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Introduction

Non deterministic graph searching

[Fomin, Fraigniaud, Nisse, 2005]
Parametrized variant that unifies visible and invisible graph
searching.

Monotone non deterministic graph searching :
interpretation in terms of graph decomposition

Does recontamination help ?

Our result : Non deterministic graph searching is monotone.
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Non deterministic Graph Searching

An omniscient arbitrary fast invisible fugitive runs at the
vertices of the graph.
The searchers cannot see the fugitive, however :
An Oracle permanently knows the position of the fugitive.

The searchers can perform a query to the oracle :

Answer of the oracle :

The connected component of the contaminated part of the
graph, where the fugitive is currently standing.
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Non deterministic Search Strategy

three basic operations :

Place a searcher ;

Remove a searcher ;

Perform a query to the oracle.

The searchers aim at catching the fugitive.

The fugitive is caught when it occupies the same vertex as a
searcher and it has no way to escape.
An edge is cleared when both its ends are occupied.
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q-limited non deterministic search number

Tradeoff number of searchers / number of query steps

q-limited (non deterministic) search number, sq(G )

s0(G ) = pw(G ) + 1, node search number of G ;

s∞(G ) = tw(G ) + 1, visible search number of G .
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Exemple with q=2 :

s0(T)=3
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Exemple with q=2 :

2 queries left
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Exemple with q=2 :

2 queries left

QUERY
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Exemple with q=2 :

1 query left

QUERY
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Exemple with q=2 :

1 query left
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Exemple with q=2 :

no query left

QUERY
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Exemple with q=2 :
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Exemple with q=2 :

s2(T)=2

Frédéric Mazoit, Nicolas Nisse Monotonicity of Non deterministic Graph Searching



7/22

Some terminology

q-branched tree

rooted tree ;

branching node (at least two children) ;

every path from the root to a leaf contains at most q
branching nodes.
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Interpretation in terms of Graph Decompositions

(T , X ) : q-branched tree decomposition

(T , X ) a tree-decomposition with T a q-branched tree.

q-branched treewidth, twq(G ), minimum width among any
q-branched tree-decomposition of G .

path decomposition = 0-branched tree decomposition
pw(G ) = tw0(G ) ;

tree decomposition = ∞-branched tree decomposition
tw(G ) = tw∞(G ) ;
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Interpretation in terms of Graph Decompositions

The branched decompositions correspond to monotone search
strategies for non deterministic graph searching.
msq(G ) : q-limited monotone search number

Theorem[Fomin, Fraigniaud, Nisse, 2005] :

1 For any q ≥ 0, for any graph G , msq(G ) = twq(G ) + 1 ;

2 Computing twq(G ) is NP-complete for any q ;

3 Exact exponential algorithm that, for any graph G and
any q ≥ 0, computes twq(G ) and an optimal
decomposition.

Does recontamination help for any q ≥ 0 ?
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Related work

Recontamination does not help to catch an invisible fugitive.

Case of an invisible fugitive : s0(G ) = ms0(G )

Bienstock and Seymour, J.of Alg., 1991
Monotonicity in graph searching.

LaPaugh, J.of ACM, 1993
Recontamination does not help to search a graph.

Constructive proof by Bienstock and Seymour :
Local optimisation that transforms a search strategy into a
monotone one without increasing the number of searchers.
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Related work

Recontamination does not help to catch a visible fugitive.

Case of a visible fugitive : s∞(G ) = ms∞(G )

Seymour and Thomas, J. of Comb. Th., 1993.
Graph searching and a min-max theorem for tree-width

scheme of the proof :
there is no search strategy using k searchers.
⇒ there is no monotone search strategy using k searchers
⇒ there exists an escape strategy for the fugitive
⇒ there exists a general escape strategy for the fugitive
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Our result

Recontamination never helps
in non deterministic graph searching.

For any q ≥ 0 and any graph G , sq(G ) = msq(G )

Remarks :

Constructive proof that unifies the existing proofs ;

Deciding sq(G ) ≤ k is in NP ;

The algorithm of Fomin et al. actually computes sq(G ).
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Sketch of the proof

new structure inspired by tree-labelling [Robertson and
Seymour, Graph Minor X] : Search-tree

Let G be a connected graph, q ≥ 0 and k ≥ 1. The following
are equivalent

1 there exists a non deterministic search strategy using ≤ k
searchers and at most q queries ;

2 there is a q-branched search-tree with width ≤ k ;

3 there is a monotone q-branched search-tree with width
≤ k ;

4 there exists a non deterministic monotone search strategy
using ≤ k searchers and at most q queries ;
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Some terminology

Border of subsets of edges E1, · · · , Ep ⊆ E (G ) :

δ(E1, E2)= set of vertices incident to an edge of E1 and an
edge of E2.

δ(E1) = δ(E1, E (G ) \ E1).

δ(E1, · · · , Ep) =
⋃

i 6=j δ(Ei , Ej).
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Definition of search-tree

(T , α, β, r) a search-tree of a graph G ;

T : a tree rooted in r ∈ V (T ) ;

α : incidence of T → subset of E (G ) ;
v ∈ V (T ), e incident to v → α(v , e) ⊆ E (G ).

β : V (T ) → subset of E (G ) ;
v ∈ V (T ) → β(v) ⊆ E (G ).
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Definition of search-tree

(T , α, β, r) must satisfy two properties :

(P1) for any edge e = {u, v} of T , α(u, e) ∩ α(v , e) = ∅ ;

v

u

e
cleared edges that remains clear after one step α(v , e)

set of contaminated edges before one step α(u, e)

If α(u, e) = E (G ) \ α(v , e), e is said monotone.

Frédéric Mazoit, Nicolas Nisse Monotonicity of Non deterministic Graph Searching



16/22

Definition of search-tree

(T , α, β, r) must satisfy two properties :

(P1) for any edge e = {u, v} of T , α(u, e) ∩ α(v , e) = ∅ ;

v

u

e
cleared edges that remains clear after one step α(v , e)

set of contaminated edges before one step α(u, e)

If α(u, e) = E (G ) \ α(v , e), e is said monotone.

Frédéric Mazoit, Nicolas Nisse Monotonicity of Non deterministic Graph Searching



16/22

Definition of search-tree

(T , α, β, r) must satisfy two properties :

(P2) for any node v of T incident to e1, . . . , ep,
{β(v), α(v , e1, ), . . . , α(v , ep)} is a partition of E

v
β(v)

ep

e1

ej

α(v , e1)

α(v , ej)

α(v , ep)
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Definition of search-tree

(T , α, β, r) is q-branched if T is q-branched.

width(T)= maxv∈V (T ) |δ(α(v , e1, ), . . . , α(v , ep))
⋃

V [β(v)]| ;

v
β(v)

ep

e1

ej

α(v , e1)

α(v , ej)

α(v , ep)
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From the strategy to the search-tree

We construct the search-tree (T , α, β, r) recursively ;

Each edge e corresponds to a step of the strategy ;

Each branching node corresponds to a query step.
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From the strategy to the search-tree

If the considered step i is a Placing searcher or Removing
searcher step :

v

r

w

α(v , e)

α(w , e)

β(w)

α(w , f )

e

f
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From the strategy to the search-tree

If the considered step i is a Placing searcher or Removing
searcher step :

v

r

w

α(v , e), contaminated edges before step i

α(w , e), edges cleared before step i
and that remain clear

β(w), edges cleared at step i
thanks to placement of new searchers

α(w , f ), contaminated edges after step i

e

f

If initial search strategy allows recontamination at this step,
the corresponding edge e is not monotone.
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From the strategy to the search-tree

If the considered step i is a Placing searcher or Removing
searcher step :

v

r

w

α(v , e), contaminated edges before step i

α(w , e), edges cleared before step i
and that remain clear

β(w), edges cleared at step i
thanks to placement of new searchers

α(w , f ), contaminated edges after step i

e

f

δ(α(w , e), α(w , f ))
⋃

V [β(w)] ≤ #(searchers).
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From the strategy to the search-tree

If we consider a Performing a query step, with C1, · · · , Cp

the components where the fugitive can stand

v

r

w

α(v , e), contaminated edges before step i

α(w , e), edges cleared before step i
and that remain clear

β(w) = ∅, edges cleared at step i
thanks to placement of new searchers

α(w , ej) = E (Cj), contaminated edges
after step i according to the answer of the oracle

e

epeje1
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⋃
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From a search-tree to a monotone search-tree

A search-tree is monotone if all its edges are monotone.

By local optimizations, we build a monotone search-tree from
a search tree (T , α, β, r).
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From a search-tree to a monotone search-tree

Local Optimisation
Let e = {v , u} a non monotone edge (i.e., E1 ∪ F 6= E )

v

α(v , e) =F

u, β(u)

α(u, e) =E1

α(u, ej) =Ej

α(u, ep) =Ep

α(u, e2) =E2
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From a search-tree to a monotone search-tree

Local Optimisation
Let e = {v , u} a non monotone edge (i.e., E1 ∪ F 6= E )

v

α(v , e) =F

u, β(u)

α(u, e) =E1

α(u, ej) =Ej

α(u, ep) =Ep

α(u, e2) =E2

v

α(v , e) =F

u, β(u)∩F

α(u, e) =E(G)\F
α(u, ej) =Ej∩F
α(u, ep) =Ep∩F

α(u, e2) =E2∩F

We define a weight function that strictly decreases by this
optimisation.
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From a search-tree to a monotone search-tree

2 weight functions

w(T)=
∑

v∈V (T ) |δ(α(v , e1)..α(v , e`))
⋃

V [β(v)]|

bd(T)=
∑

n−dist(r ,e) the sum being taken over the non
monotone edges
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From monotone search-tree to monotone strategy

(T , α, β, r) a q-branched monotone search-tree with width
≤ k

Then, (T , (Xv)v∈V (T )) with
Xv= δ(α(v , e1)..α(v , e`))

⋃
V [β(v)]

is a q-branched tree-decomposition with width ≤ k − 1

Using the Theorem of Fomin et al., we get the result.
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Open problems

About monotony

Does recontamination help for catching a visible fugitive that
runs in a directed graph ?

About non deterministic graph searching

Linear algorithm in case of trees ?
Linear algorithm in case of the class of graph with twq

bounded ?
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