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Two well known 2-Player games

Hex

Alice and Bob alternately select cells.

Alice wins if red sides connected.
Bob wins otherwise.

Maker-Breaker
Always one winner.

Tic Tac Toe

Alice(◦) and Bob(×) alternately select cells

First one to align 3 cells wins.

Maker-Maker
Either Alice wins or draw.

Pictures from Wikipedia
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Positional games [Erdös, Selfridge 73 ; Beck 08]

Combinatorial games: typically sequential games with perfect information

Positional games (2-Player game)

Finite set X of elements; (vertices of an hypergraph)

Family F of subsets of X ; (winning hyperedges)

Alice (first) and Bob alternately select a new element in X .

Different criteria for victory:

Maker-Maker: First to fill an hyperedge in F ;
Maker-Breaker: Alice wins iff she fills an hyperedge in F ;
Avoider-Enforcer: Bob wins iff Alice fills an hyperedge in F ;

Other rules. Each turn:

Waiter-Client: Alice chooses 2 vertices, Bob selects one, Alice the other;
Biais: Alice selects a ≥ 1 vertices and Bob selects b ≥ a vertices;
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Back to Hex

Board: (arbitrary large) hexagonal grid.
Winning sets: all paths “between top and
bottom”.
Maker-Breaker / Maker-Maker

Theorem: Alice has a winning strategy

Proof: Strategy-stealing argument.

By contradiction Bob has a winning stragegy. Alice initially selects any vertex (it
“does not hurt”). Then, she plays as a second player using Bob’s winning strategy.

Open problem: Alice’s winning strategy only known for small grids
(9× 9, computer proof).

Remark: Hex (initial configuration) is PSPACE-complete [Reisch 81]
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Back to Tic Tac Toe [Beck 08]

Board: (arbitrary large) cartesian grid.
Winning sets: all alignments (horizontal, vertical
or diagonal) of c ≥ 1 cells.
Maker-Breaker variant

Theorem: Alice (◦) has a winning strategy for c ≤ 5

Proof: Easy for c ≤ 4. Computer proof for c = 5 (Gomoku, 15× 15).

Theorem: Bob (×) has a winning strategy for c > 7

Proof: “Local” strategy + pairing argument

c ≥ 9 c ≥ 8

Open problems: c ∈ {6, 7}?
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Positional Games / Complexity

Consider a game (X ,F) in Maker-Breaker convention.

Erdös-Selfridge criterion [Erdös, Selfridge 73]

If
∑
F∈F

2−|F | < 1
2 , then Bob wins.

POS CNF: set of variables X = {x1, . . . , xn}, F = {C1, · · · ,Cm} ⊆ 2X

and
CNF formula φ = C1 ∧ · · · ∧ Cm (all variables in positive form).

Alice sets variables to true, and Bob to false. Alice wins iff φ is true.

Complexity of deciding the outcome

PSPACE-complete

Clauses/hyperedges of size 11 [Schaefer 78], of size 6 [Rahman, Watson 21]

Polynomial

Clauses of size 2 (graphs: trivial), of size 3 [Galliot, Gravier, Sivignon 23+]
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Positional Games “arising” from graphs

Game (V ,F) where F “reflects some structures” of a graph G = (V ,E )

First examples:

Generalized Hex (Shannon switching game on vertices)

G = (V ,E ), s, t ∈ V , F : set of all s-t-paths.

PSPACE-complete [Even, Tarjan 75],

W[1]-complete (param. by length of the game) [Bonnet et al 17].

Maker-Breaker Domination game [Duchêne, Gledel, Parreau, Renault 18]

G = (V ,E ), F : set of all dominating sets.

PSPACE-complete in bipartite and split graphs;

Polynomial in trees and cographs; Open: Interval, bounded tw...

Study on length of the game.
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Largest Connected Subgraph game

joint works with J. Bensmail, F. Fioravantes, F. Mc Inerney and N.Oijid.
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Largest con. subgraph game [Bensmail, Fioravantes, Mc Inerney, N., 2021]

Alice and Bob alternately
colour uncoloured vertices,
until all vertices coloured.

Scoring game: Player with
the largest (# nodes)
connected subgraph of their
colour wins.

Alice wins 4− 3

Draw 3− 3

Theorem

Either Alice has a winning strategy, or Bob can ensure a draw.
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Complexity of LCSG [Bensmail, Fioravantes, Mc Inerney, N., 2021]

Reflection graph

Any graph G for which V (G) can be partitioned into
U = (u1, . . . , un) and V = (v1, . . . , vn) such that:

1 f :U → V with f (ui ) = vi for all i ∈ {1, . . . , n},
is an isomorphism between G [U] and G [V ];

2 for any two i , j ∈ {1, . . . , n}, if uivj ∈ E(G),
then ujvi ∈ E(G). u3

u4

u5

u1

u2

v3

v4

v5

v1

v2

G [U] G [V ]

Theorem

In any reflection graph, Bob can force a draw.
Recognising reflection graphs is GI-hard.

Theorem

Deciding if Alice wins the LCSG is PSPACE-complete, even for bipartite graphs with
diameter at most 5.
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Only 2 possible 
moves for Bob to be 

considered, by 
symmetry.

Only 2 possible 
moves for Bob to be 

considered, by 
symmetry.

Alice first colours v5v5. There are only 4 possible moves 
for Bob to be considered, by symmetry.
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LCSG in simple graph classes [Bensmail, Fioravantes, Mc Inerney, N., 2021]

Theorem

For all n ≥ 1, Alice wins in the path Pn if and only if n ∈ {1, 3, 5, 7, 9}.
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LCSG in simple graph classes [Bensmail, Fioravantes, Mc Inerney, N., 2021]

Theorem

For all n ≥ 1, Alice wins in the cycle Cn if and only if n is odd.

A-perfect graph

Where Alice can ensure a single red component (of size d n2e).

Theorem

The outcome of the game in any cograph G is computable in linear time.

Proof: Induction on |V |: return the outcome and whether G is A-perfect or not.

Join G = G1 ⊕ G2 (with |V1| ≤ |V2|): G is A-perfect. Moreover Bob
cannot ensure a single component iff |V1| = 1 and G2 not A-perfect.

Disjoint union of joins G =
⋃

i Gi (with all Gi are cographs resulting from a join).
Case analysis based on:

whether or not Gi is a join with a singleton,
parity of |V (Gi )|,
whether or not Gi is A-perfect.
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Maker-Breaker LCSG [Bensmail, Fioravantes, Mc Inerney, N., Oijid, 2023]

Input: A graph G = (V ,E ) and k ∈ N.

Game (V ,F) with F all subsets of at least k vertices inducing a
connected subgraph.

Alice wins iff she gets a red connected subgraph with at least k vertices.

New graph invariant

cg (G ): maximum integer k such that Alice wins in G .

Rmk: For every graph G , b∆(G)
2 c+ 1 ≤ cg (G ) ≤ d |V |2 e

cg (G ) = d |V |2 e iff G is A-perfect.

cg of simple graph classes

cg (Pn) = cg (Cn) = 2 for every n ≥ 3.

cg (G ) can be computed in linear time in the class of (q, q − 4)
graphs.
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M-B LCSG / Complexity [Bensmail, Fioravantes, Mc Inerney, N., Oijid, 2023]

Theorem

Given a graph G and an integer k ≥ 1, it is PSPACE-complete to decide
whether cg (G ) ≥ k, even if G is a bipartite, split or planar graph.

Planar case: cg (G) ≥ |V (H)|+ 5 iff Alice wins the planar extended Hex game in H.
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M-B LCSG / A-perfect [Bensmail, Fioravantes, Mc Inerney, N., Oijid, 2023]

Some sufficient conditions to be A-perfect

If ∆(G ) + δ(G ) ≥ n or |E (G )| − 3 ≥ (n−2)(n−3)
2 , then G is A-perfect.

Lemma

There exist arbitrarily large d-regular A-perfect graphs iff d ≥ 4.

(if G cubic and A-perfect, then |V (G)| ≤ 16)
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Further work on Largest Con. Subgraph game

About A-perfect graphs

Complexity of deciding if a graph is A-perfect?

Other necessary and/or sufficient conditions?

Other graph classes

Complexity of deciding if Alice wins the LCSG in trees?

Complexity of deciding if cg (T ) ≥ k in a tree T?

Value or bounds for cg (Grid)? cg (Hexagonal Grid) = 6.

cg (Pn�Pm) ≤ 2 min{n,m}.

Interval graphs...?

Other variants

Connected variant: Alice can only colour a vertex adjacent to a red
vertex.
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H-game

joint work with E. Duchêne, V. Gledel, F. Mc Inerney, N. Oijid, A.

Parreau and M. Stojaković .
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Maker-Breaker game on edge-set of graphs

Given a graph G = (V ,E ), Alice and Bob select elements of E .

On complete graphs G = Kn [Chvátal, Erdös, 78]

Connectivity game Alice wants the edges of a spanning tree

Hamiltonian game

Perfect matching game

H-game Alice wants the edges of a copy of a fixed graph H.

Goal: find the threshold bias e.g., [Krivelevich 11]

Also played in Erdös-Rényi random graph model G
e.g., [Hefetz, Krivelevich, Stojaković, Szabó 14; Nenadov, Steger, Stojaković 16]

Here, complexity of the outcome in any graph G .
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Connectivity game Alice wants the edges of a spanning tree

Hamiltonian game

Perfect matching game

H-game Alice wants the edges of a copy of a fixed graph H.

Goal: find the threshold bias e.g., [Krivelevich 11]

Also played in Erdös-Rényi random graph model G
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Complexity [Duchêne, Gledel, Mc Inerney, N., Oijid, Parreau, Stojaković]

Arboricity-k game: Alice wins if red graph has arboricity at least k

Theorem: Arboricity-k game is in P (k = 2: cycle game)

Alice wins the arboricity-k game in G iff k ≤ darboricity(G )/2e.

Theorem: Perfect matching game is PSPACE-complete

Reduction from Uniform POS CNF 6.

H-game: H is a fixed graph. Given a graph G as input, can Alice select
edges to create an induced copy of H?

Theorem: H-game is PSPACE-complete. More precisely

∃ a tree T , s.t. T -game PSPACE-c in graphs with diameter ≤ 6.

∃ a graph H ′ of order 51 (size 57), s.t. H ′-game PSPACE-c.
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Complexity Tree-game [Duchêne, Gledel, Mc Inerney, N., Oijid, Parreau, Stojaković]

Theorem: ∃ a tree T , s.t. T -game PSPACE-c.

Reduction from Uniform POS CNF 6 where falsifier starts.

6

...

7

...

6

...

7

...

6

...

7

...

6

...

The tree T .

12
C1

x1 x2 xn

...

...

...

12
C2

12
Cm

...

... ... ... ... ... ......

14 14 14 14 14 14

... ... ...... ......

u

x1
1 x2

1 x1
2 x2

2 x1
n x2

n

Scheme of the reduction.

Alice wins⇔ Falsifier wins
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T -game: some poly. cases [Duchêne, Gledel, Mc Inerney, N., Oijid, Parreau, Stojaković]

Theorem: Bob wins the P4-game in G iff.

1 G is bipartite and all the vertices of degree at least 3 are in the same part; or

2 G is an odd cycle; or

3 G is a subgraph of the bull, K4, or a C5 with a leaf attached to one vertex.

Theorem: Star-game in trees

Let ` ≥ 1, the outcome of the K1,`-game can be decided in linear time in a trees.

Theorem: Parameterized complexity

The K1,`-game is FPT by the length t of the game.

(small (w.r.t. `) max. degree + bounded (in t) diameter)

The H-game in trees is FPT by the length of the game.
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Further work on the H-game

Complexity in general graphs

Smallest graph H such that H-game is PSPACE-complete?

Dichotomy of graphs H: H-game PSPACE-complete vs.
Polynomial?

Is the H-game W [1]-hard parameterized by the length of the game?

H-game in trees

Complexity?

Cost of connectedness?

(if Alice’s edges must induce a connected component)

H-game in other graph classes?

Other conventions: Avoider-Enforcer, Waiter-Client...?

Nicolas Nisse On some positional games in graphs



23/23

Introduction, Largest Con. Subgraph, H-game, Conclusion

Conclusion: many other games

Impartial games: allowable moves depend only on the position, not on
the current player. [Sprague 36, Grundy 39, Berlekamp, Conway, Guy 82]

Impartial games in graphs

Alice and Bob alternately “select” vertices, according to some common rule.

The first player who cannot “select” a vertex loses.

Kayles game / Clique forming game: selected vertices must induce a stable

set (resp., a clique) [Schaefer 78]

Coloring game: Alice and Bob colour vertices with k colours in a proper way.

[Bodlaender 91, Costa, Pessoa, Sampaio, Soares 20]

Harmonious Coloring game: see the next talk of Nicolas Martins :)

[Linhares, Martins, N., Sampaio 24+]

Convex forming game: selected vertices must induce a convex set.

[Brosse, Martins, N., Sampaio 24+]

Obrigado!
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