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Tree/Path-Decompositions [Robertson and Seymour 83]

Representation of a graph as a Tree preserving connectivity properties
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Tree T + family X = (Xt)t∈V (T ) of “bags” (set of vertices of G)
Important: intersection of two adjacent bags = separator of G
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Tree T + family X = (Xt)t∈V (T ) of “bags” (set of vertices of G)
Important: intersection of two adjacent bags = separator of G⋃

t∈V (T ) Xt = V (G);

for any uv ∈ E(G), there exists a bag Xt containing u and v ;

for any v ∈ V (G), {t ∈ V (T ) | v ∈ Xt} induces a subtree.
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Tree T + family X = (Xt)t∈V (T ) of “bags” (set of vertices of G)
Important: intersection of two adjacent bags = separator of G

Width of (T ,X ): size of largest bag (minus 1)
Treewidth of a graph G , tw(G): min width over all tree-decompositions.
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Tree/Path-Decompositions [Robertson and Seymour 83]

Representation of a graph as a Tree preserving connectivity properties
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Tree T + family X = (Xt)t∈V (T ) of “bags” (set of vertices of G)
Important: intersection of two adjacent bags = separator of G

Tree-decomposition ⇔ (clique tree of) triangulation of G (bags are maximal cliques)
Treewidth+1 ⇔ Minimum ω(H) among any chordal supergraph H of G
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Many important Algorithmic Applications of tw

Brief reminder on Computational Complexity

P. Class of Problems that can be solved by a deterministic algorithm in

polynomial-time O(nc ) (in the size n of the input)

NP. Class of Problems that can be solved by a non deterministic

algorithm in polynomial-time O(nc ) (in the size n of the input)

NP-hard. Class of Problems “as hard as the hardest problems in NP”.

Essentially: cannot be solved in polynomial-time unless P=NP

FPT. (Fixed Parameter Tractable) Unformally: k ∈ N be a fixed
parameter. Let G be an input of size n, and Π a graph property

Π(G) ≤ n? is FPT if it can be solved by a deterministic algorithm in

time f (k)nc for some computable function f .

example: vertex cover (NP-hard). vc(G) ≤ k? solvable in time:

2O(n) if k is part of the input

O(2kn) if k is fixed.
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Many important Algorithmic Applications of tw

cornerstone of Graph Minors Theorem [Robertson and Seymour 1983-2004]

⇒ any graph property (Π(G) ≤ k) that is closed under minor is FPT in k

problems expressible in MSOL solvable in polynomial time in graphs
of bounded treewidth (dynamic programming) [Courcelle, 90]

any such problem is FPT in tw

design of sub-exponential algorithms in some graph classes (e.g.,
planar, bounded genus, H-minor-free...)

(bi-dimensionality) [Demaine et al. 04]

design of FPT algorithms (meta-kernelization/protrusions)

[Fomin et al. 09]
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Main Problem: Computing tree-decomposition

Deciding if tw(G ) ≤ k? ⇒ Very hard!

Related Work

Exact algorithms

NP-hard if k part of the input [Arnborg,Corneil,Prokurowski 87]

FPT: algorithm in O(2k
3
n) [Bodlaender,Kloks 96]

“practical” algorithms only for graph with treewidth ≤ 4 e.g., [Sanders 96]

Branch & Bound algorithms (for small graphs) [Bodlaender et al. 12]

[Coudert,Mazauric,N. 14]

Approximation algorithms

5-approximation in time O(2kn) [Bodlaender et al. 13]
√

log OPT -approximation in polynomial-time (SDP) [Feige et al. 05]

assuming Small Set Expansion Conjecture,
no poly-time constant-ratio approximation [Wu,Austrin,Pitassi,Liu 14]

3/2-approximation in planar graphs (complexity?) [Seymour,Thomas 93]

Heuristics

Mainly based on local complementations of edges (minimum fill-in: perfect
elimination ordering of vertices) [Bodlaender et al.]
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In this talk ⇒ We want to compute it anyway!

Instead of constraining the size of bags ⇒ constraint bags’ properties

1 bags’ structure

2 bags’ diameter: treelength

3 bags’ radius: tree-breadth

and relationships between them...
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First alternative: constraint bags’ structure

Simple algorithm [Kosowski,Li,N.,Suchan, Algorithmica 2015]

increase an induced path P

until N[P] (nodes of P and their neighbors) separates the graph

”apply recursively to the connected components”
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First alternative: constraint bags’ structure

chordality, ch(G ): max. length of induced cycle in G
k-chordal ⇔ ch(G ) ≤ k

Bags have induced dominating path
[Kosowski,Li,N.,Suchan, Algorithmica 2015]

efficient algorithm O(m2) in m-edge graphs

based on DFS from u0 such that all paths

from u0 are induced

either returns an induced cycle larger than k,
or compute a tree-decomposition with each
bag being the closed neighborhood of an
induced path of length ≤ k − 1.

achieves a tree-decomposition of width
O(∆k) for k-chordal graphs

(improves [Bodlaender,Thilikos’97] result)

1

1 1

1
1

1
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First alternative: constraint bags’ structure

chordality, ch(G ): max. length of induced cycle in G
k-chordal ⇔ ch(G ) ≤ k

Bags have induced dominating path [Kosowski,Li,N.,Suchan, Algorithmica 2015]

efficient algorithm O(m2) in m-edge graphs

based on DFS from u0 such that all paths from u0 are induced

either returns an induced cycle larger than k,
or compute a tree-decomposition with each bag being the closed
neighborhood of an induced path of length ≤ k − 1.

achieves a tree-decomposition of width O(∆k) for k-chordal graphs
(improves [Bodlaender,Thilikos’97] result)

further work: implement it and analyze its performance in practice

How to improve it? (guide the DFS)

Bags have bounded chromatic number [Seymour 16]

using similar techniques: triangle-free k-chordal graphs have a
tree-decomposition with bags with chromatic number O(k)
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2nd approach: constraint bags’ metric properties

Treelength [Dourisboure,Gavoille 07]

Length of (T ,X ): largest diameter (in G) of a bag maxu,v∈B distG (u, v)
Treelength of a graph G , t`(G): min length over all tree-decompositions.

Applications

upper bound on the hyperbolicity

PTAS for TSP in bounded tree-length graphs [Krauthgamer,Lee 06]

compact routing, greedy routing with low additive stretch
[Dourisboure 05] [Boguna,Papadopoulos,Krioukov 10]

Complexity of tree-length and tree-breadth

Bad news

NP-hard to decide if t`(G) ≤ 2 (not FPT) [Lokshtanov 10]

Good news

efficient 3-approximation for t`(G) in time O(nm)
(using a kind of LexBFS: Lex M) [Dourisboure,Gavoille 07]

open question: better approx?
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Approximation for tree-length [Dourisboure,Gavoille 07]

LexM “kind of LexBFS” [Rose,Tarjan,Lueker 76]

with specific tie-break rules

LexM returns:

ordering (v1, · · · , vn) of V

”BFS” rooted in v1

∀i , ∃ a shortest path from v1 to vi
with all internal nodes < i

minimal triangulation H of G s.t.
vivj ∈ E(H) \ E(G) iff there exists
a path from vi to vj with all
internal nodes > max{i , j}

Theorem [Dourisboure,Gavoille 07]

LexM returns a tree-decomposition with each bag has diameter at most 3t`(G).

Can approximation for tree-length be used for treewidth?
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Relationship between treewidth and treelength

Treewidth and Treelength are not comparable in general.

2 = tw(Cn) < t`(Cn) = dn/3e in any cycle Cn (n > 6)

n − 1 = tw(Kn) > t`(Kn) = 1 in any clique Kn (n > 2)

Are these two cases (large cycles and large cliques) the only two problems?

Somehow YES... [Coudert,Ducoffe,N., SIDMA 2016]

t`(G) ≤b `(G)
2
ctw(G) with `(G) the length of a largest isometric cycle in G

tw(G) = O(g3/2)t`(G) with g the genus of G

A subgraph H of G is isometric if, for any u, v ∈ V (H), distH(u, v) = distG (u, v).
(i.e., the distances do not increase in H)
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Sketch of t`(G ) ≤ b `(G)
2
c(tw(G )− 1)

To prove the Theorem, first we prove

Lemma 1: For any minimal separator S of G , diam(S) ≤ b `(G)
2
c(|S | − 1)
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Sketch of t`(G ) ≤ b `(G)
2
c(tw(G )− 1)

Lemma 1: For any minimal separator S of G , diam(S) ≤ b `(G)
2
c(|S | − 1)

S

Clear if S is connected: diam(S) ≤ |S | − 1 ≤ b `(G)
2
c(|S| − 1)
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Sketch of t`(G ) ≤ b `(G)
2
c(tw(G )− 1)

Lemma 1: For any minimal separator S of G , diam(S) ≤ b `(G)
2
c(|S | − 1)

For this purpose: When at least 2 components: join them by paths of length ≤ b `(G)
2
c

≤ �/2

shortest 
cycle
⇒

isometric

“easy” if S has 2 connected components
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Sketch of t`(G ) ≤ b `(G)
2
c(tw(G )− 1)

Lemma 1: For any minimal separator S of G , diam(S) ≤ b `(G)
2
c(|S | − 1)

For this purpose: When at least 2 components: join them by paths of length ≤ b `(G)
2
c

C

B

A

shortest cycle 
through A and C
 not necessarily 

isometric

does not “work” anymore for more components :(
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Sketch of t`(G ) ≤ b `(G)
2
c(tw(G )− 1)

Lemma 1: For any minimal separator S of G , diam(S) ≤ b `(G)
2
c(|S | − 1)

For this purpose: When at least 2 components: join them by paths of length ≤ b `(G)
2
c

Tool:

Cycle space: C(G) set of Eulerian subgraphs of G

[folklore] Any Eulerian subgraph can be obtained as symmetric difference ∆ of cycles.

Theorems:[?] (C(G),∆) is a vector space

with dimension m − n + 1,

∃ a basis with cycles of length ≤ `(G)

Let G` be the set of graphs such that (C(G),∆) has a basis of cycles of length ≤ `.
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Sketch of t`(G ) ≤ b `(G)
2
c(tw(G )− 1)

Lemma 1: For any minimal separator S of G , diam(S) ≤ b `(G)
2
c(|S | − 1)

For this purpose: When at least 2 components: join them by paths of length ≤ b `(G)
2
c

lemma 2: G` stable by contraction

proof: G ∈ G` for ` = `(G)

B = C1, · · · ,Cd cycle basis
(cycles of length ≤ `(G))

d = dim(C(G)) = m − n + 1

e ∈ E(G) (k = # triangles containing e)
t = dim(C(G/e)) = d − k

C ′
1, · · · ,C ′

t obtained from B by contracting e and
removing the triangles

prove that C ′
1, · · · ,C ′

t is linearly independent
⇒ it is a basis of cycles of length ≤ `

G/e ∈ G`

N. Nisse Tree-decompositions with metric properties on the bags



10/13

Introduction Bag’s structure Tree-length Tree-breadth

Sketch of t`(G ) ≤ b `(G)
2
c(tw(G )− 1)

Lemma 1: For any minimal separator S of G , diam(S) ≤ b `(G)
2
c(|S | − 1)

For this purpose: When at least 2 components: join them by paths of length ≤ b `(G)
2
c

contracting an edge 
does not create 

larger cycle

contract the 
separator into a 

stable set

By Lemma 2, contracting each component of S , the obtained graph remains in G`
and S remains a minimal separator
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Sketch of t`(G ) ≤ b `(G)
2
c(tw(G )− 1)

Lemma 1: For any minimal separator S of G , diam(S) ≤ b `(G)
2
c(|S | − 1)

For this purpose: When at least 2 components: join them by paths of length ≤ b `(G)
2
c

≤ �/2

find two 
vertices of S 
at distance  

≤ �/2

Lemma 3: If S is a minimal stable-set separator, ∃ 2 vertices of S at distance ≤ b `(G)
2
c

proof: take a cycle C “crossing” the separator; C = ⊕iCi , where the Ci ’s are cycles
(of the basis) of length ≤ `. One of them “crosses” the separator
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Sketch of t`(G ) ≤ b `(G)
2
c(tw(G )− 1)

Lemma 1: For any minimal separator S of G , diam(S) ≤ b `(G)
2
c(|S | − 1)

For this purpose: When at least 2 components: join them by paths of length ≤ b `(G)
2
c

adding an edge 
between two 
vertices of S

at distance ≤ �/2

does not create 
larger cycle ≤ �/2

Last step of the proof

We can add an edge between 2 vertices of S at distance ≤ `/2 (Lemma 3).
It does not create larger cycle (proof using cycle space) and S still a minimal separator.
# of connected components of S have been reduced ⇒ proceed recursively
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Sketch of t`(G ) ≤ b `(G)
2
c(tw(G )− 1)

Lemma 1: For any minimal separator S of G , diam(S) ≤ b `(G)
2
c(|S | − 1)

For this purpose: When at least 2 components: join them by paths of length ≤ b `(G)
2
c

≤ �/2

≤ �/2

≤ �/2

≤ �/2

The result follows !
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Sketch of t`(G ) ≤ b `(G)
2
c(tw(G )− 1)

Lemma 1: For any minimal separator S of G , diam(S) ≤ b `(G)
2
c(|S | − 1)

Proof of the Theorem

Now take any tee-decomposition resulting from a minimal triangulation
for any bag B and u, v ∈ B, if {u, v} /∈ E , u and v belong to a minimal separator

[Bouchitté,Todinca 01]

Lemma 1 ⇒ the diameter of the bag is ≤ b `(G)
2
c(|B| − 1)
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Sketch of tw(G ) = O(g 3/2)t`(G ) Apply bi-dimensionality

if tw(G) “small” OK

otherwise:

Theorem [Demain,Hajiaghayi,Thilikos 06]

Let G be a graph with genus g and tw(G) > 4k(g + 1) with k ≥ 12g , then G
contains a (k − 12g , g)-gridoid as a contraction.

a (k, g)-gridoid is partially triangulated (k × k)-grid in with g extra edges

proof of our result

t`((k, g)-gridoid) ≥ function of k and g

hence, t`(G) ≥ function of k and g (since t` close under contraction)

⇒ if G (with genus g) has “large” treewidth, it has “large” tree-length

N. Nisse Tree-decompositions with metric properties on the bags
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3rd alternative: Tree-breadth [Dragan,Abu-Ata 14]

Breadth of (T ,X ): largest excentricity (in G) of a bag minv∈G max u ∈ BdistG (u, v)
Tree-breadth of a graph G , tb(G): min breadth over all tree-decompositions.

tb(G) ≤ t`(G) ≤ 2tb(G) for any graph G

Complexity of tree-breadth was open

Good news: efficient 3-approximation for tb(G) [Dragan,Abu-Ata 14]

Our results [Ducoffe,Legay,N. 16]

Bad news: NP-hard to decide if tb(G) ≤ 1 (not FPT)

Deciding tb(G) ≤ 1 can be solved in polynomial-time in

av cv
dv

v

av cv
bv

v

av cv
bv

v

Type 1 Type 2 Type 3

- bipartite graphs (linear time)

- K3,3 minor-free graphs
(O(n3m) time)
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Further work

Evaluation of our algorithms for treewidth

implement the DFS-algorithm for treewidth in real large networks

turn our results on treewidth/treelength into a constructive algorithm
i.e., how to use an algo that approx treelength to approx treewidth?

Computing Treelength and Tree-breadth

better approximation for treelength? for tree-breadth?

complexity of deciding tb(G) ≤ k or t`(G) ≤ k in planar graphs?

Other interesting bag’s properties to be investigated?

Design an efficient algorithm to compute “good” tree-decompositions in practice

谢谢谢谢谢谢
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