On Minimizing the Maximum Color for the 1-2-3 Conjecture

Julien Bensmail, Bi Li, Binlong Li, Nicolas Nisse

Université Côte d'Azur, Inria, CNRS, I3S, France

COATI seminar@home, April 17th, 2020

Vertex Coloration and Edge Labeling

k-Vertex Coloring of $G=(V, E): c: V \rightarrow\{1, \cdots, k\}$.
proper: adjacent vertices have distinct colors: for every $u v \in E, c(u) \neq c(v)$.

Chromatic number $\chi(G)$
$\chi(G)=\min \{k \mid G$ has a k proper coloring $\} \quad \omega(G) \leq \chi(G) \leq \Delta(G)+1$

Vertex Coloration and Edge Labeling

k-Vertex Coloring of $G=(V, E): c: V \rightarrow\{1, \cdots, k\}$.
proper: adjacent vertices have distinct colors: for every $u v \in E, c(u) \neq c(v)$.

NOT PROPER (k=2)

Chromatic number $\chi(G)$

$\chi(G)=\min \{k \mid G$ has a k proper coloring $\} \quad \omega(G) \leq \chi(G) \leq \Delta(G)+1$
k-Edge labeling: $\ell: E \rightarrow\{1, \cdots, k\}$
Induced vertex-coloring $c_{\ell}: V \rightarrow \mathbb{N} \quad$ for every $v \in V, c_{\ell}(v)=\sum_{u \in N(v)} \ell(u v)$.

Find a k-labeling inducing proper coloring with $k \ll \chi(G)$? [Karoński,Luczak,Thomason,04]

Edge Labeling: first examples

k-Edge labeling: $\ell: E \rightarrow\{1, \cdots, k\}$
Induced vertex-coloring $c_{\ell}: V \rightarrow \mathbb{N}$

$$
\text { for every } v \in V, c_{\ell}(v)=\sum_{u \in N(v)} \ell(u v)
$$

Let's play: for each of the 6 graphs, give a k-labeling inducing a proper coloring COATIQUIZZ: I count the points!!

Edge Labeling: first examples

k-Edge labeling: $\ell: E \rightarrow\{1, \cdots, k\}$
Induced vertex-coloring $c_{\ell}: V \rightarrow \mathbb{N}$

$$
\text { for every } v \in V, c_{\ell}(v)=\sum_{u \in N(v)} \ell(u v) .
$$

Let's play: for each of the 6 graphs, give a k-labeling inducing a proper coloring COATIQUIZZ: I count the points!!

- No k-proper labeling of K_{2} :
-

Edge Labeling: first examples

k-Edge labeling: $\ell: E \rightarrow\{1, \cdots, k\}$
Induced vertex-coloring $c_{\ell}: V \rightarrow \mathbb{N}$

$$
\text { for every } v \in V, c_{\ell}(v)=\sum_{u \in N(v)} \ell(u v)
$$

Let's play: for each of the 6 graphs, give a k-labeling inducing a proper coloring COATIQUIZZ: I count the points!!

- No k-proper labeling of K_{2} :(
- locally irregular graph: for every $u v \in E, \operatorname{deg}(u) \neq \operatorname{deg}(v)$.

$$
\text { locally irregular } \Leftrightarrow \text { 1-proper-labeling. }
$$

Edge Labeling: first examples

k-Edge labeling: $\ell: E \rightarrow\{1, \cdots, k\}$
Induced vertex-coloring $c_{\ell}: V \rightarrow \mathbb{N}$

$$
\text { for every } v \in V, c_{\ell}(v)=\sum_{u \in N(v)} \ell(u v)
$$

Let's play: for each of the 6 graphs, give a k-labeling inducing a proper coloring COATIQUIZZ: I count the points!!

- No k-proper labeling of K_{2} :(
- locally irregular graph: for every $u v \in E, \operatorname{deg}(u) \neq \operatorname{deg}(v)$.

$$
\text { locally irregular } \Leftrightarrow \text { 1-proper-labeling. }
$$

Edge Labeling: first examples

k-Edge labeling: $\ell: E \rightarrow\{1, \cdots, k\}$
Induced vertex-coloring $c_{\ell}: V \rightarrow \mathbb{N}$

$$
\text { for every } v \in V, c_{\ell}(v)=\sum_{u \in N(v)} \ell(u v) \text {. }
$$

Let's play: for each of the 6 graphs, give a k-labeling inducing a proper coloring COATIQUIZZ: I count the points!!

- No k-proper labeling of K_{2} :(
- locally irregular graph: for every $u v \in E, \operatorname{deg}(u) \neq \operatorname{deg}(v)$.

$$
\text { locally irregular } \Leftrightarrow \text { 1-proper-labeling. }
$$

Edge Labeling: first examples

k-Edge labeling: $\ell: E \rightarrow\{1, \cdots, k\}$
Induced vertex-coloring $c_{\ell}: V \rightarrow \mathbb{N}$

$$
\text { for every } v \in V, c_{\ell}(v)=\sum_{u \in N(v)} \ell(u v) \text {. }
$$

Let's play: for each of the 6 graphs, give a k-labeling inducing a proper coloring COATIQUIZZ: I count the points!!

- No k-proper labeling of K_{2} :(
- locally irregular graph: for every $u v \in E, \operatorname{deg}(u) \neq \operatorname{deg}(v)$.

$$
\text { locally irregular } \Leftrightarrow \text { 1-proper-labeling. }
$$

Edge Labeling: first examples

k-Edge labeling: $\ell: E \rightarrow\{1, \cdots, k\}$
Induced vertex-coloring $c_{\ell}: V \rightarrow \mathbb{N}$

$$
\text { for every } v \in V, c_{\ell}(v)=\sum_{u \in N(v)} \ell(u v)
$$

Let's play: for each of the 6 graphs, give a k-labeling inducing a proper coloring COATIQUIZZ: I count the points!!

- No k-proper labeling of K_{2} :(
- locally irregular graph: for every $u v \in E, \operatorname{deg}(u) \neq \operatorname{deg}(v)$.

$$
\text { locally irregular } \Leftrightarrow \text { 1-proper-labeling. }
$$

Neighbour-sum-distinguishing chromatic index

G has a proper k-labeling (for some $k \in \mathbb{N}$) \Leftrightarrow no connected component of G is K_{2}.

Neighbour-sum-distinguishing chromatic index

G has a proper k-labeling (for some $k \in \mathbb{N}$) \Leftrightarrow no connected component of G is K_{2}.

$\chi_{\Sigma}(G)=\min \{k \mid \quad G$ has a k-proper-labeling $\}$ well defined for all graphs without K_{2} as connected component (nice graphs).
History. For every nice graph G :
$\chi_{\Sigma}(G) \leq 30$
[Addario-Berry,Dalal,McDiarmid,Reed,Thomason 2007]
[Kalkowski,Karoński,Pfender 2010]

1-2-3 Conjecture: for every nice graph $G, \chi_{\Sigma}(G) \leq 3$

Complexity
Deciding if $\chi_{\Sigma}(G) \leq 2$ is NP-complete in cubic graphs.
[Ahadi,Dehghan,Sadegh 2013]

1-2-3 Conjecture holds in various graph classes

Locally irregular graphs (no adjacent vertices have same degree)
$\chi_{\sum}(G)=1$ iff G is locally irregular.

Trees with at least 2 edges
For every nice tree $T, \chi_{\sum}(T) \leq 2$.

Cycles C_{n} with $n \geq 3$ vertices
$\chi_{\sum}\left(C_{n}\right)=2$ if $n \equiv 0 \bmod 4$ and $\chi_{\sum}\left(C_{n}\right)=3$ otherwise.

Complete graphs K_{n} with $n \geq 3$ vertices
$\chi_{\sum}\left(K_{n}\right)=3$.

Nice bipartite graphs
For every nice bipartite graph $B, \chi_{\sum}(B) \leq 3$
Characterization of bipartite graphs B with $\chi_{\sum}(B)=3$ (odd multi cacti)

Nice d-regular graphs (all vertices of degree d)
For every nice d regular graph $G, \chi_{\sum}(G) \leq 4$, and $\chi_{\sum}(G) \leq 3$ if $d \geq 10^{8}$.

What next?

Play with variants

Let G be a nice graph and $k \geq \chi_{\Sigma}(G)$. Find a k-proper labeling of G such that:
Minimize the number of distinct colors of vertices
[Baudon,Bensmail,Hocquard,Senhaji,Sopena 2019]

Minimize the maximum color of the vertices
(this talk)
[Bensmail,Li,Li,N.]

Minimize the total sum of the colors of the vertices
[Bensmail,Fioravantes,N., IWOCA 2020]

Equitable labeling
$\ell: E \rightarrow\{1, \cdots, k\}$ is equitable if, for all $i \neq j \leq k,|\{e \in E \mid \ell(e)=i\}|$ and
$|\{e \in E \mid \ell(e)=j\}|$ differ by at most one.
[Baudon,Pilśniak,Przybylo,Senhaji,Sopena,Wozńia 2017]
[Bensmail,Fioravantes, McInerney,N.]

COATIQUIZZ: Find the intruder (you'll get one point)

Proper labeling with min. maximum sum (color)

Let $k \geq \chi_{\sum}(G)$. k-proper-Edge labeling: $\ell: E \rightarrow\{1, \cdots, k\}$.
For every $v w \in E, c_{\ell}(v)=\sum_{u \in N(v)} \ell(u v) \neq \sum_{u \in N(w)} \ell(u w)=c_{\ell}(w)$.
$m S(G, \ell)=\max _{v \in V} c_{\ell}(v)$.

Proper labeling with min. maximum sum (color)

Let $k \geq \chi_{\Sigma}(G)$. k-proper-Edge labeling: $\ell: E \rightarrow\{1, \cdots, k\}$.

$$
\text { For every } v w \in E, c_{\ell}(v)=\sum_{u \in N(v)} \ell(u v) \neq \sum_{u \in N(w)} \ell(u w)=c_{\ell}(w) \text {. }
$$

$m S(G, \ell)=\max _{v \in V} c_{\ell}(v)$.
Find a k-proper labelling minimizing the maximum vertex-color
$m S_{k}(G)=\min m S(G, \ell)$ among all k-proper-Edge labeling ℓ.
Here: complexity and bounds when k is fixed in various graph classes.

Proper labeling with min. maximum sum (color)

Let $k \geq \chi_{\Sigma}(G)$. k-proper-Edge labeling: $\ell: E \rightarrow\{1, \cdots, k\}$.
For every $v w \in E, c_{\ell}(v)=\sum_{u \in N(v)} \ell(u v) \neq \sum_{u \in N(w)} \ell(u w)=c_{\ell}(w)$.
$m S(G, \ell)=\max _{v \in V} c_{\ell}(v)$.
Find a k-proper labelling minimizing the maximum vertex-color
$m S_{k}(G)=\min m S(G, \ell)$ among all k-proper-Edge labeling ℓ.
Here: complexity and bounds when k is fixed in various graph classes.

Find a proper labelling minimizing the maximum vertex-color

$$
m S(G)=\min \left\{m S_{k}(G) \mid k \geq \chi_{\Sigma}(G)\right\} .
$$

Is it interesting to increase the maximum edge-label k to decrease the maximum color? I.e., is there $k \geq \chi_{\Sigma}(G)$ and a graph G such that $m S_{k}(G)>m S_{k+1}(G)$?

Min. maximum sum: basic (?) results

```
\(m S_{k}(G)=\min m S(G, \ell)\) among all \(k\)-proper-Edge labeling \(\ell\).
\(m S(G)=\min \left\{m S_{k}(G) \mid k \geq \chi_{\Sigma}(G)\right\}\).
```

For every nice graph G with maximum degree Δ :
$\Delta \leq m S(G) \leq \chi_{\Sigma}(G) \cdot \Delta \leq 5 \Delta$
COATIQUIZZ: Why? (you'll get one point)

Min. maximum sum: basic (?) results

$m S_{k}(G)=\min m S(G, \ell)$ among all k-proper-Edge labeling ℓ.
$m S(G)=\min \left\{m S_{k}(G) \mid k \geq \chi_{\Sigma}(G)\right\}$.
For every nice graph G with maximum degree Δ :
$\Delta \leq m S(G) \leq \chi_{\Sigma}(G) \cdot \Delta \leq 5 \Delta$
[Kalkowski,Karoński,Pfender 2010]

COATIQUIZZ: Why? (you'll get one point)

Link with 1-2-3 conjecture:
If every nice graph admits a 3-proper labeling such that every vertex is incident to $O(1)$ edges labeled with 3 , then, for every nice graph $G, m S(G) \leq 2 \Delta+O(1)$.

Conjecture?
 if correct it is mine, otherwise, it is Julien's :)

For every nice graph G with maximum degree $\Delta, m S(G) \leq 2 \Delta+O(1)$?

Min. maximum sum, first example: cliques

Complete graphs K_{n} with $n \geq 3$ vertices

$\chi_{\Sigma}\left(K_{n}\right)=3$.
Classical labeling $\ell \Rightarrow m S\left(K_{n+1}, \ell\right)=3 n$ for $n>2$ even.

Min. maximum sum, first example: cliques

Complete graphs K_{n} with $n \geq 3$ vertices
$\chi_{\sum}\left(K_{n}\right)=3 . \quad$ Classical labeling $\ell \Rightarrow m S\left(K_{n+1}, \ell\right)=3 n$ for $n>2$ even.

Theorem

$m S\left(K_{n}\right)=2 \Delta$ if $n \equiv 0$ or $1 \bmod 4$ and $m S\left(K_{n}\right)=2 \Delta+1$ otherwise.

lower bound by counting argument: all colors must be different and their sum even.

Min. maximum sum: complexity

Theorem

Let $k \geq 2$. Deciding if $m S_{k}(G) \leq 9$ is NP-hard in bipartite graphs with $\Delta=9$.

Gadget allowing to have vertices /edges with required colors/labels (here, if we forbid color>5).

Min. maximum sum: complexity

Theorem

Let $k \geq 2$. Deciding if $m S_{k}(G) \leq 9$ is NP-hard in bipartite graphs with $\Delta=9$.

Min. maximum sum: complexity

Theorem

Let $k \geq 2$. Deciding if $m S_{k}(G) \leq 9$ is NP-hard in bipartite graphs with $\Delta=9$.

Theorem:
(Corollary: deciding χ_{Σ} is in P when bounded treewidth)
Let $k \geq 2$. Given G and s as inputs, deciding if $m S_{k}(G) \leq s$ can be solved in time $O\left(n k^{(t+1)^{2}}(k \Delta+1)^{3 t+3}\right)$ where t is the treewidth of G.

Min. maximum sum: complexity

Theorem

Let $k \geq 2$. Deciding if $m S_{k}(G) \leq 9$ is NP-hard in bipartite graphs with $\Delta=9$.

Theorem:
(Corollary: deciding χ_{\sum} is in P when bounded treewidth)
Let $k \geq 2$. Given G and s as inputs, deciding if $m S_{k}(G) \leq s$ can be solved in time $O\left(n k^{(t+1)^{2}}(k \Delta+1)^{3 t+3}\right)$ where t is the treewidth of G.

COATIQUIZZ: what about $m S(G)$??

Min. maximum sum: Bip. graphs with $\chi_{\Sigma}=2$

Reminder: $\Delta \leq m S(G) \leq \chi_{\Sigma}(G) \cdot \Delta$
There are bipartite graphs with $m S(G)=\chi_{\Sigma}(G) \cdot \Delta=2 \Delta$.

Can you find labeling for these graphs?
COATIQUIZZ: one point!

Min. maximum sum: Bip. graphs with $\chi_{\Sigma}=2$

Reminder: $\Delta \leq m S(G) \leq \chi_{\Sigma}(G) \cdot \Delta$
There are bipartite graphs with $m S(G)=\chi_{\Sigma}(G) \cdot \Delta=2 \Delta$.

Min. maximum sum: Bip. graphs with $\chi_{\Sigma}=2$

Reminder: $\Delta \leq m S(G) \leq \chi_{\Sigma}(G) \cdot \Delta$
There are bipartite graphs with $m S(G)=\chi_{\Sigma}(G) \cdot \Delta=2 \Delta$.

Min. maximum sum: Bip. graphs with $\chi_{\Sigma}=2$

Reminder: $\Delta \leq m S(G) \leq \chi_{\Sigma}(G) \cdot \Delta$
There are bipartite graphs with $m S(G)=\chi_{\Sigma}(G) \cdot \Delta=2 \Delta$.

Min. maximum sum: Bip. graphs with $\chi_{\Sigma}=2$

Reminder: $\Delta \leq m S(G) \leq \chi_{\Sigma}(G) \cdot \Delta$
There are bipartite graphs with $m S(G)=\chi_{\Sigma}(G) \cdot \Delta=2 \Delta$.

For all $\Delta, k \geq 2$, there are bipartite graphs with $m S_{k}(G) \geq\left\lceil\frac{3 \Delta}{2}\right\rceil$.

Open: For all $\Delta \geq 2$, are there bipartite graphs with $m S(G)=2 \Delta$?

Min. maximum sum: Bip. graphs with $\chi_{\Sigma}=3$

Nice bipartite graphs

A bipartite graph B has $\chi_{\Sigma}(B)=3$ if and only if B is a odd multi cactus.

(a)

(b)

(c)

(d)

Theorem

For every odd multi cactus $B, \Delta+1 \leq m S_{3}(B) \leq \Delta+2$. Moreover, $m S_{k}(B)$ can be computed in polynomial time (bounded treewidth).

Min. maximum sum: Trees

Reminder: $\chi_{\Sigma}(T) \leq 2$, so $\Delta \leq m S(T) \leq 2 \cdot \Delta$ for any nice tree T.

Min. maximum sum: Trees

Reminder: $\chi_{\Sigma}(T) \leq 2$, so $\Delta \leq m S(T) \leq 2 \cdot \Delta$ for any nice tree T.

Greedy algorithm: label child-edges 1,

Min. maximum sum: Trees

Reminder: $\chi_{\Sigma}(T) \leq 2$, so $\Delta \leq m S(T) \leq 2 \cdot \Delta$ for any nice tree T.

Greedy algorithm: label child-edges 1,

Min. maximum sum: Trees

Reminder: $\chi_{\Sigma}(T) \leq 2$, so $\Delta \leq m S(T) \leq 2 \cdot \Delta$ for any nice tree T.

Greedy algorithm: label child-edges 1, but if conflict: label one child-edge with 2

Min. maximum sum: Trees

Reminder: $\chi_{\Sigma}(T) \leq 2$, so $\Delta \leq m S(T) \leq 2 \cdot \Delta$ for any nice tree T.

Greedy algorithm: label child-edges 1, but if conflict: label one child-edge with 2

Min. maximum sum: Trees

Reminder: $\chi_{\Sigma}(T) \leq 2$, so $\Delta \leq m S(T) \leq 2 \cdot \Delta$ for any nice tree T.

Greedy algorithm: label child-edges 1, but if conflict: label one child-edge with 2 each vertex incident to at most 2 edges labeled with 2.

Min. maximum sum: Trees

Reminder: $\chi_{\Sigma}(T) \leq 2$, so $\Delta \leq m S(T) \leq 2 \cdot \Delta$ for any nice tree T.

Greedy algorithm: label child-edges 1, but if conflict: label one child-edge with 2 each vertex incident to at most 2 edges labeled with 2.

Theorem

For every nice tree $T, \Delta \leq m S(T) \leq \Delta+2$. All possibilities are reached $(\forall \Delta \geq 3)$.

J. Bensmail, B. Li, B. Li, N.Nisse

On Minimizing the Maximum Color for the 1-2-3 Conjecture

Min. maximum sum: Trees

Reminder: $\chi_{\Sigma}(T) \leq 2$, so $\Delta \leq m S(T) \leq 2 \cdot \Delta$ for any nice tree T.

Greedy algorithm: label child-edges 1, but if conflict: label one child-edge with 2 each vertex incident to at most 2 edges labeled with 2.
Theorem Open: characterization of " $\Delta+1$-trees" and " $\Delta+2$-trees" ???

For every nice tree $T, \Delta \leq m S(T) \leq \Delta+2$. All possibilities are reached $(\forall \Delta \geq 3)$.

J. Bensmail, B. Li, B. Li, N.Nisse

On Minimizing the Maximum Color for the 1-2-3 Conjecture

Larger label to decrease the maximum color?

COATIQUIZZ:

What do you think?
Points are at stake!!

- can using larger labels decrease the maximum color?
- if YES, can it decrease the maximum color a lot? YES/NO? how much?

Larger label may decrease max. color in trees

Theorem

For every $k \geq 2$, there exists a tree T_{k} such that $m S_{k}\left(T_{k}\right)=m S_{k+1}\left(T_{k}\right)+1$.
Remark: for all $k, k^{\prime} \geq 2$ and tree $T,\left|m S_{k}(T)-m S_{k^{\prime}}(T)\right| \leq 1$ (find a simpler proof?)
Example for $k=2$.

Larger label in general graphs

Theorem

For every $\Delta \geq 16$, there exists a graph G with maximum degree Δ verifying $m S_{2}(G)=2 \Delta$ and $m S_{3}(G)=\Delta$.

(a) $\left\{c_{\ell_{1}}\left(u_{2}\right), c_{\ell_{1}}\left(u_{3}\right)\right\}=\{8,9\}$

(b) $\left\{c_{\ell_{2}}\left(u_{2}\right), c_{\ell_{2}}\left(u_{3}\right)\right\}=\{9,10\}$

Larger label in general graphs

Theorem

For every $\Delta \geq 16$, there exists a graph G with maximum degree Δ verifying $m S_{2}(G)=2 \Delta$ and $m S_{3}(G)=\Delta$.

(a) $\left\{c_{\ell_{1}}\left(u_{2}\right), c_{\ell_{1}}\left(u_{3}\right)\right\}=\{8,9\}$

(b) $\left\{c_{\ell_{2}}\left(u_{2}\right), c_{\ell_{2}}\left(u_{3}\right)\right\}=\{9,10\}$

Larger label in general graphs

Theorem

For every $\Delta \geq 16$, there exists a graph G with maximum degree Δ verifying $m S_{2}(G)=2 \Delta$ and $m S_{3}(G)=\Delta$.

(a) $\left\{c_{\ell_{1}}\left(u_{2}\right), c_{\ell_{1}}\left(u_{3}\right)\right\}=\{8,9\}$

(b) $\left\{c \ell_{2}\left(u_{2}\right), c \ell_{2}\left(u_{3}\right)\right\}=\{9,10\}$

(a) All inputs are labeled 1

(b) All inputs are labeled 2

Further Work

- Are there bipartite graphs B (with $\chi_{\Sigma}(B)=2$) such that $m S(B)=2 \Delta$?
- Characterization of nice trees T with $m S(T)=\Delta+1$ or $m S(T)=\Delta+2$?
- Computation of $m S(G)$ in bounded treewidth graphs?
- Is it true that $m S(G) \leq 2 \Delta+O(1)$ for all nice graphs G ?
- Other graph classes (more difficult since χ_{Σ} is not well understood in it), e.g., planar graphs...

More generally:

- 1-2-3 conjecture?

