Minimum lethal sets in grids and tori under 3-neighbour bootstrap percolation

F. Benevides ${ }^{1,2}$, J-C. Bermond ${ }^{2}$, H. Lesfari ${ }^{2}$, N. Nisse 2

1. Universidade Federal do Ceara, Fortaleza, Brazil
2. Université Côte d'Azur, Inria, CNRS, I3S, France

MAC (Moving and Computing), Pisa, September $21^{\text {st }} 2022$

TERRA
NUMERICA

What is it about and why?

John Horton Conway FRS (26 Dec. 1937-11 April 2020) was an English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He also made contributions to many branches of recreational mathematics, most notably the invention of the cellular automaton called the Game of Life.

What is it about and why?

John Horton Conway FRS (26 Dec. 1937-11 April 2020) was an English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He also made contributions to many branches of recreational mathematics, most notably the invention of the cellular automaton called the Game of Life.

AFFAIRE DE LOGIQUE - $\mathrm{N}^{\circ}| | 4 \mid$

Le jeu de la viralité (hommage à John Conway)

Confinés chez eux, Alice et Bob ont imaginé, sur un échiquier de 8 cases sur 8 , des jeux simulant la propagation d'un virus. Lors du premier jeu, Bob pose un certain nombre de pions, représentant des virus, sur des cases de l'échiquier. La suite est automatique : si une case vide touche par au moins deux de ses côtés des cases contenant un pion, Bob pose un pion dans cette case. L'objectif : remplir l'échiquier tout entier.

1. Combien Bob doit-il au moins poser de pions au départ pour l'atteindre? Trouver une configuration initiale permettant de réussir avec ce nombre minimum de pions.
Alice imagine alors un jeu identique, mais où la case vide doit toucher au moins trois cases contenant un pion pour qu'elle puisse poser un pion dans cette case. L'objectif est le même : remplir léchiquier.
2. Quel nombre minimum de pions de départ permet de réussir ? Trouver une configuration correspondante.
(Le Monde, enigma in tribute to J. Conway, April $16^{\text {th }} 2020$)

What is it about and why?

John Horton Conway FRS (26 Dec. 1937-11 April 2020) was an English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He also made contributions to many branches of recreational mathematics, most notably the invention of the cellular automaton called the Game of Life.

AFFAIRE DE LOGIQUE - $\mathrm{N}^{\circ}| | 4 \mid$

Le jeu de la viralité (hommage à John Conway)

Confinés chez eux, Alice et Bob ont imaginé, sur un échiquier de 8 cases sur 8 , des jeux simulant la propagation d'un virus. Lors du premier jeu, Bob pose un certain nombre de pions, représentant des virus, sur des cases de l'échiquier. La suite est automatique : si une case vide touche par au moins deux de ses côtés des cases contenant un pion, Bob pose un pion dans cette case. L'objectif : remplir l'échiquier tout entier.

1. Combien Bob doit-il au moins poser de pions au départ pour l'atteindre? Trouver une configuration initiale permettant de réussir avec ce nombre minimum de pions.
Alice imagine alors un jeu identique, mais où la case vide doit toucher au moins trois cases contenant un pion pour qu'elle puisse poser un pion dans cette case. L'objectif est le même : remplir léchiquier.
2. Quel nombre minimum de pions de départ permet de réussir ? Trouver une configuration correspondante.
(Le Monde, enigma in tribute to J. Conway, April $16^{\text {th }} 2020$)
[F. Benevides, J-C. Bermond, H. Lesfari, N. Nisse.
Minimum lethal sets in grids and tori under 3-neighbour bootstrap percolation. Eur. J. of Comb. 2022+]

Warm-up: 2-neighbour bootstrap percolation in grids

Rules of the game: given an $n \times n$ grid

(vertices, or cells, are depicted by squares)
Each cell can be either contaminated (colored) or healthy (white).
A contaminated cell remains contaminated forever.
A healthy cell becomes contaminated if it has at least 2 contaminated neighbours.

(grey cells are undetermined (contaminated or healthy))

Warm-up: 2-neighbour bootstrap percolation in grids

Rules of the game: given an $n \times n$ grid (vertices, or cells, are depicted by squares)

Each cell can be either contaminated (colored) or healthy (white).
A contaminated cell remains contaminated forever.
A healthy cell becomes contaminated if it has at least 2 contaminated neighbours.

Given some initially contaminated cells, do all cells eventually become contaminated?
Example (with $n=8$ and 7 initially contaminated cells) :

Warm-up: 2-neighbour bootstrap percolation in grids

Rules of the game: given an $n \times n$ grid (vertices, or cells, are depicted by squares)

Each cell can be either contaminated (colored) or healthy (white).
A contaminated cell remains contaminated forever.
A healthy cell becomes contaminated if it has at least 2 contaminated neighbours.
Lethal set: set of initially contaminated cells eventually contaminating the whole grid
Question: Minimum size of a lethal set in the $n \times n$ grid?

https://scratch.mit.edu/projects/517390361/fullscreen/
(click on the green flag, choose your language and then choose "contamination" game)

Warm-up: 2-neighbour bootstrap percolation in grids

Rules of the game: given an $n \times n$ grid (vertices, or cells, are depicted by squares)

Each cell can be either contaminated (colored) or healthy (white).
A contaminated cell remains contaminated forever.
A healthy cell becomes contaminated if it has at least 2 contaminated neighbours.
Lethal set: set of initially contaminated cells eventually contaminating the whole grid

Question: Minimum size of a lethal set in the $n \times n$ grid?

n initially contaminated cells are sufficient. Is it necessary?

Warm-up: 2-neighbour bootstrap percolation in grids

Theorem [Bollobás] : The minimum number of initially contaminated cells to eventually contaminate the whole $n \times n$ grid equals n.
n initially contaminated cells are sufficient (e.g., diagonal).
Elegant idea : Notion of "perimeter" P of the contaminated component.

$P=26$

If x cells are initially contaminated: initially $P \leq 4 x$.
Through the game, the perimeter P cannot increase!
Eventually (if the whole grid is contaminated) : $P=4 n$.
I.e., any lethal set in the $n \times n$ grid has size at least n.

-neighbour bootstrap percolation in grids

Rules of the (next) game: given an $n \times n$ grid

Each cell can be either contaminated (colored) or healthy (white).
A contaminated cell remains contaminated forever.
A healthy cell becomes contaminated if it has at least 3 contaminated neighbours.

Lethal set: set of initially contaminated cells eventually contaminating the whole grid
Question: Min. size g_{n} of a lethal set in the $n \times n$ grid ?

-neighbour bootstrap percolation in grids

Rules of the (next) game: given an $n \times n$ grid

Each cell can be either contaminated (colored) or healthy (white).
A contaminated cell remains contaminated forever.
A healthy cell becomes contaminated if it has at least 3 contaminated neighbours.
Lethal set: set of initially contaminated cells eventually contaminating the whole grid

Question: Min. size g_{n} of a lethal set in the $n \times n$ grid ?

https://scratch.mit.edu/projects/517390361/fullscreen/
(In the "contamination" game, change parameter "Contamination rate" to 3)

-neighbour bootstrap percolation in grids/graphs

Rules of the (next) game: given any graph G

Each vertex can be either contaminated (colored) or healthy (white).
A contaminated vertex remains contaminated forever.
A healthy vertex becomes contaminated if it has at least 3 contaminated neighbours.
Lethal set: set of initially contaminated cells eventually contaminating the whole grid (resp., any graph G)

Question: Min. size $g_{n}($ resp., $g(G))$ of a lethal set in the $n \times n$ grid (resp., in G)?

Related work

- in bounded max. degree graphs, deciding if $g(G) \leq k$ is NP-complete [Chen 09]
- $\left\lceil\frac{n^{2}+2 n}{3}\right\rceil \leq g_{n} \leq \frac{n^{2}+4 n}{3}+O(1)$
- $\left\lceil\frac{n^{2}+2 n+4}{3}\right\rceil \leq g_{n}$ if n even (with equality if $n \equiv 2(\bmod 6)$) $\left\lceil\frac{n^{2}+2 n}{3}\right\rceil \leq g_{n}$ if n odd

-neighbour bootstrap percolation: basic properties

Rules of the game: given an $n \times n$ grid

Each cell can be either contaminated (colored) or healthy (white).
A contaminated cell remains contaminated forever.
A healthy cell becomes contaminated if it has at least 3 contaminated neighbours.

- any lethal set must contain all corners;
- for any two adjacent cells u and v on a border, any lethal set must contain at least one of u and v.

-neighbour bootstrap percolation: basic properties

Rules of the game: given an $n \times n$ grid

Each cell can be either contaminated (colored) or healthy (white).
A contaminated cell remains contaminated forever.
A healthy cell becomes contaminated if it has at least 3 contaminated neighbours.
More generally, if $L \subseteq V$ is a lethal set, then

- each connected component induced by $V \backslash L$ "touches" at most one border;
- each connected component induced by $V \backslash L$ has at most one border vertex;
- $V \backslash L$ induces an acyclic graph.

-neighbour bootstrap percolation: lower bounds in grids

Rules of the game: given an $n \times n$ grid

Each cell can be either contaminated (colored) or healthy (white).
A contaminated cell remains contaminated forever.
A healthy cell becomes contaminated if it has at least 3 contaminated neighbours.
Perimeter argument: let L be a lethat set

- each cell of L counts for at most 4 in the initial perimeter;
- if n is even, for each border, there are at least two adjacent vertices in L (counting together for at most 6 in the initial perimeter);
- the perimeter of the contaminated component decreases by at least 2 at every step.
$g_{n}=\min$. size of a lethal set in the $n \times n$ grid.
Theorem: $g_{n} \geq L B_{n}$ where

$$
L B_{n}= \begin{cases}\left\lceil\frac{n^{2}+2 n}{3}\right\rceil & \text { if } n \text { is odd } \\ \left\lceil\frac{n^{2}+2 n+4}{3}\right\rceil & \text { if } n \text { is even. }\end{cases}
$$

-neighbour bootstrap percolation: first results in grids

```
Rules of the game: given an n }\timesn\mathrm{ grid
```

Each cell can be either contaminated (colored) or healthy (white).
A contaminated cell remains contaminated forever.
A healthy cell becomes contaminated if it has at least 3 contaminated neighbours.

Some optimal initial configurations:

$n=2(\bmod 6)$

$\mathrm{n}=5(\bmod 6)$

$\mathrm{n}=2^{\wedge} \mathrm{p}-1 \quad$ (recursive construction)

Lemma 1: optimality in some cases
If $n \equiv 2(\bmod 6)$ [Bollobás 06$]$ or $n \equiv 5(\bmod 6)$ or $n=2^{p}-1$, then $g_{n}=L B_{n}$.

-neighbour bootstrap percolation: first results in grids

```
Rules of the game: given an n }\timesn\mathrm{ grid
```

Each cell can be either contaminated (colored) or healthy (white).
A contaminated cell remains contaminated forever.
A healthy cell becomes contaminated if it has at least 3 contaminated neighbours.

Some optimal initial configurations:

$n=2(\bmod 6)$

$\mathrm{n}=5(\bmod 6)$

$\mathrm{n}=2^{\wedge} \mathrm{p}-1 \quad$ (recursive construction)

Lemma 1: optimality in some cases
(general patterns)
If $n \equiv 2(\bmod 6)[$ Bollobás 06$]$ or $n \equiv 5(\bmod 6)$ or $n=2^{p}-1$, then $g_{n}=L B_{n}$.

-neighbour bootstrap percolation: base cases in grids

Claim: for every $n \leq 8, g_{n}=L B_{n}$.

$$
\left(L B_{3}=5, L B_{4}=10, L B_{5}=12, L B_{6}=18, L B_{7}=21 \text { et } L B_{8}=28\right)
$$

(a) $n=3$
(b) $n=4$

(c) $n=5$

(d) $n=6$

(e) $n=7$

(f) $n=8$

Optimal initial configurations

-neighbour bootstrap percolation: base cases in grids

Claim: for every $n \leq 8, g_{n}=L B_{n}$.

$$
\left(L B_{3}=5, L B_{4}=10, L B_{5}=12, L B_{6}=18, L B_{7}=21 \text { et } L B_{8}=28\right)
$$

(a) $n=3$

(c) $n=5$

(d) $n=6$

(e) $n=7$

(f) $n=8$

Optimal initial configurations (note the corners in even cases)

-neighbour bootstrap percolation: base cases in grids

Claim: for every $n \leq 8, g_{n}=L B_{n}$.

$$
\left(L B_{3}=5, L B_{4}=10, L B_{5}=12, L B_{6}=18, L B_{7}=21 \text { et } L B_{8}=28\right)
$$

(a) $n=3$

(b) $n=4$

(c) $n=5$

(d) $n=6$

(e) $n=7$

(f) $n=8$

Optimal initial configurations
A first "strange" case: $n=9$
(note the corners in even cases)

-neighbour bootstrap percolation: by computer

Using Mixed Integer Linear Programming

$$
\text { Variable } c_{v, t}= \begin{cases}1 & \text { if } v \in V \text { contaminated at step } t \\ 0 & \text { otherwise } .\end{cases}
$$

Remark: need to fix a maximum number T of steps :(
In general graph $G=(V, E)$, with contamination if $\geq r$ contaminated neighbours

$$
\begin{array}{ll}
\text { Minimize } & \sum_{v \in V} c_{v, 0} \\
\text { Subject to } & \sum_{v \in V} c_{v, T}=|V| \\
& c_{v, t} \leq c_{v, t-1}+\frac{1}{r} \sum_{w \in N(v)} c_{w, t-1} \\
& c_{v, t} \in\{0,1\}
\end{array} \quad \forall v \in V, t \in\{1, \ldots, T\} \text { (3) }
$$

-neighbour bootstrap percolation: by computer

Using Mixed Integer Linear Programming

$$
\text { Variable } c_{v, t}= \begin{cases}1 & \text { if } v \in V \text { contaminated at step } \mathrm{t} \\ 0 & \text { otherwise } .\end{cases}
$$

Remark: need to fix a maximum number T of steps :(
In general graph $G=(V, E)$, with contamination if $\geq r$ contaminated neighbours

```
Minimize \(\sum_{v \in V} c_{v, 0}\)
Subject to \(\sum_{v \in V} c_{v, T}=|V|\)
    "no \(\quad c_{v, t-1} \leq c_{v, t}\)
decontamination"
\(c_{v, t} \leq \leq c_{v, t-1}+\frac{1}{r} \sum_{w \in N(v)} c_{w, t-1}\)
    "corners" \(\quad c_{v, 0}=1\)
    "borders" \(\quad c_{u, 0}+c_{v, 0} \geq 1 \quad \forall\{u, v\} \in E, d(u)=d(v)=r\) (6)
    "close \(c_{v, 0}+\sum_{w \in S} c_{w, 0} \leq r \quad \forall v \in V, d(v) \geq r, \forall S \subseteq N(v),|S|=r\) (7)
neighbourhood" \({ }^{c v, 0}+\sum_{w \in S} c_{w, 0} \leq r\)
\(\begin{aligned} c_{v, t} & \in\{0,1\}\end{aligned}\)
\(\forall v \in V, d(v) \geq r, \forall S \subseteq N(v),|S|=r(7)\)
\(\forall v \in V, t \in\{1, \ldots, T\} \quad(8)\)
    \(\forall v \in V, t \in\{1, \ldots, T\}\) (3)
    \(\forall v \in V, t \in\{1, \ldots, T\}\) (4)
    \(\forall v \in V, d(v)<r\) (5)

Even with more cuts, not efficient for \(9 \times 9\) grid :(

\section*{-neighbour bootstrap percolation: by computer}

\section*{Using Mixed Integer Linear Programming}
\[
\text { Variable } c_{v, t}= \begin{cases}1 & \text { if } v \in V \text { contaminated at step } t \\ 0 & \text { otherwise } .\end{cases}
\]

Remark: need to fix a maximum number \(T\) of steps :(
More constraints in the specific case of grids and \(r=3\) :


New solved cases \(n \in\{9,13\}: g_{9}=L B_{9}+1=34\) and \(g_{13}=L B_{13}+1=66\).

\section*{-neighbour bootstrap percolation: main result in grids}


Configuration with \(L B_{n}\) contaminated cells for the \(\mathrm{n}^{*} \mathrm{n}\) grid


Configuration with \(L B_{n+6}\) contaminated cells for the \((n+6)^{*}(n+6)\) grid


Configuration with \(L B_{n+3}+1\) contaminated cells for the \((n+3)^{*}(n+3)\) grid

Lemma: \(g_{n}=L B_{n}\) if \(n\) even, and \(g_{n} \leq L B_{n}+1\) if \(n\) odd. (induction on \(n\) even)

\section*{-neighbour bootstrap percolation: main result in grids}


Configuration with \(L B_{n}\) contaminated cells for the \(n^{*} n\) grid


Configuration with \(L B_{n+6}\) contaminated cells for the \((\mathrm{n}+6)^{*}(\mathrm{n}+6)\) grid


Configuration with \(L B_{n+3}+1\) contaminated cells for the \((\mathrm{n}+3)^{*}(\mathrm{n}+3)\) grid

\section*{Theorem}
- \(g_{n}=L B_{n}\) if \(n\) even, and \(L B_{n} \leq g_{n} \leq L B_{n}+1\) if \(n\) odd;
- moreover, \(g_{n}=L B_{n}\) if \(n \equiv 5(\bmod 6)\) or \(n=2^{p}-1\);
- and, \(g_{n}=L B_{n}+1\) if \(n \in\{9\) (ugly case analysis), 13 (result of the MILP) \(\}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline\(n\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline\(L B_{n}\) & 1 & 3 & 5 & 10 & 12 & 18 & 21 & 28 & 33 & 42 & 48 & 58 & 65 & 76 & 85 & 98 \\
\hline\(g_{n}\) & - & - & - & - & - & - & - & - & 34 & - & - & - & 66 & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline\(n\) & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 \\
\hline\(L B_{n}\) & 108 & 122 & 133 & 148 & 161 & 178 & 192 & 210 & 225 & 244 & 261 & 282 \\
\hline\(g_{n}\) & - & - & \(\leq 134\) & - & \(\leq 162\) & - & - & - & \(\leq 226\) & - & \(\leq 262\) & - \\
\hline
\end{tabular}

\section*{-neighbour bootstrap percolation in square tori}
\(t_{n}=\min\). size of a lethal set in the \(n \times n\) torus.

\section*{Previous work (irreversible dynamic monopolies)}

For any \(n \geq 1, t_{n} \geq L B T_{n}=\left\lceil\frac{n^{2}+1}{3}\right\rceil\).
Proof: \(I \subseteq V\) any lethal set, \(H=V \backslash I . m_{I H}\) \# of edges between \(I\) and \(H\), \(m_{H} \#\) of edges induced by \(H\). Recall that \(H\) induces a forest. Hence, \(m_{H} \leq|H|-1\). Moreover (degree), \(m_{I H}=4|H|-2 m_{H} \leq 4|I|\).
Moreover, \(t_{n} \leq\left\lceil\frac{n}{3}\right\rceil(n+1)\).

\section*{-neighbour bootstrap percolation in square tori}
\(t_{n}=\min\). size of a lethal set in the \(n \times n\) torus.

\section*{Previous work (irreversible dynamic monopolies)}

For any \(n \geq 1, t_{n} \geq L B T_{n}=\left\lceil\frac{n^{2}+1}{3}\right\rceil\).
Proof: \(I \subseteq V\) any lethal set, \(H=V \backslash I . m_{I H} \#\) of edges between \(I\) and \(H\), \(m_{H} \#\) of edges induced by \(H\). Recall that \(H\) induces a forest. Hence, \(m_{H} \leq|H|-1\). Moreover (degree), \(m_{I H}=4|H|-2 m_{H} \leq 4|I|\).
Moreover, \(t_{n} \leq\left\lceil\frac{n}{3}\right\rceil(n+1)\).

Theorem: For any \(n \geq 1\),

where \(D\) is a lethal set of the \((n-1) \times(n-1)\)-grid of size \(L B_{n-1}+1\) if \(n \equiv 2,4\) \((\bmod 6)\) and of size \(L B_{n-1}\) otherwise. (removing yellow cells and adding blue cells)

\section*{Further work}

Case of \(n \times n\) grids: many remining unknown cases
\(g_{19} \in\{133,134\}, g_{21} \in\{161,162\}, g_{25} \in\{225,226\}, g_{27} \in\{261,262\} \ldots\)
More generally, what if \(n\) odd and
\[
n \not \equiv 5(\bmod 6) \text { and } n \neq 2^{p}-1 \text { and } n \notin\{9,13\} ?
\]

Tradeoff between number of initially contaminated cells and contamination time? (could be useful for the MILP)

Case of rectangular grids/tori?
(seems quite similar to the square case, but maybe not...)

Higher dimensions?
...

\section*{Thanks for your attention!}

\section*{Further work}

Case of \(n \times n\) grids: many remining unknown cases
\(g_{19} \in\{133,134\}, g_{21} \in\{161,162\}, g_{25} \in\{225,226\}, g_{27} \in\{261,262\} \ldots\)
More generally, what if \(n\) odd and
\[
n \not \equiv 5(\bmod 6) \text { and } n \neq 2^{p}-1 \text { and } n \notin\{9,13\} ?
\]

BREAKING NEWS (?): if \(n \not \equiv 5(\bmod 6)\) odd, then \(g_{n}=L B_{n}\) iff \(n=2^{p}-1\)
Abel Romer, Tight Bounds on 3-Neighbor Bootstrap Percolation, Master thesis, Quest University Canada,
2022-08-31. https://dspace.library.uvic.ca/handle/1828/14170
Tradeoff between number of initially contaminated cells and contamination time? (could be useful for the MILP)

Case of rectangular grids/tori?
(seems quite similar to the square case, but maybe not...)

\section*{Higher dimensions?}

\section*{Thanks for your attention!}```

