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Introduction

[Fomin, Fraigniaud, Nisse, 2005]
Parametrized variant that unifies visible and invisible graph
searching.

Monotone non deterministic graph searching :
interpretation in terms of graph decomposition
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Introduction

[Fomin, Fraigniaud, Nisse, 2005]
Parametrized variant that unifies visible and invisible graph
searching.

Monotone non deterministic graph searching :
interpretation in terms of graph decomposition

Our result : Non deterministic graph searching is monotone.
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Non deterministic Graph Searching

An omniscient arbitrary fast invisible fugitive runs at the
vertices of the graph.

The searchers cannot see the fugitive, however :

An Oracle permanently knows the position of the fugitive.
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Non deterministic Graph Searching

An omniscient arbitrary fast invisible fugitive runs at the
vertices of the graph.

The searchers cannot see the fugitive, however :

An Oracle permanently knows the position of the fugitive.

The searchers can perform a query to the oracle :

Answer of the oracle :

The connected component of the contaminated part of the
graph, where the fugitive is currently standing.
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Non deterministic Search Strategy

three basic operations :
@ Place a searcher;
@ Remove a searcher;

@ Perform a query to the oracle.

The searchers aim at catching the fugitive.
The fugitive is caught when it occupies the same vertex as a

searcher and it has no way to escape.
An edge is cleared when both its ends are occupied.
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g-limited non deterministic search number

Tradeoff number of searchers / number of query steps
g-limited (non deterministic) search number, s,(G)

@ so(G) = pw(G) + 1, node search number of G ;
@ s.(G) = tw(G) + 1, visible search number of G.
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Exemple with q=2 :

So(T)=3
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Exemple with q=2 :

2 queries left
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Exemple with q=2 :

2 queries left
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Exemple with q=2 :

2 queries left

QUERY

6/22

Frédéric Mazoit, Nicolas Nisse Monotonicity of Non deterministic Graph Searching



Exemple with q=2 :

1 query left

QUERY
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Exemple with q=2 :

1 query left
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Exemple with q=2 :

no query left

QUERY
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Exemple with q=2 :

no query left
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Exemple with q=2 :

no query left
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Exemple with q=2 :

no query left
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Exemple with q=2 :

SQ(T)=2
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Some terminology

g-branched tree

@ rooted tree;
@ branching node (at least two children);

@ every path from the root to a leaf contains at most g
branching nodes.
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Interpretation in terms of Graph Decompositions

(T, X) : g-branched tree decomposition

(T, X) a tree-decomposition with T a g-branched tree.

g-branched treewidth, tw,(G), minimum width among any
g-branched tree-decomposition of G.

@ path decomposition = 0-branched tree decomposition
pw(G) = twy(G);
@ tree decomposition = oo-branched tree decomposition

tw(G) = tw(G);
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Interpretation in terms of Graph Decompositions

The branched decompositions correspond to monotone search
strategies for non deterministic graph searching.
ms,(G) : g-limited monotone search number

Theorem[Fomin, Fraigniaud, Nisse, 2005] :
@ For any g > 0, for any graph G, ms,(G) = tw,(G) + 1;
@ Computing tw,(G) is NP-complete for any q;

© Exact exponential algorithm that, for any graph G and
any g > 0, computes tw,(G) and an optimal
decomposition.

9/22

Frédéric Mazoit, Nicolas Nisse Monotonicity of Non deterministic Graph Searching



Interpretation in terms of Graph Decompositions

The branched decompositions correspond to monotone search
strategies for non deterministic graph searching.
ms,(G) : g-limited monotone search number

Theorem[Fomin, Fraigniaud, Nisse, 2005] :
@ For any g > 0, for any graph G, ms,(G) = tw,(G) + 1;
@ Computing tw,(G) is NP-complete for any q;

© Exact exponential algorithm that, for any graph G and
any g > 0, computes tw,(G) and an optimal
decomposition.

Does recontamination help for any g > 07
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Related work

Recontamination does not help to catch an invisible fugitive.

Case of an invisible fugitive :

e Bienstock and Seymour, J.of Alg., 1991
Monotonicity in graph searching.

e LaPaugh, J.of ACM, 1993
Recontamination does not help to search a graph.
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Related work

Recontamination does not help to catch an invisible fugitive.

Case of an invisible fugitive :

e Bienstock and Seymour, J.of Alg., 1991
Monotonicity in graph searching.

e LaPaugh, J.of ACM, 1993
Recontamination does not help to search a graph.

Constructive proof by Bienstock and Seymour :
Local optimisation that transforms a search strategy into a
monotone one without increasing the number of searchers.
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Related work

Recontamination does not help to catch a visible fugitive.

Case of a visible fugitive :

@ Seymour and Thomas, J. of Comb. Th., 1993.
Graph searching and a min-max theorem for tree-width
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Related work

Recontamination does not help to catch a visible fugitive.

Case of a visible fugitive :

@ Seymour and Thomas, J. of Comb. Th., 1993.
Graph searching and a min-max theorem for tree-width

scheme of the proof :

there is no search strategy using k searchers.

= there is no monotone search strategy using k searchers
= there exists an escape strategy for the fugitive

= there exists a general escape strategy for the fugitive
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Our result

Recontamination never helps

in non deterministic graph searching.
For any g > 0 and any graph G, s,(G) = ms,(G)

Remarks :
@ Constructive proof that unifies the existing proofs ;
@ Deciding s4(G) < k is in NP;
@ The algorithm of Fomin et al. actually computes s,(G).
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Sketch of the proof

new structure inspired by tree-labelling [Robertson and
Seymour, Graph Minor X] : Search-tree

Let G be a connected graph, g > 0 and k > 1. The following
are equivalent

Q there exists a non deterministic search strategy using < k
searchers and at most g queries;

there is a g-branched search-tree with width < k;

< k;

there exists a non deterministic monotone search strategy
using < k searchers and at most g queries;

(2]
© there is a monotone g-branched search-tree with width
o
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Some terminology

Border of subsets of edges E;,--- , E, C E(G) :

d(Ey, Ex)= set of vertices incident to an edge of E; and an
edge of E;.

O(Ery--+  Ep) = L_Ji;éj (i, li})-
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Definition of search-tree

(T, 3,r) a search-tree of a graph G;
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Definition of search-tree

(T, 3,r) a search-tree of a graph G;
@ T :atreerootedinre V(T);
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Definition of search-tree

(T, 3,r) a search-tree of a graph G;
@ T :atreerootedinre V(T);

@ « : incidence of T — subset of E(G);
v € V(T), eincident to v — a(v,e) C E(G).
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Definition of search-tree

(T, 3,r) a search-tree of a graph G;
@ T :atreerooted inre V(T);
@ « : incidence of T — subset of E(G);
v € V(T), eincident to v — a(v,e) C E(G).
@ (3:V(T) — subset of E(G);
veV(T)— g(v) C E(G).
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Definition of search-tree

(T, 3, r) must satisfy two properties :

(P1) for any edge e = {u,v} of T, a(u,e)Na(v,e) =0;
u

set of contaminated edges before one step a(u, e)

e
cleared edges that remains clear after one step a(v, e)
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Definition of search-tree

(T, 3, r) must satisfy two properties :

(P1) for any edge e = {u,v} of T, a(u,e)Na(v,e) =0;
u

set of contaminated edges before one step a(u, e)

e
cleared edges that remains clear after one step a(v, e)

If a(u,e) = E(G)\ a(v,e), e is said monotone.
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Definition of search-tree

(T,a, 3, r) must satisfy two properties :

(P2) for any node v of T incident to ey,...,e,,
{B(v),a(v,e1,),...,a(v,e,)} is a partition of E

av, e)
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Definition of search-tree

(T,a, 3,r) is g-branched if T is g-branched.
width(T)= max,cv(m [0(a(v, e1,), ..., a(v, &)U VIB(V)]|;

a(v, er)
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From the strategy to the search-tree

We construct the search-tree (T, «, 3, r) recursively;
Each edge e corresponds to a step of the strategy ;

Each branching node corresponds to a query step.
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From the strategy to the search-tree

If the considered step i is a Placing searcher or Removing
searcher step :

OI’

a(w, f)
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From the strategy to the search-tree

If the considered step i is a Placing searcher or Removing
searcher step :

OI’

a(v, e), contaminated edges before step i

a(w,e)

a(w, f)
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From the strategy to the search-tree

If the considered step i is a Placing searcher or Removing
searcher step :

OI’

a(v, e), contaminated edges before step i

a(w, e), edges cleared before step i
and that remain clear

B(w)

a(w, f)
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From the strategy to the search-tree

If the considered step i is a Placing searcher or Removing
searcher step :

OI’

’

a(v, e), contaminated edges before step i

a(w, e), edges cleared before step i
and that remain clear

G(w), edges cleared at step i
thanks to placement of new searchers

a(w, f)

17/22

Frédéric Mazoit, Nicolas Nisse Monotonicity of Non deterministic Graph Searching



From the strategy to the search-tree

If the considered step i is a Placing searcher or Removing
searcher step :

OI’

’

a(v, e), contaminated edges before step i

a(w, e), edges cleared before step i
and that remain clear

3(w), edges cleared at step i
thanks to placement of new searchers

a(w, f), contaminated edges after step i
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From the strategy to the search-tree

If the considered step i is a Placing searcher or Removing
searcher step :

OI’

’

a(v, e), contaminated edges before step i

a(w, e), edges cleared before step i
and that remain clear

3(w), edges cleared at step i
thanks to placement of new searchers

a(w, ), contaminated edges after step i

P1 and P2 are satisfied.
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From the strategy to the search-tree

If the considered step i is a Placing searcher or Removing
searcher step :

OI’

a(v, e), contaminated edges before step i

a(w, e), edges cleared before step i
and that remain clear

F(w), edges cleared at step i
thanks to placement of new searchers

a(w, ), contaminated edges after step i

If initial search strategy allows recontamination at this step,
the corresponding edge e is not monotone. 12/22
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From the strategy to the search-tree

If the considered step i is a Placing searcher or Removing
searcher step :

OI’

’

a(v, e), contaminated edges before step i

a(w, e), edges cleared before step i
and that remain clear

F(w), edges cleared at step i
thanks to placement of new searchers

a(w, f), contaminated edges after step i

da(w, e),a(w, ) V[B(w)] < #(searchers).
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From the strategy to the search-tree

If we consider a Performing a query step, with G, --- , G,
oL the components where the fugitive can stand

’

a(v, e), contaminated edges before step i

a(w, e), edges cleared before step i
and that remain clear

G(w) = (), edges cleared at step i
thanks to placement of new searchers

€p a(w, ¢) = E(C;), contaminated edges
after step / according to the answer of the oracle
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From the strategy to the search-tree

If we consider a Performing a query step, with G, --- , G,
oL the components where the fugitive can stand

a(v, e), contaminated edges before step i

a(w, e), edges cleared before step i
and that remain clear

G(w) = (), edges cleared at step i
thanks to placement of new searchers

€L €/ & a(w, e) = E(C;), contaminated edges
after step / according to the answer of the oracle

P1 and P2 are satisfied.
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From the strategy to the search-tree

If we consider a Performing a query step, with G, --- , C,
Or the components where the fugitive can stand

’

a(v, e), contaminated edges before step i

a(w, e), edges cleared before step i
and that remain clear

G(w) = (), edges cleared at step i
thanks to placement of new searchers

€p a(w, ¢) = E(C;), contaminated edges
after step / according to the answer of the oracle

d(a(w,e), -, a(w, e,))J V[B(w)] < #(searchers).
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From a search-tree to a monotone search-tree

A search-tree is monotone if all its edges are monotone.
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From a search-tree to a monotone search-tree

A search-tree is monotone if all its edges are monotone.

By local optimizations, we build a monotone search-tree from
a search tree (T, «, 3,r).
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From a search-tree to a monotone search-tree

Local Optimisation
Let e = {v, u} a non monotone edge (i.e., £ U F # E)
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From a search-tree to a monotone search-tree

Local Optimisation
Let e = {v, u} a non monotone edge (i.e., £ U F # E)

e /S i
a(v,e) =F a(u,e) E(GW\ a(u7 ep) =E,NF

We define a weight function that strictly decreases by this
optimisation.
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From a search-tree to a monotone search-tree

2 weight functions

o w(T)= 2 vev(m 10(alv; &1)-.av, e))UJ V[G(v)]]

o bd(T)= 3 n~4ist(re) the sum being taken over the non
monotone edges
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From monotone search-tree to monotone strategy

(T,a,(3,r) a g-branched monotone search-tree with width
<k

Then, (7—7 (XV)VEV(T)) with
X,= d(a(v, er)..a(v,e))J V[B(v)]

is a g-branched tree-decomposition with width < k — 1

Using the Theorem of Fomin et al., we get the result.
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Open problems
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Open problems

About monotony

Does recontamination help for catching a visible fugitive that
runs in a directed graph?

| \

About non deterministic graph searching

Linear algorithm in case of trees?
Linear algorithm in case of the class of graph with tw,
bounded 7
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