL89)])
3/34
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Surfaces

@ Surface: connected compact 2-manifold.

* Thanks to Ignasi for this slide and the next 4 slides
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Genus of a surface

@ The surface classification Theorem: any compact,
connected and without boundary surface can be obtained
from the sphere S? by adding handles and cross-caps.

@ Orientable surfaces: obtained by adding g > 0 handles to
the sphere Sy, obtaining the g-torus S, with Euler genus

eg(Sg) = 2g.

@ Non-orientable surfaces: obtained by adding h > 0
cross-caps to the sphere Sy, obtaining a non-orientable
surface P, with Euler genus eg(P,) = h.
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Graphs on surfaces

@ An embedding of a graph G on a surface ¥ is a drawing
of G on ¥ without edge crossings.

B

8/34

N. Nisse A Kuratowski theorem for general surfaces



Graphs on surfaces

@ An embedding of a graph G on a surface ¥ is a drawing
of G on ¥ without edge crossings.

@ An embedding defines vertices, edges, and faces.
Euler Formula: |V|— |E|+ |F|=2—eg

@ The Euler genus of a graph G, eg(G), is the least Euler
genus of the surfaces in which G can be embedded.
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Some usefull relations

G’ connected subgraph of G and Il embedding of G:
genus(G', M) < genus(G, M)

v a cut-vertex of G = G; U G, with G1 N G, = {v} and G,
non planar. Then, genus(G) > genus(Gy).

Gi, G, disjoint connected graphs and xy edge of G,. Let G
obtained from G; U G, by deleting xy and adding an edge from
x to G; and from y to Gj.

If G, non planar, then, genus(G) > genus(Gy).
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Tree Decomposition of a graph G

a tree T and bags (X;):cv(T)
@ every vertex of G is at least in one
bag;

@ both ends of an edge of G are at
least in one bag;

@ Given a vertex of G, all bags that
contain it, form a subtree.

Width = Size of larger Bag -1

Any bag is a separator

10/34

Treewidth
tw(G), minimum width
among any tree decomposition
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A Kuratowski theorem for orientable surfaces

We focus on orientable surfaces.
genus(G): minimum genus of an orientable embedding of G.

Fg: the set of graphs with genus < g (minor closed)
ex: JFp : set of planar graphs
Og: the set of minimal obstructions of F.
G € Fg iff no graph in Oy is a minor of G

[Graph Minor VIII, 90]

For any g > 0, O, is finite.
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Finitness of O,: Sketch of proof of [T97]  (1/3)

If the treewidth of the graphs in O, is bounded = O, is finite.
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Finitness of O,: Sketch of proof of [T97]  (1/3)

If the treewidth of the graphs in O, is bounded = O, is finite.

{Gi, Gy, - - - } infinite set of bounded treewidth graphs.
Then, 3i,j such that G; is a minor of G;.

Assume Oy, is an infinite set of bounded tw graphs. Then,
3dH, G € O such that H is a minor of G. A contradiction.
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Finitness of O,: Sketch of proof of [T97]  (1/3)

If the treewidth of the graphs in O, is bounded = O, is finite.

{Gi, Gy, - - - } infinite set of bounded treewidth graphs.
Then, 3i,j such that G; is a minor of G;.

Assume Oy, is an infinite set of bounded tw graphs. Then,
3dH, G € O such that H is a minor of G. A contradiction.

A weaker but sufficient resut

S surface of euler-genus g. AN > 0 s.t., any H € O(S) with
treewidth < w has at most N vertices.
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Finitness of O,: Sketch of proof of [T97]  (2/3)

So, we aim at proving that the treewidth of the graphs in O,
is bounded.

How to characterize a graph with high treewidth?
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Finitness of O,: Sketch of proof of [T97]  (2/3)

So, we aim at proving that the treewidth of the graphs in O,
is bounded.

How to characterize a graph with high treewidth?

If tw(G) < k, then G does not contain a k * k grid as a minor |
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Finitness of O,: Sketch of proof of [T97]  (2/3)

So, we aim at proving that the treewidth of the graphs in O,
is bounded.

How to characterize a graph with high treewidth?

If tw(G) < k, then G does not contain a k * k grid as a minor |

A kind of converse holds

[RS86, DJGT9Y]

If tw(G) > r*™("+2) then G contains either K,, or the
r x r-grid as a minor.
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Finitness of O,: Sketch of proof of [T97]  (3/3)

So, if G € O, has no "big" grid as a minor, it has bounded tw.
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Finitness of O,: Sketch of proof of [T97]  (3/3)

So, if G € O, has no "big" grid as a minor, it has bounded tw.

No G € O, has a "big" grid as a minor

Let G be 2-connected, s.t. genus(G \ e) < genus(G) = g,
Ve € E(G). Then G contains no subdivision of Jj1100,3/2]

&

Note that J is a subgraph of a 4k * 2k grid. 14/34
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Finitness of O,: Sketch of proof of [T97]

1) S surface of euler-genus g. AN > 0 s.t., any H € O(S)
with treewidth < w has at most N vertices. [MO1]

2) If tw(G) > r*™("+2) then G contains either K, or the
r * r-grid as a minor. [RS86, DJGT99]

3) Let G be 2-connected, s.t. genus(G \ e) < genus(G) = g,
Ve € E(G). Then G contains no subdivision of J;1g0,3/2) [T97]

2) 4+ 3) = 4) Graphs in O, have bounded treewidth
1) +4) = For any g > 0, O, is finite.
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Minimal obstructions of bounded treewidth

Theorem 1 [Mohar 01]

Let S be a surface of euler-genus g. 3N > 0 s.t., any
H € O(S) with treewidth < w has at most N vertices.

16/34
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Proof Th. 1 (bounded size of bounded tw obstr.)

Let S be any surface with euler genus g.
Assume H € O(S) is arbitrary large with tw(H) < w.
Let T be a tree-decomposition of H with width < w.

First step. T has bounded degree.
Thus, T contains an arbitrary large path P.
2nd step. Using P, G € F(S) major of H can be built

A contradiction.

17/34
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Proof Th. 1, first step

X a subgraph of a graph G s.t. V/(X) is a separator of G.
X-bridge

- either an edge in E(G) \ E(X), or
- a connected component of G\ X together with all edges (and
their enpoint) with one end in V/(G) and the other in V(X).

X is the set of black vertices. There are 6 X-bridges (right).

18/34
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Proof Th. 1, first step

X a subgraph of a graph G s.t. V/(X) is a separator of G.

X-bridge

- either an edge in E(G) \ E(X), or

- a connected component of G\ X together with all edges (and
their enpoint) with one end in V/(G) and the other in V(X).

(T, (Xt)tev(r)) tree-decomposition of G and t, € V/(T).
The degree of ty in T is less than the number of X, -bridges

v
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Proof Th. 1, count the X-bridges

G M-embedded in S of Euler genus eg = 2 — 2g (orientable). X C V(G).

Note that by Euler Formula: V —E+ F =2—eg=14-23+ F =0,
i.e., F=0.

19/34
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Proof Th. 1, count the X-bridges

G M-embedded in S of Euler genus eg = 2 — 2g (orientable). X C V(G).

For any lN-facial walk W, add edges between consecutive vertices in W
that are incident to edges in W from different X-bridges.

19/34
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Proof Th. 1, count the X-bridges

G M-embedded in S of Euler genus eg = 2 — 2g (orientable). X C V(G).

o
EZ

—

For any lN-facial walk W, add edges between consecutive vertices in W
that are incident to edges in W from different X-bridges.
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Proof Th. 1, count the X-bridges

G M-embedded in S of Euler genus eg = 2 — 2g (orientable). X C V(G).

o
L

—

For any lN-facial walk W, add edges between consecutive vertices in W
that are incident to edges in W from different X-bridges.
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Proof Th. 1, count the X-bridges

G M-embedded in S of Euler genus eg = 2 — 2g (orientable). X C V(G).

@
= S

For any lN-facial walk W, add edges between consecutive consecutive
vertices in W that are incident to edges in W from different X-bridges.
X* the induced graph.

19/34
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Proof Th. 1, count the X-bridges

G MN-embedded in S of Euler genus eg = 2 — 2g (orientable). X C V(G).

Lem. Any X-bridge contains in a face of X*.

Each face of X* is either included in a face of G or contains a X-bridge
Each edge of X* is incident to exactly one face contaning a X-bridge.
Lem. If no x € X is a cutvertex and Vx,y € X, a x, y-bridge is planar
only if it is an edge: by Euler Formula, # X-bridge < f(g, | X]).

19/34
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Proof Th. 1: Summerize the first step

Let S be any surface with euler genus g.
Assume H € O(S) is arbitrary large with tw(H) < w.
Let T be a tree-decomposition of H with width < w.

to € V(T). degree(ty) in T< # X, -bridges

no x € X, is a cutvertex and Vx, y € X;,, a x, y-bridge is
planar only if it is an edge because H € O(S)
By previous lemma: # X, -bridge < f(g,|X,|).

= T has bounded degree: T contains an arbitrary large path.

20/34
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Proof Th. 1: 2nd step, what about this long path?

Menger Theorem+pigeonhole princ.: 3(X;)i>1 large familly of bags s.t.
|Xi| =s < w, s disjoint paths between the X;, and 1 edge € P; N X, Vi.

21/34
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Proof Th. 1: 2nd step, what about this long path?

Th.: two surfaces with same genus are isomorphic
g, |Xi| bounded Vi, 3i, j such that X; strongly isomorphic with X; (with

same embedding) and G;j can be embedded in the same surface as G;

21/34
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Proof Th. 1: 2nd step, what about this long path?

Hence, G (below) is embeddable in S. But H minor of G cannot 777
A Contradiction.

21/34
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Finitness of O,: Sketch of proof of [T97]

1) S surface of euler-genus g. AN > 0 s.t., any H € O(S)
with treewidth < w has at most N vertices. [MO01] OK

2) If tw(G) > r*™("+2) then G contains either K, or the
r * r-grid as a minor. [RS86, DJGT99]

3) Let G be 2-connected, s.t. genus(G \ e) < genus(G) = g,
Ve € E(G). Then G contains no subdivision of J;1g0,3/2) [T97]

2) 4+ 3) = 4) Graphs in O, have bounded treewidth
1) +4) = For any g > 0, O, is finite.
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Minimal obstructions do not contain "big" grids

Theorem 2 [Thomassen 97]

Let G be 2-connected, s.t. genus(G \ e) < genus(G) = g,
Ve € E(G). Then G contains no subdivision of Jp;190,3/2)-

23/34
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Minimal obstructions do not contain "big" grids

Theorem 2 [Thomassen 97]

Let G be 2-connected, s.t. genus(G \ e) < genus(G) = g,
Ve € E(G). Then G contains no subdivision of Jp;190,3/2)-

Assume G € O; contains a subdivision of Jri109,3/2)-
© Find a "big" and "good” planar subgraph H

© Show that for any embedding 1 of G,
"small” parts of H have genus 0.
That is I1 induces a planar embedding of these parts.

23/34
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Minimal obstructions do not contain "big" grids

Theorem 2 [Thomassen 97]

Let G be 2-connected, s.t. genus(G \ e) < genus(G) = g,
Ve € E(G). Then G contains no subdivision of Jp;190,3/2)-

Assume G € O; contains a subdivision of Jri109,3/2)-
© Find a "big" and "good” planar subgraph H
© Show that for any embedding 1 of G,

"small” parts of H have genus 0.
That is I1 induces a planar embedding of these parts.

Remove edge e of a "small” part, G \ e embeddable in S,
The corresponding embedding of the small part is planar

Extend it into an embeding of G into S;. A contradiction.
23/34

N. Nisse A Kuratowski theorem for general surfaces



Proof of Th. 2: find good subgraph

A subdivision H of Jy is good in G if the union of H and those
H-bridges with an attachment not in the outer face of H is
planar.

G of genus g with a subdivision H' of J,, as a subgraph.
If m > 100k,/g, H' contains a good (in G) subdivision of Jj. J Ty

N. Nisse A Kuratowski theorem for general surfaces



Proof of Th. 2: find good subgraph

(Qj)j<2g+2 pairwise disjoint sudivisions of Jy.
Vi,j, there is a path between Q; and Q; avoiding the others.

Assume all are not good

25/34
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Proof of Th. 2: find good subgraph

We build (Mi)ngJrl with Ml = le and
M; intersects at most 2/ — 1 graphs Q;, and
genus(M;) > i—1

S0a®;
02999
00N,
SRS, < <
S <<

25/34

A Kuratowski theorem for general surfaces



Proof of Th. 2: find good subgraph

M;, 1 got from by adding @; and corresponding bridges
Since @; and its bridges are not planar, the genus increases
until a subgraph of G with genus G + 1. A contradiction.

25/34
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Minimal obstructions do not contain "big" grids

Assume G € Og contains a subdivision of Jrj1943/27-

G of genus g with a subdivision H' of J,, as a subgraph.
If m > 100k,/g, H' contains a good (in G) subdivision of Jy.

G of genus g with a good subdivision H of J, as a subgraph.
If Kk > 4g + 6, then any embedding of genus g induces a
planar embedding of Jx_4z_4.

Remove edge e of a "small” part, G \ e embeddable in S,
The corresponding embedding of the small part is planar
Extend it into an embeding of G into S;. A contradiction.

26/34
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Finitness of O,: Sketch of proof of [T97]

1) S surface of euler-genus g. AN > 0 s.t., any H € O(S)
with treewidth < w has at most N vertices. [M01] OK

<

2) If tw(G) > r*™("+2) then G contains either K, or the
r % r-grid as a minor. [RS86, DJGT99]

3) Let G be 2-connected, s.t. genus(G \ e) < genus(G) = g,
Ve € E(G). Then G contains no subdivision of Jj1109,3/2]
[T97]

2) +3) = 4) Graphs in O, have bounded treewidth
1) +4) = For any g > 0, O, is finite.

27/34
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Big treewidth graphs contain big grids

Theorem 3 [RS86, DJGT99]

2) If tw(G) > r*™("+2) then G contains either K, or the
r x r-grid as a minor.

28/34
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Big treewidth graphs contain big grids

@ If many paths with "good properties” G has a big grid

d > r?+2. Let G contains a set { of r?> — 1 disjoint paths,
and aset V ={V;, .-, Vy} of d disjoint paths such that each
V € V intersects all H € ‘H, and that any H € H consists of
d disjoint segments such that V; meets H only in its it
segment. Then G has a r x r grid as minor.

@ If G has big treewidth, it contains a big mesh.

If G contains no k-mesh of order h, then tw(G) < h+ k — 1. ]

@ If big mesh, G has many paths with "good properties”.

28/34
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How to build a big grid: Intuition

d > r?>*2. Let G contains a set H of r?> — 1 disjoint paths,
and aset V ={V;, .-, V,} of d disjoint paths such that each
V €V intersects all H € H, and that any H € H consists of
d disjoint segments such that V; meets H only in its it
segment. Then G has a r * r grid as minor.

Because of the number of "vertical” paths (in)) , sufficient
such paths can be found that intersect r horizontal paths (in
H) in the "same order”.

29/34
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Structure in big treewidth graph

Externally k-connected set
X C V(G) with |X| > k and forany Y, Z C X, |Y|=1Z|,
there are | Y| disjoint Y-Z paths without internal vertices or

edges in X.

30/34
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Structure in big treewidth graph

If h> k and G contains no externally k-connected set with h
vertices, then tw(G) < h+ k —1 }

U C V(G) maximal such that G[U] has a tree-decomposition D of width < h+ k — 1
and V component C of G\ U, [N(C)N U| < h and N(C) N U lies into a bag of D.

Assume U # V(G)

30/34
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Structure in big treewidth graph

If h> k and G contains no externally k-connected set with h
vertices, then tw(G) < h+k —1 J

U C V(G) maximal such that G[U] has a tree-decomposition D of width < h+ k — 1
and V component C of G\ U, [N(C)N U| < h and N(C) N U lies into a bag of D.

Let C a component of G\ U and X = N(C) N U. X not externally k-conneted, thus
by Menger th., let S be a Y-Z separator in C, with Y, Z C X and |S]| < k.

30/34
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Structure in big treewidth graph

If h> k and G contains no externally k-connected set with h
vertices, then tw(G) < h+k —1 J

U C V(G) maximal such that G[U] has a tree-decomposition D of width < h+ k — 1
and V component C of G\ U, [N(C)N U| < h and N(C) N U lies into a bag of D.

U can be extended, contradicting its maximality.

YUZUS

30/34
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A better structure in big treewidth graph

A separation (A, B) is a k-mesh if

@ all edges of G[V(AN B)] lie in A,

A contains a tree T with maximum degree 3

all vertices of AN B lie in T with degree < 2, and some has degree 1
V(AN B) is externally k-connected in B

A [ —e

If G contains no k-mesh of order h > k, tw(G) < h+ k — 1 | 1724
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Proof of Th. 3

Theorem 3 [RS86, DJGT9Y]

2) If tw(G) > r*™("+2) then G contains either K, or the
r x r-grid as a minor.

Let ¢ = r*"*2) and k = ¢™™=1). 3 a k-mesh of order m(2k — 1) + k — 1.

There are m disjoint subtrees each containing > k vertices of AN B.

A [

32/34
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Proof of Th. 3

Theorem 3 [RS86, DJGT9Y]

2) If tw(G) > r*™("+2) then G contains either K, or the
r x r-grid as a minor.

Intempt to find vertex disjoint paths between A; and A; for all i, j
If not, exhibit many paths with good properties to build a r * r grid

32/34
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Finitness of O,: Sketch of proof of [T97]

1) S surface of euler-genus g. AN > 0 s.t., any H € O(S)
with treewidth < w has at most N vertices. [M01] OK

<

2) If tw(G) > r*™("+2) then G contains either K, or the
r x r-grid as a minor. [RS86, DJGT99] OK

<

3) Let G be 2-connected, s.t. genus(G \ e) < genus(G) = g,
Ve € E(G). Then G contains no subdivision of Jj1109,3/2]
[T97]

2) +3) = 4) Graphs in O, have bounded treewidth
1) +4) = For any g > 0, O, is finite.
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