Voleur Véloce dans un réseau planaire

Nicolas Nisse¹ Karol Suchan^{1,2}

¹ DIM, Univerdidad de Chile, Santiago, Chile
² AGH University of Science and Technology, Cracow, Poland

AlgoTel, 14 mai 2008

Jeux des gendarmes et du voleur

Capture d'un intrus dans un réseau

- 2 joueurs
- jeu tour-à-tour
- vitesses bornées et a priori égales

Objectif:

- Police : Capturer le voleur avec "peu" de gendarmes
- Indice d'évasion : ie(G)

Problème dual:

- Voleur : Echapper à "beaucoup" de gendarmes
- Impact de la vitesse du voleur?

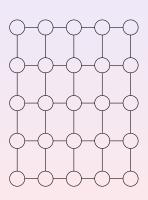
Initialisation:

- placement des gendarmes;
- placement du voleur.

Tour-à-tour:

- chaque gendarme avance d'au plus 1 arête;
- le voleur avance d'au plus 1 arête.

Voleur capturé :



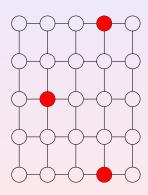
Initialisation:

- placement des gendarmes;
- placement du voleur.

Tour-à-tour:

- chaque gendarme avance d'au plus 1 arête;
- le voleur avance d'au plus 1 arête.

Voleur capturé :



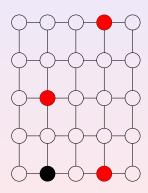
Initialisation:

- placement des gendarmes;
- placement du voleur.

Tour-à-tour:

- chaque gendarme avance d'au plus 1 arête;
- le voleur avance d'au plus 1 arête.

Voleur capturé :



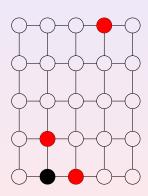
Initialisation:

- placement des gendarmes;
- placement du voleur.

Tour-à-tour:

- chaque gendarme avance d'au plus 1 arête;
- le voleur avance d'au plus 1 arête.

Voleur capturé :



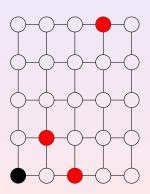
Initialisation:

- placement des gendarmes;
- placement du voleur.

Tour-à-tour:

- chaque gendarme avance d'au plus 1 arête;
- le voleur avance d'au plus 1 arête.

Voleur capturé :



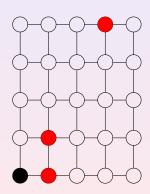
Initialisation:

- placement des gendarmes;
- placement du voleur.

Tour-à-tour:

- chaque gendarme avance d'au plus 1 arête;
- le voleur avance d'au plus 1 arête.

Voleur capturé :



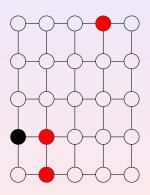
Initialisation:

- placement des gendarmes;
- placement du voleur.

Tour-à-tour:

- chaque gendarme avance d'au plus 1 arête;
- le voleur avance d'au plus 1 arête.

Voleur capturé :



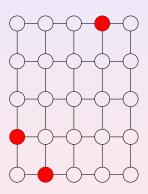
Initialisation:

- placement des gendarmes;
- placement du voleur.

Tour-à-tour:

- chaque gendarme avance d'au plus 1 arête;
- le voleur avance d'au plus 1 arête.

Voleur capturé :

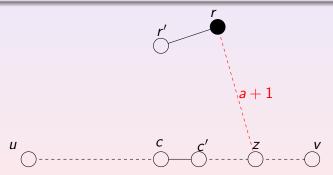


Etat de l'art

- Caractérisation des graphes G cop-win (ie(G) = 1) [Nowakowsky et Winkler, 83; Quilliot, 83; Chepoi, 97]
- Complexité : Calcul de l'indice d'évasion EXPTIME-complet [Goldstein et Reingold, 95]
- Algorithmes $O(n^k)$ pour décider si $ie(G) \le k$. [Hahn et MacGillivray, 06]
- Borne inférieure : ie(G) ≥ d^t,
 d degré minimum et maille ≥ 8t 3 [Frankl, 87]
- Graphe planaire $G : ie(G) \le 3$, [Aigner et Fromme, 84]

Principe du plus court chemin

1 gendarme pour garder 1 plus court chemin *P*.

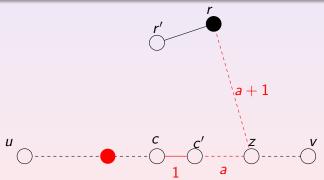


Le gendarme atteint P,

Position $c: dist(r, z) \ge dist(c, z), \forall z \in V(P)$.

Principe du plus court chemin

1 gendarme pour garder 1 plus court chemin *P*.

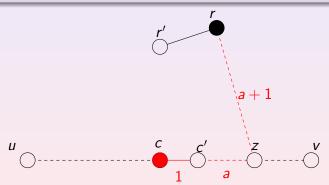


Le gendarme atteint P,

Position $c: dist(r, z) \ge dist(c, z), \forall z \in V(P)$.

Principe du plus court chemin

1 gendarme pour garder 1 plus court chemin *P*.

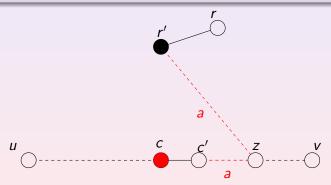


Le gendarme atteint P,

Position $c : dist(r, z) \ge dist(c, z), \forall z \in V(P)$.

Principe du plus court chemin

1 gendarme pour garder 1 plus court chemin *P*.



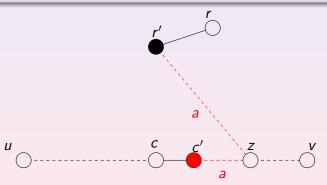
Le gendarme atteint P,

Position $c: dist(r, z) \ge dist(c, z), \forall z \in V(P)$.

◆□ → ◆□ → ◆ = → ○ ● の へ ○

Principe du plus court chemin

1 gendarme pour garder 1 plus court chemin *P*.

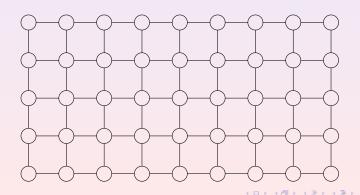


Le gendarme atteint P,

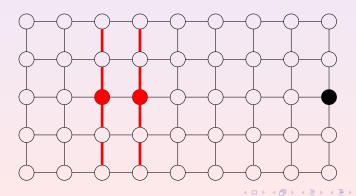
Position $c : dist(r, z) \ge dist(c, z), \forall z \in V(P)$.

◆□ → ◆□ → ◆ = → ○ ● の へ ○

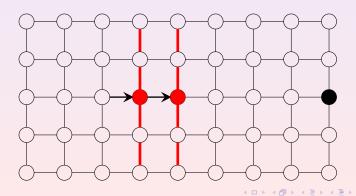
$$ie(grille) = 2$$



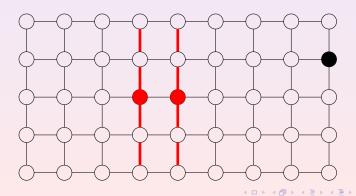
$$ie(grille) = 2$$



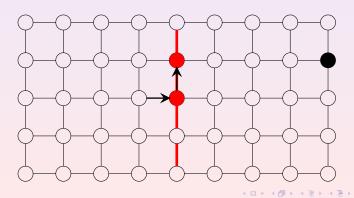
$$ie(grille) = 2$$



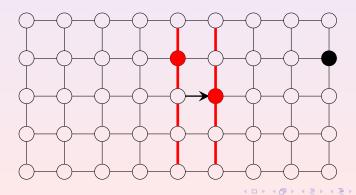
$$ie(grille) = 2$$



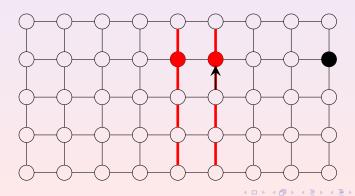
$$ie(grille) = 2$$



$$ie(grille) = 2$$



$$ie(grille) = 2$$



Comment peut-on aider le voleur?

Applications du principe du plus court chemin

```
G de genre g : ie(G) \le \frac{3}{2}g + 3 [Schröder, 01]
```

G excluant un mineur \bar{H} : $ie(G) \le |E(H)|$ [Andreae, 86]

Vitesse des protagonistes

Vitesse = nombre maximum d'arêtes traversées / tour

$$vitesse_{voleur} = 2 > vitesse_{gendarme} = 1$$

Motivations : Lien avec *Graph searching*Calcul de **ie** NP-difficile [Fomin, Golovach, Kratochvil, 2008]

Impact de la vitesse?

Combien de gendarmes pour capturer un voleur dans la grille

Comment peut-on aider le voleur?

Applications du principe du plus court chemin

G de **genre** g : $ie(G) \le \frac{3}{2}g + 3$ [Schröder, 01]

G excluant un mineur \bar{H} : $ie(G) \le |E(H)|$ [Andreae, 86]

Vitesse des protagonistes

Vitesse = nombre maximum d'arêtes traversées / tour

$$vitesse_{voleur} = 2 > vitesse_{gendarme} = 1$$

Motivations: Lien avec *Graph searching*Calcul de ie NP-difficile [Fomin, Golovach, Kratochvil, 2008]

Impact de la vitesse?

Combien de gendarmes pour capturer un voleur dans la grille?

Nos résultats

Théorème : indice d'évasion non borné

 $\exists c > 0$ tel que, pour tout $k \geq 1$ et pour toute grille carrée $G_{f(k)}$ de côté $f(k) = c^{k^2}$, $\mathbf{ie}(G_{f(k)}) \geq k$.

Corollaire : $ie(G_n) = \Omega(\sqrt{\log(n)})$.

Bémol: meilleure borne supérieure connue : $ie(G_n) = O(n)$.

Qu'est-ce qui rend le voleur difficile à capturer?

Si G planaire "contient" une grille de côté n, $\mathbf{ie}(G) \geq g(n)$

Théorème: NON

 $\exists H$ subdivision d'une grille arbitrairement grande : ie(H) = 2

Théorème : Cependant.

 $\forall H$ planaire avec $G_{2f(k)}$ sous-graphe induit, $\mathbf{ie}(H) \geq k$.

Nos résultats

Théorème : indice d'évasion non borné

 $\exists c > 0$ tel que, pour tout $k \geq 1$ et pour toute grille carrée $G_{f(k)}$ de côté $f(k) = c^{k^2}$, $\mathbf{ie}(G_{f(k)}) \geq k$.

Corollaire : $ie(G_n) = \Omega(\sqrt{\log(n)})$.

Bémol: meilleure borne supérieure connue : $ie(G_n) = O(n)$.

Qu'est-ce qui rend le voleur difficile à capturer?

Si G planaire "contient" une grille de côté n, **ie**(G) $\geq g(n)$?

Théorème: NON...

 $\exists H$ subdivision d'une grille arbitrairement grande : ie(H) = 2.

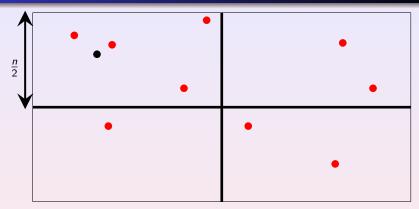
Théorème : Cependant...

 $\forall H$ planaire avec $G_{2f(k)}$ sous-graphe induit, $\mathbf{ie}(H) \geq k$.

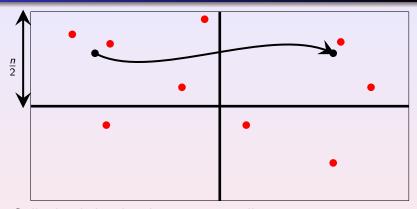
Idée de preuve, $\mathbf{ie}(G_n) = \Omega(\sqrt{\log(n)})$

Preuve en 3 étapes

- Stratégie du voleur contre k gendarmes.
- ② Pour que la stratégie soit valide
 ⇒ contraintes sur n le côté de la grille
- **3** Si $n = f(k) = c^{k^2} \Rightarrow$ contraintes satisfaites.

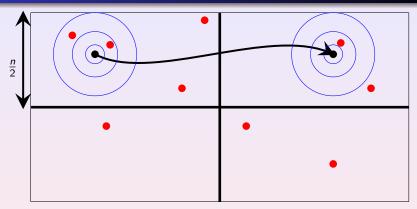


Grille de côté n divisée en 4 sous-grille



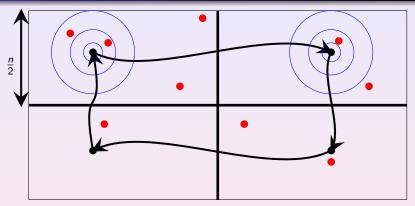
Grille de côté *n* divisée en 4 sous-grille

Passer d'une position dans une sous-grille à une autre position dans une sous-grille adjacente



Grille de côté *n* divisée en 4 sous-grille

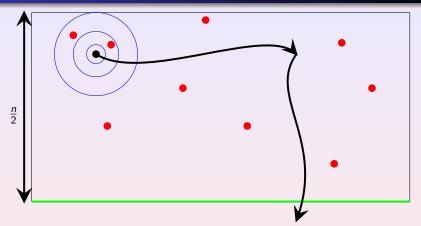
Passer d'une position sûre dans une sous-grille à une autre position sûre dans une sous-grille adjacente



Grille de côté n divisée en 4 sous-grille

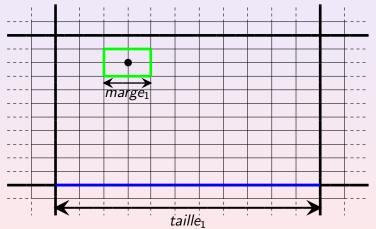
Passer d'une position sûre dans une sous-grille à une autre position sûre dans une sous-grille adjacente

Stratégie du voleur : Objectif



A partir de toute position *sûre* dans une sous-grille Se déplacer vers *n'importe quel côté* dans une position sûre.

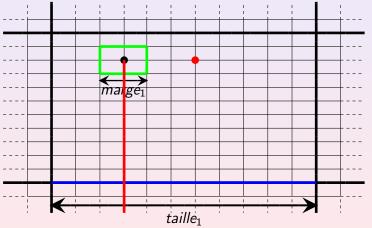
Stratégie du voleur : Induction k = 1



Stratégie pour aller d'une position sûre vers le côté bleu

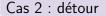
Stratégie du voleur : Induction k=1

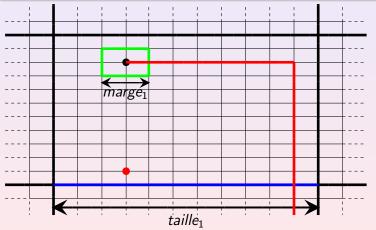
Cas 1 : ligne droite



Stratégie pour aller d'une position sûre vers le côté bleu

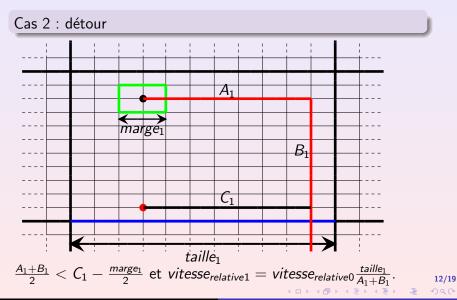
Stratégie du voleur : Induction k = 1



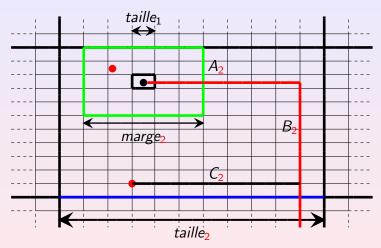


Stratégie pour aller d'une position sûre vers le côté bleu

Stratégie du voleur : Induction k = 1



Stratégie du voleur : Induction k = 2

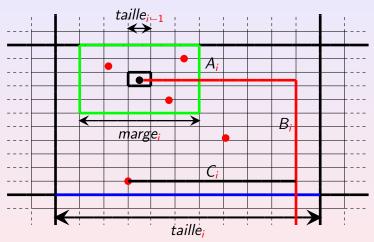


$$\frac{\textit{A}_2 + \textit{B}_2}{\textit{vitesse}_{\textit{relative1}}} < \textit{C}_2 - \frac{\textit{marge}_2}{2} \text{ et } \textit{vitesse}_{\textit{relative2}} = \textit{vitesse}_{\textit{relative1}} \frac{\textit{taille}_2}{\textit{A}_2 + \textit{B}_2}.$$

◆□ → ◆□ → ◆ = → ◆ = → へ へ ○

13/19

Stratégie du voleur : Induction k = i



$$\frac{A_i + B_i}{\text{vitesse}_{relativei-1}} < C_i - \frac{\text{marge}_i}{2} \text{ et } \text{vitesse}_{relativei} = \text{vitesse}_{relativei-1} \frac{\text{taille}_i}{A_i + B_i}.$$

14/19

Contraintes imposées par la stratégie

3 inconnus : $taille_i$, $A_i + B_i \approx detour_i$ et $marge_i$

On pose $zoom_i = taille_i/taille_{i-1}$ et $vitesse_i = taille_i/temps_i$, et $temps_i = (zoom_i + detour_i)temps_{i-1}$.

4 inéquations : $\forall i \in [1..k]$

$$\begin{aligned} \textit{marge}_i &\geq \left\lceil \frac{4 + \textit{vitesse}_{i-1}}{\textit{vitesse}_{i-1} - 1} \right\rceil \\ \textit{detour}_i / 2 &\geq \left\lceil \frac{(2 * \textit{marge}_i + 2) \textit{vitesse}_{i-1}}{\textit{vitesse}_{i-1} - 1} \right\rceil \\ \textit{detour}_i / 2 + 2 * \textit{marge}_i + 1 < \textit{zoom}_i / 2 \\ \textit{vitesse}_i &> 1 \end{aligned}$$

$\exists a, b > 0$, Equations satisfaites pour $zoom_i = ab^i$

$$\Rightarrow f(k) = taille_k = taille_0 * \prod_{1 \le i \le k} zoom_i = O(a^k * b^{k(k+1)/2})$$

15/19

Relations d'ordre sur les graphes

Si G planaire "contient" une grille de côté n, $ie(G) \ge g(n)$?

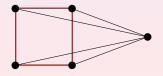
G contient H

suppression sommets (1), arêtes (2), contraction arêtes (3)

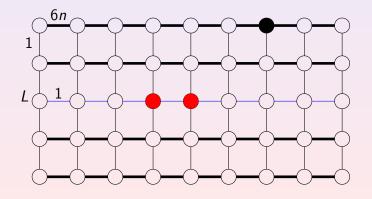
Sous-graphe induit : 1; Subdivision : 3; Mineur : 1, 2 et 3

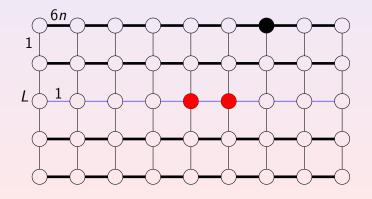
Graph searching : jeu simultané, vitesses non bornées

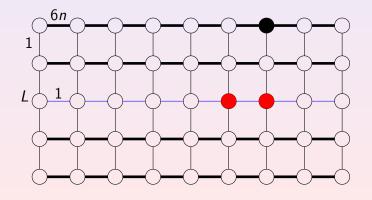
"beaucoup" de gendarmes ⇔ "grosse" grille mineur [Robertson, Seymour, Thomas, 94]

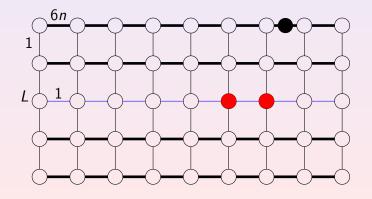


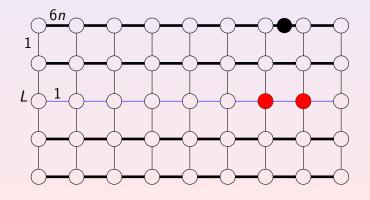
indice d'évasion non-clos par sous-graphe induit ie(H) = 2 > ie(G) = 1

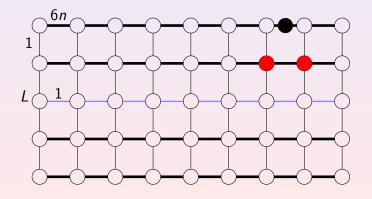


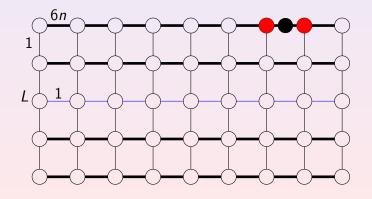






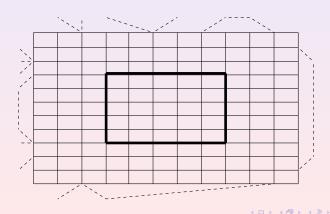






Idée de preuve, H avec G_{2n} sous-graphe induit, $\mathbf{ie}(H) = \Omega(\sqrt{\log(n)})$

H planaire admet G_n comme sous-graphe isométrique \Rightarrow stratégie du voleur restreint à G_n



Perspectives

- $\Omega(\sqrt{\log(n)}) \le ie(G_n) \le O(n)$. Valeur exacte?
- Autres classes de graphes : graphes d'intervalle, graphes cordaux, etc.
- Compromis vitesse_{voleur} / vitesse_{gendarme} / indice d'évasion.
- Lien avec les décompositions de graphes?