Cop and robber games when the robber can hide and ride

Jérémie Chalopin1 Victor Chepoi1 Nicolas Nisse2 Yann Vaxès1

1 Lab. Informatique Fondamentale, Univ. Aix-Marseille, CNRS, Marseille, France
2 MASCOTTE, INRIA, I3S, CNRS, UNS, Sophia Antipolis, France

Séminaire MASCOTTE, January 12th, 2010
General Problem

Capture an intruder in a network
- C plays with a team of cops
- R plays with one robber

Cops’ goal:
- C: Capture the robber using k cops ("few");
- The minimum called cop-number, $\text{cn}(G)$.

Robber’s goal:
- R: Perpetually evade k cops ("many");
- The maximum equal $\text{cn}(G) - 1$.
Initialization:

1. C places the cops;
2. R places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber apprehended:
A cop occupies the same vertex as the robber.
Cops & robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:
1. \mathcal{C} places the cops;
2. \mathcal{R} places the robber.

Step-by-step:
- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber apprehended:
A cop occupies the same vertex as the robber.
Initialization:
1. \mathcal{C} places the cops;
2. \mathcal{R} places the robber.

Step-by-step:
- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber apprehended:
A cop occupies the same vertex as the robber.
Initialization:

1. \mathcal{C} places the cops;
2. \mathcal{R} places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber apprehended:
A cop occupies the same vertex as the robber.
Initialization:
1. \mathcal{C} places the cops;
2. \mathcal{R} places the robber.

Step-by-step:
- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber apprehended:
A cop occupies the same vertex as the robber.
Cops & robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:
1. C places the cops;
2. R places the robber.

Step-by-step:
- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber apprehended:
A cop occupies the same vertex as the robber.
Initialization:
1. C places the cops;
2. R places the robber.

Step-by-step:
- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber apprehended:
A cop occupies the same vertex as the robber.
Cops & robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:

1. C places the cops;
2. R places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber apprehended:
A cop occupies the same vertex as the robber.
Simple Examples

Cop number in cliques and trees
Simple Examples

Cop number in cliques and trees

Cop and robber games when the robber can hide and ride
Simple Examples

Cop number in cliques and trees

Cop and robber games when the robber can hide and ride
Simple Examples

Cop number in cliques and trees

\[\text{cn (Kn)} = 1 \]
Simple Examples

Cop number in cliques and trees

cn (Kn) = 1
Simple Examples

Cop number in cliques and trees

\[\text{cn (Kn)} = 1 \]
Simple Examples

Cop number in cliques and trees

\[\text{cn (Kn)} = 1 \]
Simple Examples

Cop number in cliques and trees

$cn (Kn) = 1$
Simple Examples

Cop number in cliques and trees

cn (Kn) = 1
Simple Examples

Cop number in cliques and trees

\[
\text{cn (Kn)} = 1 \quad \text{cn (T)} = 1
\]
State of art: $cn(G) = 1$

- **Characterization** of cop-win graphs $\{ G \mid cn(G) = 1 \}$.
 [Nowakowski & Winkler, 83; Quilliot, 83; Chepoi, 97]

Theorem: $cn(G) = 1$ iff

$V(G) = \{ v_1, \ldots , v_n \}$ and for any $i < n$, there is $j > i$ s.t.

$N[v_i] \subseteq N[v_j]$ in the subgraph induced by v_i, \ldots , v_n

Trees, chordal graphs, bridged graphs (...) are cop win.
State of art: $cn(G) = 1$

- **Characterization** of cop-win graphs $\{ G \mid cn(G) = 1 \}$.
 [Nowakowski & Winkler, 83; Quilliot, 83; Chepoi, 97]

Theorem: $cn(G) = 1$ iff

$V(G) = \{v_1, \ldots, v_n\}$ and for any $i < n$, there is $j > i$ s.t.

$N[v_i] \subseteq N[v_j]$ in the subgraph induced by v_i, \ldots, v_n

Trees, chordal graphs, bridged graphs (…) are cop win.
State of art: \(\text{cn}(G) = 1 \)

- **Characterization** of \textit{cop-win} graphs \(\{ G \mid \text{cn}(G) = 1 \} \).
 [Nowakowski & Winkler, 83; Quilliot, 83; Chepoi, 97]

Theorem: \(\text{cn}(G) = 1 \) iff

- \(V(G) = \{ v_1, \cdots, v_n \} \) and
- for any \(i < n \), there is \(j > i \) s.t.
 \(N[v_i] \subseteq N[v_j] \) in the subgraph induced by \(v_i, \cdots, v_n \)

Trees, chordal graphs, bridged graphs (…) are cop win.
State of art: \(cn(G) = 1 \)

- **Characterization** of cop-win graphs \(\{ G \mid cn(G) = 1 \} \).
 [Nowakowski & Winkler, 83; Quilliot, 83; Chepoi, 97]

Theorem: \(cn(G) = 1 \) iff

\[
V(G) = \{ v_1, \cdots, v_n \} \quad \text{and}
\]
for any \(i < n \), there is \(j > i \) s.t.

\[
N[v_i] \subseteq N[v_j] \quad \text{in the subgraph}
\]
induced by \(v_i, \cdots, v_n \)

Trees, chordal graphs, bridged graphs (…) are cop win.
State of art: \(\text{cn}(G) = 1 \)

- **Characterization** of cop-win graphs \(\{ G \mid \text{cn}(G) = 1 \} \).
 [Nowakowski & Winkler, 83; Quilliot, 83; Chepoi, 97]

Theorem: \(\text{cn}(G) = 1 \) iff

\[
V(G) = \{ v_1, \cdots, v_n \} \text{ and for any } i < n, \text{ there is } j > i \text{ s.t. } N[v_i] \subseteq N[v_j] \text{ in the subgraph induced by } v_i, \cdots, v_n
\]

Trees, chordal graphs, bridged graphs (...) are cop win.
State of art: \(cn(G) = 1 \)

- **Characterization** of cop-win graphs \(\{ G \mid cn(G) = 1 \} \).
 [Nowakowski & Winkler, 83; Quilliot, 83; Chepoi, 97]

Theorem: \(cn(G) = 1 \) iff

\[
V(G) = \{ v_1, \cdots, v_n \} \text{ and for any } i < n, \text{ there is } j > i \text{ s.t. } N[v_i] \subseteq N[v_j] \text{ in the subgraph induced by } v_i, \cdots, v_n
\]

Trees, chordal graphs, bridged graphs (…) are cop win.
State of art: \(cn(G) = 1 \)

- **Characterization** of cop-win graphs \(\{ G \mid cn(G) = 1 \} \).
 [Nowakowski & Winkler, 83; Quilliot, 83; Chepoi, 97]

Theorem: \(cn(G) = 1 \) iff

- \(V(G) = \{ v_1, \cdots, v_n \} \) and
- for any \(i < n \), there is \(j > i \) s.t.
 \(N[v_i] \subseteq N[v_j] \) in the subgraph induced by \(v_i, \cdots, v_n \)

Trees, chordal graphs, bridged graphs (…) are cop win.
State of art: complexity

- **Algorithms:** $O(n^k)$ to decide if $\text{cn}(G) \leq k$. [Hahn & MacGillivray, 06]

 $\text{cn}(G) \leq k$ iff the configurations’ graph with k cops is copwin.

- **Complexity:** Computing the cop-number is EXPTIME-complete. [Goldstein & Reingold, 95]
 - in directed graphs;
 - in undirected graphs if initial positions are given.
For any graph G with girth ≥ 5 and min degree $\geq d$, $cn(G) \geq d$. [Aigner & Fromme, 84]

$cn(G) \geq d^t$, where $d + 1 = \text{minimum degree}$, girth $\geq 8t - 3$. [Frankl, 87] (\Rightarrow there are n-node graphs G with $cn(G) \geq \Omega(\sqrt{n})$)

For any k, n, it exists a k-regular graph G with $cn(G) \geq n$ [Andreae, 84]
State of art: upper bound

- **Planar graph** G: $cn(G) \leq 3$.
 [Aigner & Fromme, 84]

- **Bounded genus graph** G with genus g:
 $cn(G) \leq 3/2g + 3$ [Schröder, 01]

- **Minor free graph** G excluding a minor H:
 $cn(G) \leq |E(H \setminus \{x\})|$, where x is any non-isolated vertex of H [Andreae, 86]

- **General upper bound**
 For any connected graph G, $cn(G) \leq O(n/\log(n))$
 [Chiniforooshan, 08]
State of art: upper bound

- **Planar graph** G: $cn(G) \leq 3$.
 [Aigner & Fromme, 84]

- **Bounded genus graph** G with genus g:
 $cn(G) \leq \frac{3}{2g} + 3$ [Schröder, 01]

- **Minor free graph** G excluding a minor H:
 $cn(G) \leq |E(H \setminus \{x\})|$, where x is any non-isolated vertex of H [Andreae, 86]

- **General upper bound**
 For any connected graph G, $cn(G) \leq O(n/\log(n))$
 [Chiniforooshan, 08]

Conjecture: For any connected graph G, $cn(G) \leq O(\sqrt{n})$.

J. Chalopin, V. Chepoi, N. Nisse, Y. Vaxès
Faster protagonists [Fomin, Golovach, Kratochvil, N., Suchan, TCS 2010]

Speed = \(\max \) number of edges traversed in 1 step: \(\text{speed}_R \geq \text{speed}_C = 1 \)

\(\text{cn}_s(G) \) min number of cops to capture a robber with speed \(s \) in \(G \)

Computational hardness

Computing \(\text{cn}_s \) for any \(s \geq 1 \) is NP-hard; the parameterized version is \(\text{W}[2] \)-hard. For \(s \geq 2 \), it is true already on split graphs.

Fast robber in interval graphs

Robber with speed \(s \geq 1 \), \(\text{cn}_s(G) \leq \text{function}(s) \)

\(\Rightarrow \) algorithm in time \(O(n^{\text{function}(s)}) \)

Cop-number is unbounded in planar graphs

\(\forall s > 1, \forall n: \text{then } \text{cn}_s(n \times n\text{grid}) = \Omega(\sqrt{\log n}). \)

\(\forall H \text{ planar with an induced subgraph } \text{Square}_{2f}(k), \text{cn}(H) \geq k. \)
Three variants we consider

When cops and robber can **ride**

\[s = \text{speed}_R \geq \text{speed}_C = s' \]

When the robber can **hide** (witness) [Clarke DM 08]

The robber is visible only every \(k \) steps.

When the cops can **shoot** (radius of capture)

Robber captured when at distance \(k \) from a cop.

Problem: Characterization of cop-win graphs

(cop-win graph: in which one cop always captures the robber)
Three variants we consider

When cops and robber can ride

\[s = \text{speed}_R \geq \text{speed}_C = s' \]

\[CWFR(s, s') \]

When the robber can hide (witness) [Clarke DM 08]

The robber is visible only every \(k \) steps.

\[CWWW(k) \]

When the cops can shoot (radius of capture)

Robber captured when at distance \(k \) from a cop.

\[CWRC(k) \]

Problem: Characterization of cop-win graphs

(cop-win graph: in which one cop always captures the robber)
One fast cop vs. a fast robber

\[\text{CWFR}(s, s') = \{ G \mid \text{C with speed } s' \text{ wins against } R \text{ with speed } s \} \]

Theorem [Nowakowski & Winkler, 83; Quilliot, 83]

\[G \in \text{CWFR}(1, 1) \text{ iff } G \text{ dismantable, i.e., } V(G) = \{ v_1, \ldots, v_n \}, \]
\[\forall i < n, \exists j > i, \text{ s.t. } N_1(v_i, G_i) \subseteq N_1(v_j, G_i) \text{ with } G_i = G[v_i, \ldots, v_n] \]

Roughly,

if \(R \) on \(v_i \) and \(C \) on \(v_j \)

\(R \) must go to a smaller vertex

How to generalize?
One fast cop vs. a fast robber

\[CWFR(s, s') = \{ G | \text{C with speed } s' \text{ wins against } R \text{ with speed } s \} \]

Theorem [Nowakowski & Winkler, 83; Quilliot, 83]

\[G \in CWFR(1, 1) \text{ iff } G \text{ dismantable, i.e., } V(G) = \{v_1, \ldots, v_n\}, \forall i < n, \exists j > i \text{ s.t. } N_1(v_i, G_i) \subseteq N_1(v_j, G_i) \text{ with } G_i = G[v_i, \ldots, v_n] \]

Roughly,

if \(R \) on \(v_i \) and \(C \) on \(v_j \)

\(R \) must go to a smaller vertex

How to generalize?

\[N_s(v_i, G_i \setminus \{v_j\}) \subseteq N_s'(v_j, G_i) \]

?? No

\[N_s(v_i, G \setminus \{v_j\}) \cap G_i \subseteq N_s'(v_j) \]
One fast cop vs. a fast robber

Theorem Characterization of $\text{CWFR}(s, s')$

$G \in \text{CWFR}(s, s')$ iff $V(G) = \{v_1, \ldots, v_n\}$, $\forall i < n$, $\exists j > i$, s.t. $N_s(v_i, G \setminus \{v_j\}) \cap X_i \subseteq N_{s'}(v_j)$ with $X_i = \{v_i, \ldots, v_n\}$

For the proof: more general game with $X \subseteq V(G)$

X-game: \mathcal{C} and \mathcal{R} occupy only X but can pass through $V(G)$

Theorem X-game, $X \subseteq V(G)$

$G \in X\text{-CWFR}(s, s')$ iff $X = \{v_1, \ldots, v_{|X|}\}$, $\forall i < n$, $\exists j > i$, s.t. $N_s(v_i, G \setminus \{v_j\}) \cap X_i \subseteq N_{s'}(v_j)$ with $X_i = \{v_i, \ldots, v_{|X|}\}$

proof by induction on $|X|$
One fast cop vs. a fast robber

Theorem Characterization of $\text{CWFR}(s, s')$

$G \in \text{CWFR}(s, s')$ iff $V(G) = \{v_1, \cdots, v_n\}$, $\forall i < n$, $\exists j > i$, s.t. $N_s(v_i, G \setminus \{v_j\}) \cap X_i \subseteq N_{s'}(v_j)$ with $X_i = \{v_i, \cdots, v_n\}$

For the proof: more general game with $X \subseteq V(G)$

X-game: C and R occupy only X but can pass through $V(G)$

Theorem X-game, $X \subseteq V(G)$

$G \in X\text{-CWFR}(s, s')$ iff $X = \{v_1, \cdots, v_{|X|}\}$, $\forall i < n$, $\exists j > i$, s.t. $N_s(v_i, G \setminus \{v_j\}) \cap X_i \subseteq N_{s'}(v_j)$ with $X_i = \{v_i, \cdots, v_{|X|}\}$

proof by induction on $|X|$
Assume \(G \in X-\mathcal{CWFR}(s, s') \)

Consider a "longuest" sequence for \(\mathcal{R} \). \(v_1 \in X \)

one-to-last vertex occupied by \(\mathcal{R} \).

\(y \in X \) the vertex occupied by \(\mathcal{C} \) at the same moment.

\(\mathcal{R} \) caugth after next move

\[\Rightarrow N_s(v_1, G \setminus \{y\}) \cap X \subseteq N_{s'}(y) \]

Remains to show

\(G \in X_2-\mathcal{CWFR}(s, s') \)

\((X_2 = \{v_2, \cdots, |X|\}) \)
Assume $G \in X-CWFR(s, s')$
Consider a ”longuest” sequence for R.

We have $N_s(v_1, G \setminus \{y\}) \cap X \subseteq N_{s'}(y)$
We show that $G \in X_2-CWFR(s, s')$

σ winning strategy in X-game (positional game)
$\sigma : X \times X \to X, (\text{pos. C}, \text{pos. R}) \to \text{next pos. C}$
Assume $G \in X$-$CWFR(s, s')$

Consider a "longuest" sequence for R.

We have $N_s(v_1, G \setminus \{y\}) \cap X \subseteq N_{s'}(y)$

We show that $G \in X_2$-$CWFR(s, s')$

σ winning strategy in X-game (positional game)

$\sigma : X \times X \rightarrow X, (\text{pos. } C, \text{pos. } R) \rightarrow \text{next pos. } C$

σ' winning strategy in X_2-game (with one bit of memory)

Roughly, C acts as in X but if it was in v_1

$\approx \sigma'(c, r, 0) = (\sigma(c, r), 0)$ if $\sigma(c, r) \neq v_1$, $\sigma'(c, r, 0) = (y, 1)$ otherwise
Sketch of proof

\[N_s(v_i, G \setminus \{v_j\}) \cap X_i \subseteq N'_{s'}(v_j) \]

- If \(G \in X-C\mathcal{WFR}(s, s') \) then \(X \) admits the desired ordering
- Assume \(X \) admits the desired ordering

Then \(X_2 \) admits the desired ordering
By induction, \(G \in X_2-C\mathcal{WFR}(s, s') \)

\(\sigma' \) winning strategy in \(X_2 \)-game \(\rightarrow \) Build \(\sigma \) in \(X \)-game

Roughly, \(C \) follows \(\sigma' \) but if \(R \) in \(v_1 \).
In the latter case, \(C \) captures \(R \) or acts as if \(R \) in \(y \).

\[\approx \sigma(c, r) = \sigma'(c, r) \text{ if } r, c \neq v_1, \text{ and } \sigma'(c, v_1) = \sigma'(c, y) \text{ otherwise} \]

We prove that \(\sigma \) is winning \(\quad \text{(technical part)} \)
Cop-win graphs and hyperbolicity

Theorem Characterization of $\mathcal{CWFR}(s, s')$

$G \in \mathcal{CWFR}(s, s')$ iff $V(G) = \{v_1, \ldots, v_n\}$, $\forall i < n$, $\exists j > i$, s.t. $N_s(v_i, G \setminus \{v_j\}) \cap X_i \subseteq N_{s'}(v_j)$ with $X_i = \{v_i, \ldots, v_n\}$

G is δ-hyperbolic if $\forall u, v, x, y \in V(G)$, the 2 larger distances among $d(u, v) + d(x, y), d(u, x) + d(v, y), d(u, y) + d(v, x)$ differ by at most 2δ
Theorem Characterization of $\mathcal{CWFR}(s, s')$

$G \in \mathcal{CWFR}(s, s')$ iff $V(G) = \{v_1, \cdots, v_n\}$, $\forall i < n$, $\exists j > i$, s.t. $N_s(v_i, G \setminus \{v_j\}) \cap X_i \subseteq N_{s'}(v_j)$ with $X_i = \{v_i, \cdots, v_n\}$

G is δ-hyperbolic if $\forall u, v, x, y \in V(G)$, the 2 larger distances among $d(u, v) + d(x, y), d(u, x) + d(v, y), d(u, y) + d(v, x)$ differ by at most 2δ

Theorem Hyperbolicity helps the cop

$\forall r > 2\delta \geq 0$, and G a δ-hyperbolic graph, $G \in \mathcal{CWFR}(2r, r + \delta)$

Theorem Cop-win ”leads” to hyperbolicity

If $s \geq 2s'$, then any $G \in \mathcal{CWFR}(s, s')$ is $(s - 1)$-hyperbolic.

Question: $\forall s > s'$, any $G \in \mathcal{CWFR}(s, s')$ is $f(s)$-hyperbolic?
One slow cop vs. a fast robber

We consider C with speed one

$CWFR(s) = CWFR(s, 1)$

Characterization of $CWFR(s)$

$G \in CWFR(s)$ iff G is

Case $s = 1$: dismantable
Case $s = 2$: dually-chordal
Case $s \geq 3$: a ”big brother graph”

G is a big brother graph if each block (maximal 2-connected comp.) is dominated by its articulation point with its parent-block.
More speed does not help R vs. a slow cop

$\forall s \geq 3, \ G \in CWFR(s) \text{ iff } G \text{ is a big brother graph.}$

$G \text{ big brother } \Rightarrow G \in CWFR(\infty) \subseteq \cdots \subseteq CWFR(3)$
More speed does not help \mathcal{R} vs. a slow cop

$\forall s \geq 3, \ G \in CWFR(s)$ iff G is a big brother graph.

G big brother \Rightarrow $G \in CWFR(\infty) \subseteq \cdots \subseteq CWFR(3)$
More speed does not help R vs. a slow cop

$\forall s \geq 3, G \in CWFR(s)$ iff G is a big brother graph.

G big brother $\Rightarrow G \in CWFR(\infty) \subseteq \cdots \subseteq CWFR(3)$
More speed does not help R vs. a slow cop

$\forall s \geq 3, \ G \in CWFR(s)$ iff G is a big brother graph.

G big brother $\Rightarrow G \in CWFR(\infty) \subseteq \cdots \subseteq CWFR(3)$
More speed does not help R vs. a slow cop

\[\forall s \geq 3, \ G \in CWFR(s) \text{ iff } G \text{ is a big brother graph.} \]

G big brother $\Rightarrow G \in CWFR(\infty) \subseteq \cdots \subseteq CWFR(3)$

Let $G \in CWFR(3)$

induction on the number of blocks

- if G is 2-connected

induction on $|V(G)|$

$V = \{v_1, \cdots, v_n\}$, $N_3(v_1, G \setminus \{y\}) \subseteq N_1(y)$ and $G \setminus \{v_1\} \in CWFR(3)$

We prove G is dominated by y

either $G \setminus \{v_1\}$ is 2–connected dominated by b
More speed does not help \mathcal{R} vs. a slow cop

$\forall s \geq 3, G \in CWFR(s)$ iff G is a big brother graph.

Let $G \in CWFR(3)$

induction on the number of blocks

- if G is 2-connected
 induction on $|V(G)|$
 \[V = \{v_1, \ldots, v_n\}, N_3(v_1, G \setminus \{y\}) \subseteq N_1(y) \text{ and } G \setminus \{v_1\} \in CWFR(3) \]

We prove G is dominated by y

or $G \setminus \{v_1\}$ is not 2-connected and y is the dominating articulation point
More speed does not help R vs. a slow cop

$\forall s \geq 3$, $G \in CWFR(s)$ iff G is a big brother graph.

G big brother $\Rightarrow G \in CWFR(\infty) \subseteq \cdots \subseteq CWFR(3)$

Let $G \in CWFR(3)$

induction on the number of blocks

- if G is 2-connected \Rightarrow dominated

- if G is not 2-connected

If B a leaf-block dominated by articulation point

$G \setminus B \in CWFR(3)$ because retract

$\Rightarrow G \setminus B$ is big brother $\Rightarrow G$ is big brother
More speed does not help R vs. a slow cop

$\forall s \geq 3, \ G \in CWFR(s)$ iff G is a big brother graph.

G big brother $\Rightarrow G \in CWFR(\infty) \subseteq \cdots \subseteq CWFR(3)$

Let $G \in CWFR(3)$

induction on the number of blocks
- if G is 2-connected \Rightarrow dominated
- if G is not 2-connected
 If B a leaf-block dominated by articulation point
 $G \setminus B \in CWFR(3)$ because retract
 $\Rightarrow G \setminus B$ is big brother $\Rightarrow G$ is big brother

If not, escape strategy for R
More speed does not help \mathcal{R} vs. a slow cop

$\forall s \geq 3, \ G \in CWFR(s) \iff G$ is a big brother graph.

G big brother $\Rightarrow G \in CWFR(\infty) \subseteq \cdots \subseteq CWFR(3)$

Let $G \in CWFR(3)$

induction on the number of blocks
- if G is 2-connected \Rightarrow dominated
- if G is not 2-connected
 If B a leaf-block dominated by articulation point $G \setminus B \in CWFR(3)$ because retract
 $\Rightarrow G \setminus B$ is big brother $\Rightarrow G$ is big brother
 If not, escape strategy for \mathcal{R}
More speed does not help \mathcal{R} vs. a slow cop

∀$s \geq 3$, $G \in CWFR(s)$ iff G is a big brother graph.

G big brother \Rightarrow $G \in CWFR(\infty) \subseteq \cdots \subseteq CWFR(3)$

Let $G \in CWFR(3)$
induction on the number of blocks
- if G is 2-connected \Rightarrow dominated
- if G is not 2-connected
 If B a leaf-block dominated by articulation point
 $G \setminus B \in CWFR(3)$ because retract
 \Rightarrow $G \setminus B$ is big brother \Rightarrow G is big brother

If not, escape strategy for \mathcal{R}
The witness version

\[CWW(k) = \{ G | C \text{ wins against } R \text{ visible every } k \text{ steps } \} \]
\[CWFR(s) \subseteq CWW(s) \]

Equality ??
$CW\forall(k) = \{ G | C \text{ wins against } R \text{ visible every } k \text{ steps } \}$

$CWFR(s) \subseteq CW\forall(s)$

Equality ??

NO: G with diameter 2 and no dominating vertex

$\Rightarrow G \notin CWFR(s)$ for any $s \geq 2$, but $G \in CW\forall(s)$ for any $k \geq 1$
The witness version

\[\text{CWW}(k) = \{ G \mid \text{C wins against R visible every } k \text{ steps} \} \]

\[\text{CWFR}(s) \subseteq \text{CWW}(s) \quad \text{equality ??} \]

NO: \(G \) with diameter 2 and no dominating vertex

\[\Rightarrow G \notin \text{CWFR}(s) \text{ for any } s \geq 2, \text{ but } G \in \text{CWW}(s) \text{ for any } k \geq 1 \]
The witness version

\[\text{CWW}(k) = \{ G \mid C \text{ wins against } R \text{ visible every } k \text{ steps} \} \]

\[\text{CWFR}(s) \subseteq \text{CWW}(s) \]

NO: \(G \) with diameter 2 and no dominating vertex

\[\Rightarrow G \notin \text{CWFR}(s) \text{ for any } s \geq 2, \text{ but } G \in \text{CWW}(s) \text{ for any } k \geq 1 \]
The witness version

\[\mathcal{CWWW}(k) = \{ G \mid C \text{ wins against } R \text{ visible every } k \text{ steps} \} \]

\[\mathcal{CWFR}(s) \subseteq \mathcal{CWWW}(s) \]

NO: \(G \) with diameter 2 and no dominating vertex

\[\Rightarrow G \not\in \mathcal{CWFR}(s) \text{ for any } s \geq 2, \text{ but } G \in \mathcal{CWWW}(s) \text{ for any } k \geq 1 \]
$CWW(k) = \{ G \mid \text{C wins against R visible every } k \text{ steps} \}$

$CWFR(s) \subseteq CWW(s)$

NO: G with diameter 2 and no dominating vertex

$\Rightarrow G \notin CWFR(s)$ for any $s \geq 2$, but $G \in CWW(s)$ for any $k \geq 1$
The witness version

\[C_{\text{WW}}(k) = \{ G \mid C \text{ wins against } R \text{ visible every } k \text{ steps} \} \]

\[C_{\text{WFR}}(s) \subseteq C_{\text{WW}}(s) \]

Equality ??

NO: \(G \) with diameter 2 and no dominating vertex

\[G \notin C_{\text{WFR}}(s) \text{ for any } s \geq 2, \text{ but } G \in C_{\text{WW}}(s) \text{ for any } k \geq 1 \]

Importance of edge-separator
The witness version

\[CWW(k) = \{ G \mid C \text{ wins against } R \text{ visible every } k \text{ steps} \} \]

Lemma visibility is weaker than speed

\[\forall s \geq 2, \ CWFR(s) \subset CWW(s) \]

Lemma less visibility helps \(R \)

\[\forall k \geq 1, \text{ there are graphs in } CWFR(k) \setminus CWFR(k + 1) \]
The witness version

\[CWW(k) = \{ G \mid C \text{ wins against } R \text{ visible every } k \text{ steps} \} \]

Lemma

visibility is weaker than speed

\[\forall s \geq 2, \ CWR(s) \subset CWW(s) \]

Lemma

less visibility helps \(R \)

\[\forall k \geq 1, \text{ there are graphs in } CWR(k) \setminus CWR(k + 1) \]
The witness version

\[CWW(k) = \{ G \mid C \text{ wins against } R \text{ visible every } k \text{ steps} \} \]

Lemma visibility is weaker than speed

\(\forall s \geq 2, CWFR(s) \subset CWW(s) \)

Lemma less visibility helps \(R \)

\(\forall k \geq 1, \text{ there are graphs in } CWFR(k) \setminus CWFR(k + 1) \)
The witness version

$$CW\mathcal{W}(k) = \{ G \mid C \text{ wins against } R \text{ visible every } k \text{ steps} \}$$

Lemma

Visibility is weaker than speed

$$\forall s \geq 2, \ CW\mathcal{F}R(s) \subset CW\mathcal{W}(s)$$

Lemma

Less visibility helps R

$$\forall k \geq 1, \text{ there are graphs in } CW\mathcal{F}R(k) \setminus CW\mathcal{F}R(k + 1)$$
The witness version

\[CWW(k) = \{ G \mid C \text{ wins against } R \text{ visible every } k \text{ steps} \} \]

Lemma visibility is weaker than speed

\[\forall s \geq 2, \ CWF_R(s) \subset CWW(s) \]

Lemma less visibility helps \(R \)

\[\forall k \geq 1, \text{ there are graphs in } CWF_R(k) \setminus CWF_R(k + 1) \]
The witness version

\[CWW(k) = \{ G \mid C \text{ wins against } R \text{ visible every } k \text{ steps} \} \]

<table>
<thead>
<tr>
<th>Lemma</th>
<th>visibility is weaker than speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\forall s \geq 2, CWFR(s) \subset CWW(s))</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lemma</th>
<th>less visibility helps (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\forall k \geq 1, \text{ there are graphs in } CWFR(k) \setminus CWFR(k + 1))</td>
<td></td>
</tr>
</tbody>
</table>

Question: \(CWFR(k + 1) \subset CWFR(k) \)?
The big two-brother graphs

\[\mathcal{WWW} = \{ G | \forall k, C \text{ wins vs. } R \text{ visible every } k \text{ steps } \} = \bigcap_k \mathcal{WWW}(k) \]

Theorem

\(\mathcal{WWW} \) is the class of the big two-brother graphs

\(G \) is a big two-brother graph if

\[\exists y \in V \text{ or } xy \in E \text{ s.t. } x \text{ or } y \]

-dominated a connected comp. \(C \) of \(G \setminus \{x, y\} \) and \(G \setminus C \) is a big two-brother graph
The big two-brother graphs

\[CWW = \{ G \mid \forall k, C \text{ wins vs. } R \text{ visible every } k \text{ steps } \} = \cap_k CWW(k) \]

Theorem

CWW is the class of the big two-brother graphs

big two-brother ⇒ *CWW* (easy)

G is a **big two-brother graph** if

\[\exists y \in V \text{ or } xy \in E \text{ s.t. } x \text{ or } y \text{ dominated a connected comp. } C \text{ of } G \setminus \{x, y\} \text{ and } G \setminus C \text{ is a big two-brother graph} \]

big two-brother ⇒ *CWW* (easy)
The big two-brother graphs

$$\mathcal{CWW} = \{ G | \forall k, \, C \text{ wins vs. } R \text{ visible every } k \text{ steps } \} = \bigcap_k \mathcal{CWW}(k)$$

Theorem

\mathcal{CWW} is the class of the big two-brother graphs

G is a big two-brother graph if

\[\exists y \in V \text{ or } xy \in E \text{ s.t. } x \text{ or } y \text{ dominated a connected comp. } C \text{ of } G \setminus \{x, y\} \text{ and } G \setminus C \text{ is a big two-brother graph} \]

* big two-brother \Rightarrow \mathcal{CWW} (easy)

* \mathcal{CWW} \Rightarrow big two-brother

\[\forall k, \, G \in \mathcal{CWW}(k^2) \text{ without degree-1 vertex then, } \exists v \in V, \, xy \in E, \, N_k(v, G \setminus xy) \subseteq N_1(y) \]
Lemma Necessity

If \(G \in \text{CWW}(2) \) then

\[V = \{v_1, \ldots, v_n\}, \text{ and } \forall i, \exists xy \in E(G_{i+1}) \]

(possibly \(x = y \)) \(N_2(v_i, G \setminus xy) \cap G_i \subseteq N_1(y) \)

Lemma Sufficiency

If \(V = \{v_1, \ldots, v_n\}, \text{ and } \forall i, \exists xy \in E(G_{i+1}) \)

(possibly \(x = y \)) \(N_2(v_i, G \setminus xy) \cap G_i \subseteq N_1(y) \)

and, if \(x \neq y \), then

\(N_2(v_i, G \setminus y) \cap G_i \subseteq N_2(x, G \setminus y) \)

then \(G \in \text{CWW}(2) \)
Lemma

If \(V = \{v_1, \cdots, v_n\} \), and \(\forall i, \exists xy \in E(G_{i+1}) \) (possibly \(x = y \))
\(N_k(v_i, G \setminus xy) \cap G_i \subseteq N_1(y) \)

then \(G \in \mathcal{CWW}(k) \)

Sufficiency for any \(k \) odd

But it is not necessary...
Sketch of proof

If \(V = \{v_1, \ldots, v_n\}, \forall i, \exists xy \in E(G_{i+1}) \) (possibly \(x = y \)) \(N_k(v_i, G \setminus xy) \cap G_i \subseteq N_1(y) \)
then \(G \in CWW(k) \)

Use of configuration’s graph

Procedure:

1. init: all config. unmarked
2. mark all \((c, r)\) s.t. \(r \in N_1(c) \) with 1
3. while possible,
 mark \((c, r)\) with the minimum \(\ell + 1 \) s.t. \(\exists y \in N_1(c) \) and \(x \in N_1(y) \subseteq r \) s.t.
 \(\forall z \in N_k(r, G \setminus xy), (y, z) \) marked \(\leq \ell \)

If all config. marked \(\Rightarrow G \in CWW(k) \)
If desired ordering \(\Rightarrow \) all config. marked
Finally, let’s advantage the cop :)

\[\text{CWRC}(k) = \{ G \mid \text{C wins when capturing at dist. } \leq k \} \]

Theorem

A bipartite graph \(G \) is in \(\text{CWRC}(1) \) iff

\[
V = \{ v_1, \ldots, v_n \} \text{ s.t. } \\
\{ v_{n-1}, v_n \} \in E \text{ and } \forall i, \exists j > i, \{ v_j, v_i \} \notin E \text{ and } N(v_i, G_i) \subseteq N_1(v_j)
\]

Characterization of \(\text{CWRC}(k) \) seems harder, even for \(k = 1 \)...
Perspectives

In case $speed_R = speed_C = 1$

- G of genus $g \Rightarrow cn(G) \leq \frac{3}{2}g + 3$. [Schröder, 01]
 Conjecture: G of genus $g \Rightarrow cn(G) \leq g + 3$.

- General upper bound for cn?
 for any connected graph G, $cn(G) \leq O(n/\log n)$.
 [Chiniforooshan, 08]
 Conjecture: $cn(G) \leq O(\sqrt{n})$.

In case $speed_R > speed_C$

- $\Omega(\sqrt{\log(n)}) \leq cn(Square_n) \leq O(n)$. Exact value?
- What about other graphs’classes?

Full characterization of cop-win graphs when witness?
Characterization of cop-win graphs when the cop can ”shoot”?

J. Chalopin, V. Chepoi, N. Nisse, Y. Vaxès
Thank you

Any questions?