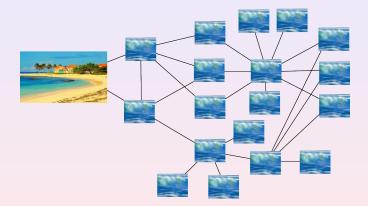

Connected Surveillance Game

F. Giroire¹ D. Mazauric² \underline{N} . Nisse¹ S. Pérennes¹ R. P. Soares^{1,3}

COATI, Inria, I3S, CNRS, UNS, Sophia Antipolis, France
 ACRO, Laboratoire d'Informatique Fondamentale de Marseille, France
 ³ ParGO Research Group, UFC, Fortaleza, Brazil

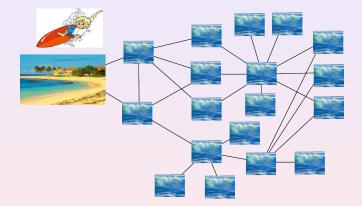
SIROCCO 2013


Ischia, July 1st, 2013

Two-Player game one a connected graph

2/13

伺 ト イヨト イヨト

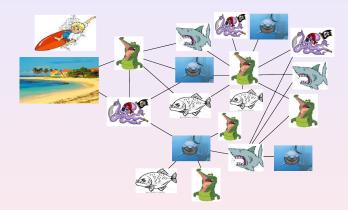


Two-Player game one a connected graph with given homebase

Giroire et al. Connected Surveillance Game

2/13

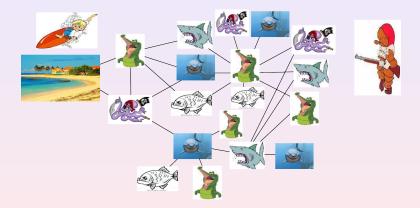
ロット ヘビット ヘビッ



First Player: Surfer

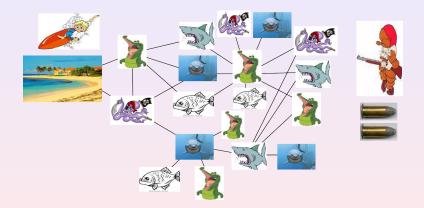
initially at the homebase

2/13

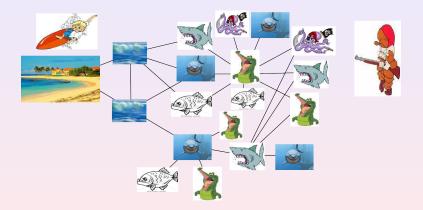

Giroire et al. Connected Surveillance Game

All nodes (but the homebase) are initially dangerous

Goal: avoid Surfer reaches one dangerous node 2/13


< E > < E >

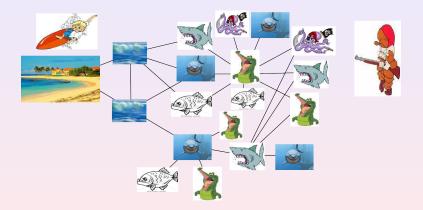
Second Player: Observer


Giroire et al. Connected Surveillance Game

2/13

Observer: some amount of bullets (or marks) to secure nodes

Giroire et al. Connected Surveillance Game

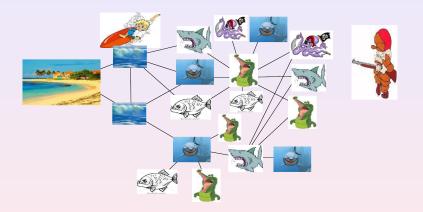


Observer turn: uses his bullets

one bullet per node

2/13

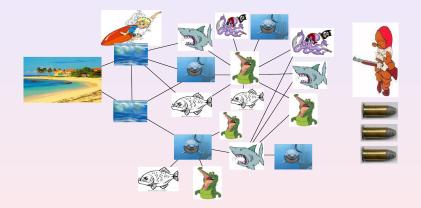
Giroire et al. Connected Surveillance Game

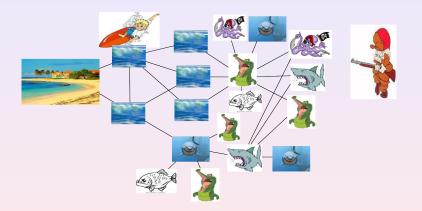


Observer turn: uses his bullets

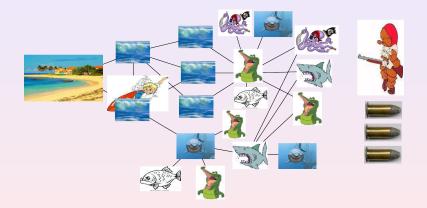
one bullet per node

2/13

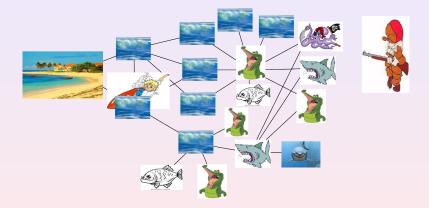

Giroire et al. Connected Surveillance Game


Surfer turn: may move on adjacent node

 $deg(homebase) \le \#$ of bullets (per turn) required to save Surfer ____2/13

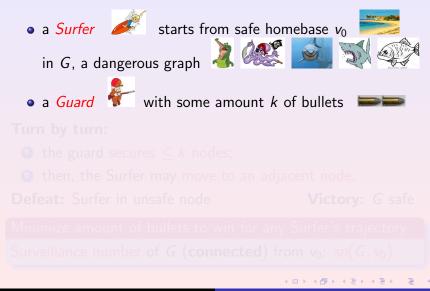

(< E) < E) < E</p>

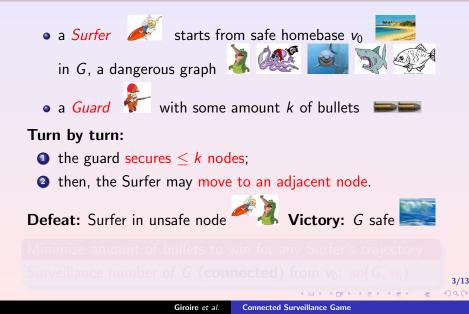
Naive strategy: mark all unmarked neighbors of current position



Naive strategy: mark all unmarked neighbors of current position $degree(homebase) \leq amount of bullets \leq max \ degree$

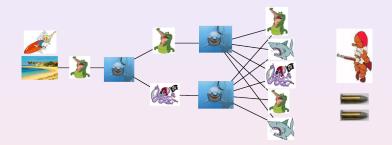
Surfer may move anywhere in its neighborhood


Giroire et al. Connected Surveillance Game


bullets may be used to prevent future moves

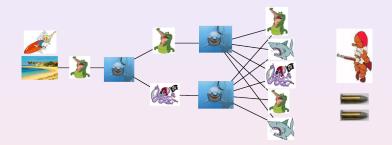
Giroire et al. Connected Surveillance Game

Model: a Two players game



Model: a Two players game

Model: a Two players game

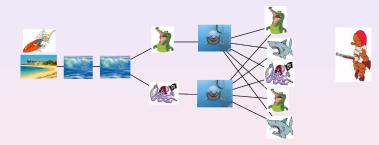


with 1 bullet: after 2 steps, Surfer faces 2 dangerous nodes!!

 $sn(G, v_0) > 1$

4/13

通 と く ヨ と く ヨ と

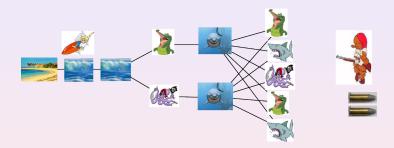


with 1 bullet: after 2 steps, Surfer faces 2 dangerous nodes!!

 $sn(G, v_0) > 1$

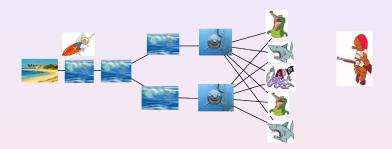
4/13

通 と く ヨ と く ヨ と



Guard uses (all) his bullets

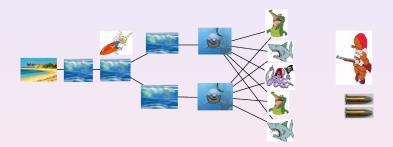
Giroire et al. Connected Surveillance Game


4/13

- (日) (日) (日)

Guard uses (all) his bullets, **then** Surfer may move Clearly: worst case if Surfer always move

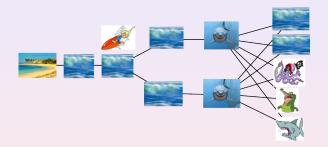
Giroire et al. Connected Surveillance Game



Guard uses (all) his bullets, then Surfer may move

Giroire et al. Connected Surveillance Game

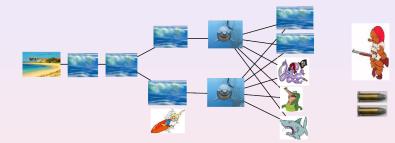
4/13


回 と く ヨ と く ヨ と

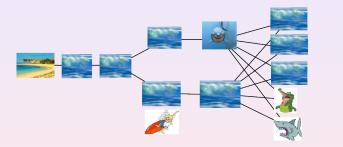
Guard uses (all) his bullets, then Surfer moves

Giroire et al. Connected Surveillance Game

4/13



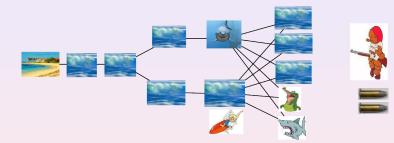
4/13


Guard uses (all) his bullets, then Surfer moves

Guard may secure any node in the graph

Guard uses (all) his bullets, then Surfer moves

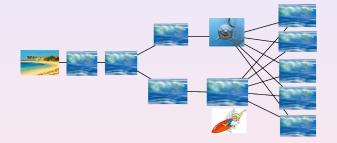
Giroire et al. Connected Surveillance Game



(ロ) (同) (E) (E)

4/13

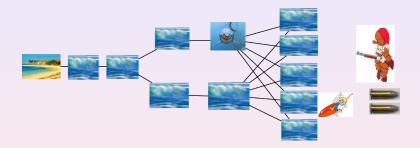
Guard uses (all) his bullets, then Surfer moves


Giroire et al. Connected Surveillance Game

Guard uses (all) his bullets, then Surfer moves

Giroire et al. Connected Surveillance Game

4/13

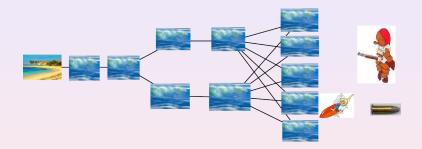


回 と く ヨ と く ヨ と

4/13

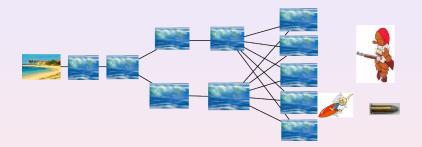
Guard uses (all) his bullets, then Surfer moves

Giroire et al. Connected Surveillance Game



Guard uses (all) his bullets, then Surfer moves

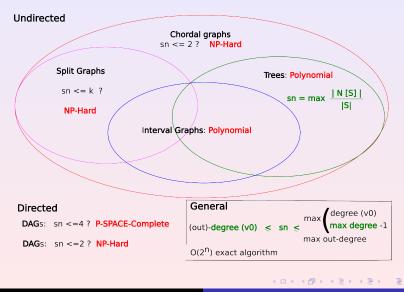
Giroire et al. Connected Surveillance Game


4/13

伺 ト イヨト イヨト

Guard uses (all) his bullets, then Surfer moves

All nodes safe: Victory against this trajectory of the Surfer



In this example, all Surfer's trajectory similar (by symmetry) Victory whatever Surfer's trajectory $\Rightarrow sn(G, v_0) = 2$

Complexity, Algorithms and Combinatoric

[Fomin et al. 2012]

5/13

Giroire et al. Connected Surveillance Game

Web-page prefetching

Surfer ⇔ Web-surfer following hyperlinks in the Web Observer ⇔ Web-browser downloading web-pages Amount of bullets ⇔ download speed must be minimized (affect bandwidth)

Unrealistic assumptions

 downloading Web-pages "far" from the current position of the Surfer

I full knowledge of the Web-graph

To address 1st point:

Connected Surveillance game [Fomin et al. 2012

◆□> ◆圖> ◆国> ◆国> -

Web-page prefetching

Surfer ⇔ Web-surfer following hyperlinks in the Web Observer ⇔ Web-browser downloading web-pages Amount of bullets ⇔ download speed must be minimized (affect bandwidth)

Unrealistic assumptions

- downloading Web-pages "far" from the current position of the Surfer
- In the Web-graph

To address 1st point:

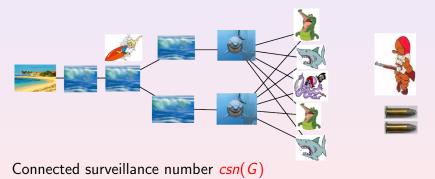
Connected Surveillance game [Fomin et al. 2012

・ロト ・四ト ・ヨト ・ヨト

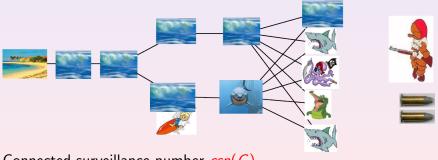
Web-page prefetching

Surfer ⇔ Web-surfer following hyperlinks in the Web Observer ⇔ Web-browser downloading web-pages Amount of bullets ⇔ download speed must be minimized (affect bandwidth)

Unrealistic assumptions

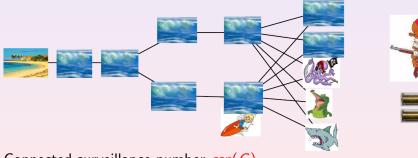

- downloading Web-pages "far" from the current position of the Surfer
- In the web-graph

To address 1st point:

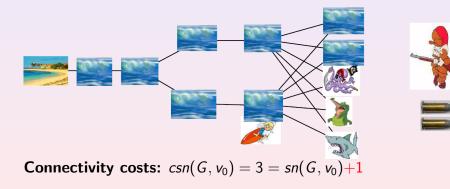

Connected Surveillance game [Fomin et al. 2012]

・ロン ・回 と ・ ヨン ・ ヨン

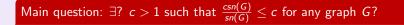
Constraint: safe vertices must induce a connected subgraph



Constraint: safe vertices must induce a connected subgraph


Connected surveillance number *csn*(*G*)

Constraint: safe vertices must induce a connected subgraph



Connected surveillance number *csn*(*G*)

Constraint: safe vertices must induce a connected subgraph

Cost of connectivity and cost of "blindness"

Clearly $csn(G) \leq \Delta \cdot sn(G)$ for any G with max. degree Δ .

Connected Variant:

the gap is still huge :(

Theorem 1 For any *n*-node graph $csn(G) \le \sqrt{n \cdot sn(G)}$

Theorem 2 There are graphs G with csn(G) = sn(G)+2

online variant: nodes are discovered when neighbor marked restriction of the connected variant

Online variant:

est online strategy is the naive one :

・ロシ ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Theorem 3 The best competitive ratio of online Protocol is $\Theta(\Delta)$

Cost of connectivity and cost of "blindness"

Main question: \exists ? c > 1 such that $\frac{csn(G)}{sn(G)} \leq c$ for any graph G?

Clearly $csn(G) \leq \Delta \cdot sn(G)$ for any G with max. degree Δ .

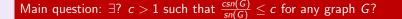
Connected Variant:

the gap is still huge :(

(ロ) (四) (注) (注) (注) (注)

Theorem 1 For any *n*-node graph $csn(G) \leq \sqrt{n \cdot sn(G)}$

Theorem 2 There are graphs G with csn(G) = sn(G)+2


online variant: nodes are discovered when neighbor marked restriction of the connected variant

Online variant:

est online strategy is the naive one :(

Theorem 3. The best competitive ratio of online Protocol is $\Theta(\Delta)$

Cost of connectivity and cost of "blindness"

Clearly $csn(G) \leq \Delta \cdot sn(G)$ for any G with max. degree Δ .

Connected Variant:

the gap is still huge :(

Theorem 1 For any *n*-node graph $csn(G) \leq \sqrt{n \cdot sn(G)}$

Theorem 2 There are graphs G with csn(G) = sn(G)+2

online variant: nodes are discovered when neighbor marked restriction of the connected variant

Online variant:

best online strategy is the naive one :(

・ロン ・回 と ・ ヨ と ・ ヨ と

Theorem 3 The best competitive ratio of online Protocol is $\Theta(\Delta)$.

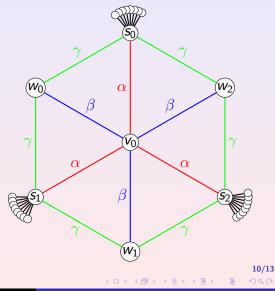
For any *n*-node graph $csn(G) \leq \sqrt{n \cdot sn(G)}$

Counting argument

- Assume $sn(G) \leq k$
- 2 Connected strategy using $\sqrt{n \cdot k}$ marks per turn at each turn, mark $\sqrt{n \cdot k}$ unmarked neighbors of the position of the surfer (\approx naive strategy)
- if Surfer wins after t turns at node v ⇒ |N(v)| > √nk
 t < √n/k since otherwise all nodes are marked
 but |N(v)| ≤ k ⋅ t

otherwise Surfer would have won in non-connected game

・ロン ・回 と ・ ヨン ・ ヨン

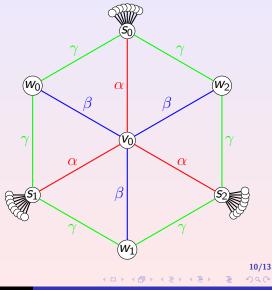

A contradiction

There are graphs *G* with
$$csn(G) = sn(G) + 2$$

What you don't see here

- paths of length α, β, γ (to be well whosen)
- all paths are doubled
- all nodes have "many" 1-degree neighbors
- in particular s_1, s_2, s_3

1.600.000 nodes



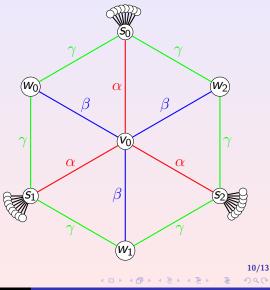
There are graphs *G* with csn(G) = sn(G) + 2

 Optimal non-connected strategy

1st step: mark "lot of"

neighbors of s_1, s_2, s_3

There are graphs *G* with csn(G) = sn(G) + 2


 Optimal non-connected strategy

1st step: mark "lot of"

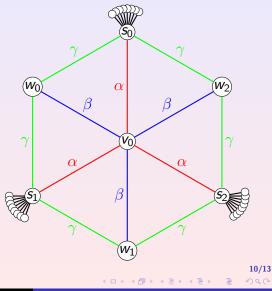
neighbors of s_1, s_2, s_3

Connected strategies using sn(G) + 1 bullets
 1st step: mark many nodes "to reach" s₁, s₂, s₃ in

$$P_{v_0s_1} \cup P_{v_0w_2} \cup P_{w_2s_0} \cup P_{w_2s_2}$$

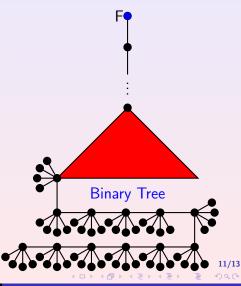
There are graphs *G* with csn(G) = sn(G) + 2

 Optimal non-connected strategy

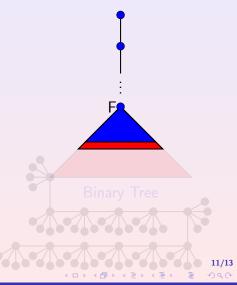

1st step: mark "lot of"

neighbors of s_1, s_2, s_3

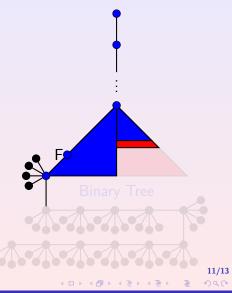
Connected strategies using sn(G) + 1 bullets
 1st step: mark many nodes "to reach" s₁, s₂, s₃ in


 $P_{v_0s_1} \cup P_{v_0w_2} \cup P_{w_2s_0} \cup P_{w_2s_2}$

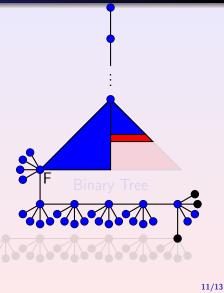
 Surfer goes along P'_{v0w2} one more bullet not enough to protect s₀ and s₂



 A tree T with sn(T) = 2 full knowledge: Observer can anticipate the heavy branch



- A tree T with sn(T) = 2 full knowledge: Observer can anticipate the heavy branch
- online: symmetrical view cannot anticipate


Online competitive ratio: $\Theta(\Delta)$

- A tree T with sn(T) = 2 full knowledge: Observer can anticipate the heavy branch
- online: symmetrical view cannot anticipate
- when the heavy branch appears

Online competitive ratio: $\Theta(\Delta)$

- A tree T with sn(T) = 2 full knowledge: Observer can anticipate the heavy branch
- online: symmetrical view cannot anticipate
- when the heavy branch appears
- ...it is too late if Observer uses only *o*(Δ) bullets

- complexity in bounded degree graphs?
 - (polynomial if $\Delta \leq 3$)

- 4 回 2 - 4 □ 2 - 4 □

- complexity in bounded treewidth graphs?
- $\exists ?c < 2 \text{ and } O(c^n) \text{ algorithm in } n \text{-node graphs}?$
- cost of connectivity? $\frac{csn}{sn} \leq cte$?
- More realistic model: finite memory what if nodes may be "recontaminated"?

Thank you

<□> <@> < E> < E> < E</p>