On some positional games in graphs

Nicolas Nisse

Université Côte d'Azur, Inria, CNRS, I3S, France

11th Latin American Workshop on Cliques in Graphs (LAWCG)

Ceará, Brazil, October 23rd, 2024

Nicolas Nisse [On some positional games in graphs](#page-81-0)

[Introduction,](#page-1-0) [Largest Con. Subgraph,](#page-19-0) H[-game,](#page-72-0) [Conclusion](#page-79-0)

Two well known 2-Player games

Hex

Alice and Bob alternately select cells. Alice wins if red sides connected. Bob wins otherwise.

Tic Tac Toe

Alice(\circ) and Bob(\times) alternately select cells First one to align 3 cells wins.

Pictures from Wikipedia

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

2/23

 $2Q$

[Introduction,](#page-1-0) [Largest Con. Subgraph,](#page-19-0) H[-game,](#page-72-0) [Conclusion](#page-79-0)

Two well known 2-Player games

Hex

Alice and **Bob** alternately select cells. Alice wins if red sides connected. Bob wins otherwise.

Tic Tac Toe Alice(\circ) and Bob(\times) alternately select cells First one to align 3 cells wins.

Maker-Breaker

Always one winner.

Maker-Maker

Either Alice wins or draw.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ..

2/23 Pictures from Wikipedia

 $2Q$

Positional games **[Erdös, Selfridge 73** ; Beck 08]

3/23

 $2Q$

目

Combinatorial games: typically sequential games with perfect information

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

$\mathsf{Positional}$ games $\mathsf{Positional}$

3/23

 Ω

Combinatorial games: typically sequential games with perfect information

Different criteria for victory:

Maker-Maker: First to fill an hyperedge in \mathcal{F} ; Maker-Breaker: Alice wins iff she fills an hyperedge in \mathcal{F} ; Avoider-Enforcer: Bob wins iff Alice fills an hyperedge in \mathcal{F} ;

 \mathcal{A} $\overline{\mathcal{F}}$ \mathcal{F} \mathcal{A} \mathcal{F} \mathcal{F}

$\mathsf{Positional}$ games $\mathsf{Postional}$

Combinatorial games: typically sequential games with perfect information

Different criteria for victory:

Maker-Maker: First to fill an hyperedge in \mathcal{F} ; Maker-Breaker: Alice wins iff she fills an hyperedge in \mathcal{F} ; Avoider-Enforcer: Bob wins iff Alice fills an hyperedge in \mathcal{F} ;

Other rules. Each turn:

Waiter-Client: Alice chooses 2 vertices, Bob selects one, Alice the other; Biais: Alice selects $a \ge 1$ vertices and Bob selects $b \ge a$ vertices;

4 ロ ト ィ 何 ト ィ ヨ ト

$\mathsf{Positional}$ games $\mathsf{Postional}$

Combinatorial games: typically sequential games with perfect information

Different criteria for victory:

Maker-Maker: First to fill an hyperedge in \mathcal{F} : \Leftarrow today **Maker-Breaker**: Alice wins iff she fills an hyperedge in \mathcal{F} ; \Leftarrow today Avoider-Enforcer: Bob wins iff Alice fills an hyperedge in \mathcal{F} ;

Other rules. Each turn:

Waiter-Client: Alice chooses 2 vertices, Bob selects one, Alice the other; Biais: Alice selects $a \ge 1$ vertices and Bob selects $b \ge a$ vertices;

イロト イ団 トイミトイミ

Back to Hex

Board: (arbitrary large) hexagonal grid. Winning sets: all paths "between top and bottom".

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

4/23

 Ω

Maker-Breaker / Maker-Maker

Theorem: Alice has a winning strategy

Proof: Strategy-stealing argument.

By contradiction Bob has a winning stragegy. Alice initially selects any vertex (it "does not hurt"). Then, she plays as a second player using Bob's winning strategy.

Open problem: Alice's winning strategy only known for small grids $(9 \times 9$, computer proof).

Back to Hex

Board: (arbitrary large) hexagonal grid. Winning sets: all paths "between top and bottom".

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

Maker-Breaker / Maker-Maker

Theorem: Alice has a winning strategy

Proof: Strategy-stealing argument.

By contradiction Bob has a winning stragegy. Alice initially selects any vertex (it "does not hurt"). Then, she plays as a second player using Bob's winning strategy.

Open problem: Alice's winning strategy only known for small grids $(9 \times 9$, computer proof).

Remark: Hex (initial configuration) is PSPACE-complete [Reisch 81]

[Introduction,](#page-1-0) [Largest Con. Subgraph,](#page-19-0) H[-game,](#page-72-0) [Conclusion](#page-79-0)

Back to Tic Tac Toe

Board: (arbitrary large) cartesian grid. Winning sets: all alignments (horizontal, vertical or diagonal) of $c \geq 1$ cells. Maker-Breaker variant

5/23

 $2Q$

目

◆ロ→ ◆個→ ◆唐→ ◆唐→

[Introduction,](#page-1-0) [Largest Con. Subgraph,](#page-19-0) H[-game,](#page-72-0) [Conclusion](#page-79-0)

Back to $\mathsf{Tic}\, \mathsf{Tac}\, \mathsf{Toe}$ and $\mathsf{Back} \, \mathsf{pos}$ and $\mathsf{Beck}\, \mathsf{pos}$

Board: (arbitrary large) cartesian grid. Winning sets: all alignments (horizontal, vertical or diagonal) of $c > 1$ cells. Maker-Breaker variant

Theorem: Alice (○) has a winning strategy for $c < 5$

Proof: Easy for $c \leq 4$. Computer proof for $c = 5$ (Gomoku, 15×15).

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

5/23

[Introduction,](#page-1-0) [Largest Con. Subgraph,](#page-19-0) H[-game,](#page-72-0) [Conclusion](#page-79-0)

Back to $\mathsf{Tic}\, \mathsf{Tac}\, \mathsf{Toe}$ and $\mathsf{Back} \, \mathsf{pos}$ and $\mathsf{Beck}\, \mathsf{pos}$

Board: (arbitrary large) cartesian grid. Winning sets: all alignments (horizontal, vertical or diagonal) of $c > 1$ cells. Maker-Breaker variant

Theorem: Alice (\circ) has a winning strategy for $c \leq 5$

Proof: Easy for $c \leq 4$. Computer proof for $c = 5$ (Gomoku, 15×15).

[Introduction,](#page-1-0) [Largest Con. Subgraph,](#page-19-0) H[-game,](#page-72-0) [Conclusion](#page-79-0)

Back to $\mathsf{Tic}\, \mathsf{Tac}\, \mathsf{Toe}$ and $\mathsf{Back} \, \mathsf{pos}$ and $\mathsf{Beck}\, \mathsf{pos}$

Board: (arbitrary large) cartesian grid. Winning sets: all alignments (horizontal, vertical or diagonal) of $c > 1$ cells. Maker-Breaker variant

Theorem: Alice (\circ) has a winning strategy for $c \leq 5$

Proof: Easy for $c \leq 4$. Computer proof for $c = 5$ (Gomoku, 15×15).

Positional Games / Complexity

Consider a game (X, \mathcal{F}) in Maker-Breaker convention.

Erdös-Selfridge criterion **Executive Criterion** [Erdös, Selfridge 73]

If $\sum_{\Gamma \subset \Gamma} 2^{-|\Gamma|} < \frac{1}{2}$, then Bob wins. $F \in \mathcal{F}$

K ロ ▶ K 御 ▶ K 결 ▶ K 결 ▶ │ 결

6/23

 $2Q$

Positional Games / Complexity

Consider a game (X, \mathcal{F}) in Maker-Breaker convention.

Erdös-Selfridge criterion **Erdös-Selfridge 73**

If $\sum_{\Gamma \subset \Gamma} 2^{-|\Gamma|} < \frac{1}{2}$, then Bob wins. $F \subseteq F$

POS CNF: set of variables $X = \{x_1, \ldots, x_n\}$, $\mathcal{F} = \{C_1, \cdots, C_m\} \subseteq 2^X$ and

CNF formula $\phi = C_1 \wedge \cdots \wedge C_m$ (all variables in positive form).

Alice sets variables to true, and Bob to false. Alice wins iff ϕ is true.

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

6/23

つくで

Positional Games / Complexity

Consider a game (X, \mathcal{F}) in Maker-Breaker convention.

Erdös-Selfridge criterion **Executive Criterion** [Erdös, Selfridge 73]

If $\sum_{\Gamma \subset \Gamma} 2^{-|\Gamma|} < \frac{1}{2}$, then Bob wins. $F \subseteq F$

POS CNF: set of variables $X = \{x_1, \ldots, x_n\}$, $\mathcal{F} = \{C_1, \cdots, C_m\} \subseteq 2^X$ and CNF formula $\phi = C_1 \wedge \cdots \wedge C_m$ (all variables in positive form).

Alice sets variables to true, and Bob to false. Alice wins iff ϕ is true.

Complexity of deciding the outcome

PSPACE-complete

• Clauses/hyperedges of size 11 [Schaefer 78], of size 6 [Rahman, Watson 21]

Polynomial

• Clauses of size 2 (graphs: trivial), of size 3 [Galliot, Gravier, Sivignon 23+1

6/23 290

Positional Games "arising" from graphs

Game (V, \mathcal{F}) where \mathcal{F} "reflects some structures" of a graph $G = (V, E)$ First examples:

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

7/23

 $2Q$

Positional Games "arising" from graphs

Game (V, \mathcal{F}) where \mathcal{F} "reflects some structures" of a graph $G = (V, E)$ First examples:

Generalized Hex (Shannon switching game on vertices)

 $G = (V, E)$, s, $t \in V$, \mathcal{F} : set of all s-t-paths.

- **O** PSPACE-complete [Even, Tarjan 75],
- \bullet W[1]-complete (param. by length of the game) [Bonnet et al 17].

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

7/23

 Ω

Positional Games "arising" from graphs

Game (V, \mathcal{F}) where \mathcal{F} "reflects some structures" of a graph $G = (V, E)$ First examples:

Generalized Hex (Shannon switching game on vertices)

 $G = (V, E), s, t \in V, F$: set of all s-t-paths.

O PSPACE-complete [Even, Tarjan 75],

 \bullet W[1]-complete (param. by length of the game) [Bonnet et al 17].

7/23

 $2Q$

È

Maker-Breaker Domination game [Duchêne, Gledel, Parreau, Renault 18]

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end$

 $G = (V, E)$, F : set of all dominating sets.

- PSPACE-complete in bipartite and split graphs;
- Polynomial in trees and cographs; Open: Interval, bounded tw...
- Study on length of the game.

Largest Connected Subgraph game

joint works with J. Bensmail, F. Fioravantes, F. Mc Inerney and N.Oijid.

8/23

 $2QQ$

AD - 4 E - 4 E - 1

- Alice and Bob alternately colour uncoloured vertices, until all vertices coloured.
- **Scoring game:** Player with the largest $(\# \text{ nodes})$ connected subgraph of their colour wins.

9/23

つくい

 4 and 3 and 2 and 3 and 3 and 3 and 3

- Alice and Bob alternately colour uncoloured vertices, until all vertices coloured.
- **Scoring game:** Player with the largest $(\# \text{ nodes})$ connected subgraph of their colour wins.

9/23

つくい

 4 and 3 and 2 and 3 and 3 and 3 and 3

- Alice and Bob alternately colour uncoloured vertices, until all vertices coloured.
- **Scoring game:** Player with the largest $(\# \text{ nodes})$ connected subgraph of their colour wins.

9/23

つくい

 4 and 3 and 2 and 3 and 3 and 3 and 3

- Alice and Bob alternately colour uncoloured vertices, until all vertices coloured.
- **Scoring game:** Player with the largest $(\# \text{ nodes})$ connected subgraph of their colour wins.

9/23

つくい

 4 and 3 and 2 and 3 and 3 and 3 and 3

- Alice and Bob alternately colour uncoloured vertices, until all vertices coloured.
- **Scoring game:** Player with the largest $(\# \text{ nodes})$ connected subgraph of their colour wins.

9/23

つくい

 λ \equiv λ

4 5 6 4 5 6

- Alice and Bob alternately colour uncoloured vertices, until all vertices coloured.
- **Scoring game:** Player with the largest $(\# \text{ nodes})$ connected subgraph of their colour wins.

9/23

つくい

 λ \equiv λ

4 5 6 4 5 6

- Alice and Bob alternately colour uncoloured vertices, until all vertices coloured.
- **Scoring game:** Player with the largest $(\# \text{ nodes})$ connected subgraph of their colour wins.

9/23

つくい

 λ \equiv λ

4 5 6 4 5 6

- Alice and Bob alternately colour uncoloured vertices, until all vertices coloured.
- **Scoring game:** Player with the largest $(\# \text{ nodes})$ connected subgraph of their colour wins.

9/23

つくい

 λ \equiv λ

4 何 ト ィ ヨ ト

- Alice and Bob alternately colour uncoloured vertices, until all vertices coloured.
- **Scoring game:** Player with the largest $(\# \text{ nodes})$ connected subgraph of their $\frac{1}{\text{a}}$ colour wins. Alice wins 4 $-$ 3

 4 and 3 and 2 and 3 and 3 and 3 and 3

9/23

- Alice and Bob alternately colour uncoloured vertices, until all vertices coloured.
- **Scoring game:** Player with the **largest** ($\#$ nodes) connected subgraph of their colour wins.

4 0 1

4 5 8 4 5 8

 $\left\vert 1\right\rangle$ $\left\vert \right\rangle$ = $\left\vert 1\right\rangle$

9/23

- Alice and Bob alternately colour uncoloured vertices, until all vertices coloured.
- **Scoring game:** Player with the **largest** ($\#$ nodes) connected subgraph of their colour wins.

4 0 1

4 5 8 4 5 8

 $\left\vert 1\right\rangle$ $\left\vert \right\rangle$ = $\left\vert 1\right\rangle$

9/23

- Alice and Bob alternately colour uncoloured vertices, until all vertices coloured.
- **Scoring game:** Player with the **largest** ($\#$ nodes) connected subgraph of their colour wins.

4 0 1

4 5 8 4 5 8

 $\left\vert 1\right\rangle$ $\left\vert 2\right\rangle$ is a

9/23

- Alice and Bob alternately colour uncoloured vertices, until all vertices coloured.
- **Scoring game:** Player with the **largest** ($\#$ nodes) connected subgraph of their colour wins.

4 0 1

4 5 8 4 5 8

 $\left\vert 1\right\rangle$ $\left\vert 2\right\rangle$ is a

9/23

- Alice and Bob alternately colour uncoloured vertices, until all vertices coloured.
- **Scoring game:** Player with the **largest** ($\#$ nodes) connected subgraph of their colour wins.

4 0 1

4 5 8 4 5 8

4 E K

9/23

- Alice and Bob alternately colour uncoloured vertices, until all vertices coloured.
- **Scoring game:** Player with the **largest** ($\#$ nodes) connected subgraph of their colour wins.

4 0 1

4 5 8 4 5 8

9/23

- Alice and Bob alternately colour uncoloured vertices, until all vertices coloured.
- **Scoring game:** Player with the **largest** ($\#$ nodes) connected subgraph of their colour wins.

4 0 1

4 5 8 4 5 8

 $\left\vert 1\right\rangle$ $\left\vert \frac{1}{2}\right\rangle$ $\left\vert 1\right\rangle$

9/23
- Alice and Bob alternately colour uncoloured vertices, until all vertices coloured.
- **Scoring game:** Player with the **largest** ($#$ nodes) connected subgraph of their colour wins.

4 0 1

4 5 8 4 5 8

9/23

- Alice and Bob alternately colour uncoloured vertices, until all vertices coloured.
- **Scoring game:** Player with the **largest** ($#$ nodes) connected subgraph of their colour wins.

4 0 1

4 5 8 4 5 8

9/23

- Alice and Bob alternately colour uncoloured vertices, until all vertices coloured.
- **Scoring game:** Player with the **largest** ($#$ nodes) connected subgraph of their colour wins.

4 0 1

4 5 8 4 5 8

9/23

- Alice and Bob alternately colour uncoloured vertices, until all vertices coloured.
- **Scoring game:** Player with the **largest** ($#$ nodes) connected subgraph of their colour wins.

4 5 8 4 5 8

9/23

- Alice and Bob alternately colour uncoloured vertices, until all vertices coloured.
- **Scoring game:** Player with the **largest** ($#$ nodes) connected subgraph of their colour wins.

4 5 8 4 5 8

9/23

- Alice and Bob alternately colour uncoloured vertices, until all vertices coloured.
- **Scoring game:** Player with the **largest** ($#$ nodes) connected subgraph of their

K ロ ▶ K 倒 ▶ K 듣 ▶ K 듣 ▶ ...

9/23

- Alice and Bob alternately colour uncoloured vertices, until all vertices coloured.
- **Scoring game:** Player with the largest $(\# \text{ nodes})$ connected subgraph of their

 $\langle \Box \rangle$ $\langle \Box \rangle$ $\langle \Box \rangle$ $\langle \Box \rangle$

Theorem

Either Alice has a winning strategy, or Bob can ensure a draw.

Complexity of LCSG **[Bensmail, Fioravantes, Mc Inerney, N., 2021**]

10/23

 $2Q$

Reflection graph

Any graph G for which $V(G)$ can be **partitioned** into $U = (u_1, \ldots, u_n)$ and $V = (v_1, \ldots, v_n)$ such that:

- **1** $f: U \to V$ with $f(u_i) = v_i$ for all $i \in \{1, \ldots, n\}$, is an isomorphism between $G[U]$ and $G[V]$;
- 2 for any two $i, j \in \{1, \ldots, n\}$, if $u_i v_i \in E(G)$, then $u_jv_i \in E(G)$. u_3

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

Complexity of LCSG **[Bensmail, Fioravantes, Mc Inerney, N., 2021**]

10/23

 $2Q$

Reflection graph

Any graph G for which $V(G)$ can be **partitioned** into $U = (u_1, \ldots, u_n)$ and $V = (v_1, \ldots, v_n)$ such that:

1 $f: U \to V$ with $f(u_i) = v_i$ for all $i \in \{1, \ldots, n\}$, is an isomorphism between $G[U]$ and $G[V]$;

2 for any two $i, j \in \{1, \ldots, n\}$, if $u_i v_i \in E(G)$, then $u_jv_i \in E(G)$. u_3

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

Theorem

In any reflection graph, Bob can force a draw. Recognising reflection graphs is GI-hard.

Complexity of LCSG **[Bensmail, Fioravantes, Mc Inerney, N., 2021**]

Reflection graph

Any graph G for which $V(G)$ can be **partitioned** into $U = (u_1, \ldots, u_n)$ and $V = (v_1, \ldots, v_n)$ such that:

1 $f: U \to V$ with $f(u_i) = v_i$ for all $i \in \{1, \ldots, n\}$, is an isomorphism between $G[U]$ and $G[V]$;

2 for any two $i, j \in \{1, \ldots, n\}$, if $u_i v_i \in E(G)$, then $u_i v_i \in E(G)$. using the set of u_1 and u_2

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ .

Theorem

In any reflection graph, Bob can force a draw. Recognising reflection graphs is GI-hard.

Theorem

Deciding if Alice wins the LCSG is PSPACE-complete, even for bipartite graphs with diameter at most 5.

11/23

 $2Q$

目

11/23

 $2Q$

目

11/23

 $2Q$

目

11/23

 $2Q$

目

LCSG in simple graph classes [Bensmail, Fioravantes, Mc Inerney, N., 2021]

11/23

 $2Q$

目

LCSG in simple graph classes [Bensmail, Fioravantes, Mc Inerney, N., 2021]

11/23

 $2Q$

目

LCSG in simple graph classes [Bensmail, Fioravantes, Mc Inerney, N., 2021]

11/23

 $2Q$

目

LCSG in simple graph classes [Bensmail, Fioravantes, Mc Inerney, N., 2021]

11/23

 $2Q$

目

LCSG in simple graph classes [Bensmail, Fioravantes, Mc Inerney, N., 2021]

11/23

 $2Q$

目

LCSG in simple graph classes [Bensmail, Fioravantes, Mc Inerney, N., 2021]

11/23

 $2Q$

目

LCSG in simple graph classes [Bensmail, Fioravantes, Mc Inerney, N., 2021]

11/23

 $2Q$

目

LCSG in simple graph classes [Bensmail, Fioravantes, Mc Inerney, N., 2021]

11/23

 $2Q$

目

LCSG in simple graph classes [Bensmail, Fioravantes, Mc Inerney, N., 2021]

11/23

 $2Q$

目

LCSG in simple graph classes [Bensmail, Fioravantes, Mc Inerney, N., 2021]

11/23

 $2Q$

目

Nicolas Nisse [On some positional games in graphs](#page-0-0)

Theorem

For all $n > 1$, Alice wins in the path P_n if and only if $n \in \{1, 3, 5, 7, 9\}$.

- If $n \in \{1, 3, 5, 7, 9\}$, then case analysis.
- \bullet If n is even, then Bob can draw (reflection graph).
- **O** For odd $n > 11$, non trivial induction with pre-coloured vertices.

12/23

 $2Q$

Theorem

For all $n \geq 1$, Alice wins in the cycle C_n if and only if n is odd.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

12/23

 $2Q$

Theorem

For all $n \geq 1$, Alice wins in the cycle C_n if and only if n is odd.

A-perfect graph

Where Alice can ensure a single red component (of size $\lceil \frac{n}{2} \rceil$).

12/23

つくい

Theorem

For all $n \geq 1$, Alice wins in the cycle C_n if and only if n is odd.

A-perfect graph

Where Alice can ensure a single red component (of size $\lceil \frac{n}{2} \rceil$).

Theorem

The outcome of the game in any cograph G is computable in linear time.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

K ロ ▶ K 御 ▶ K ミ ▶ K ミ ▶

12/23

つくい

Theorem

For all $n \geq 1$, Alice wins in the cycle C_n if and only if n is odd.

A-perfect graph

Where Alice can ensure a single red component (of size $\lceil \frac{n}{2} \rceil$).

Theorem

The outcome of the game in any cograph G is computable in linear time.

Proof: Induction on $|V|$: return the outcome and whether G is A-perfect or not.

Join $G = G_1 \oplus G_2$ (with $|V_1| < |V_2|$): G is A-perfect. Moreover Bob cannot ensure a single component iff $|V_1| = 1$ and G_2 not A-perfect.

Disjoint union of joins $G = \bigcup_i G_i$ (with all G_i are cographs resulting from a join). Case analysis based on:

- whether or not G_i is a join with a singleton,
- \bullet parity of $|V(G_i)|$,
- whether or not G_i is A-perfect.

Maker-Breaker LCSG [Bensmail, Fioravantes, Mc Inerney, N., Oijid, 2023]

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

13/23

 $2Q$

Input: A graph $G = (V, E)$ and $k \in \mathbb{N}$.

Game (V, \mathcal{F}) with $\mathcal F$ all subsets of at least k vertices inducing a connected subgraph.

Alice wins iff she gets a red connected subgraph with at least k vertices.

Maker-Breaker LCSG [Bensmail, Fioravantes, Mc Inerney, N., Oijid, 2023]

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

13/23

つくい

Input: A graph $G = (V, E)$ and $k \in \mathbb{N}$.

Game (V, \mathcal{F}) with $\mathcal F$ all subsets of at least k vertices inducing a connected subgraph.

Alice wins iff she gets a red connected subgraph with at least k vertices.

New graph invariant

 $c_{\mathcal{G}}(G)$: maximum integer k such that Alice wins in G.

Rmk: For every graph
$$
G
$$
, $\lfloor \frac{\Delta(G)}{2} \rfloor + 1 \le c_g(G) \le \lceil \frac{|V|}{2} \rceil$
 $c_g(G) = \lceil \frac{|V|}{2} \rceil$ iff G is A -perfect.

Maker-Breaker LCSG [Bensmail, Fioravantes, Mc Inerney, N., Oijid, 2023]

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

Input: A graph $G = (V, E)$ and $k \in \mathbb{N}$.

Game (V, \mathcal{F}) with $\mathcal F$ all subsets of at least k vertices inducing a connected subgraph.

Alice wins iff she gets a red connected subgraph with at least k vertices.

New graph invariant

 $c_{\mathcal{G}}(G)$: maximum integer k such that Alice wins in G.

Rmk: For every graph
$$
G
$$
, $\lfloor \frac{\Delta(G)}{2} \rfloor + 1 \le c_g(G) \le \lceil \frac{|V|}{2} \rceil$
 $c_g(G) = \lceil \frac{|V|}{2} \rceil$ iff G is A -perfect.

c_{σ} of simple graph classes

- $c_g(P_n) = c_g(C_n) = 2$ for every $n \geq 3$.
- $c_g(G)$ can be computed in linear time in the class of $(q, q 4)$ graphs.

13/23 $2Q$

M-B LCSG / Complexity [Bensmail, Fioravantes, Mc Inerney, N., Oijid, 2023]

 $\left\{ \left\vert \left\langle \left\langle \mathbf{p}\right\rangle \right\rangle \right\vert \times\left\langle \mathbf{p}\right\rangle \right\vert \times\left\langle \mathbf{p}\right\rangle \right\}$

 $2Q$

Theorem

Given a graph G and an integer $k \geq 1$, it is PSPACE-complete to decide whether $c_{\mathcal{G}}(G) \geq k$, even if G is a bipartite, split or planar graph.

14/23 **Planar case:** $c_g(G) \ge |V(H)| + 5$ iff Alice wins the planar extended Hex game in H.

4 0 1

M-B LCSG / A-perfect [Bensmail, Fioravantes, Mc Inerney, N., Oijid, 2023]

15/23

 $2Q$

Some sufficient conditions to be A-perfect

If
$$
\Delta(G) + \delta(G) \ge n
$$
 or $|E(G)| - 3 \ge \frac{(n-2)(n-3)}{2}$, then G is A-perfect.

Lemma

There exist arbitrarily large d-regular A-perfect graphs iff $d \geq 4$.

(if G cubic and A-perfect, then $|V(G)| \le 16$)

Further work on Largest Con. Subgraph game

About A-perfect graphs

- Complexity of deciding if a graph is A-perfect?
- Other necessary and/or sufficient conditions?

Other graph classes

- Complexity of deciding if Alice wins the LCSG in trees?
- Complexity of deciding if $c_g(T) \geq k$ in a tree T?
- Value or bounds for $c_g(\text{Grid})$? $c_g(\text{Hexagonal } \text{Grid}) = 6.$ $c_{\sigma}(P_n \Box P_m) \leq 2 \min\{n, m\}.$
- **•** Interval graphs...?

Other variants

Connected variant: Alice can only colour a vertex adjacent to a red vertex.

K ロ ▶ K 御 ▶ K ミ ▶ K ミ ▶

16/23
H-game

joint work with E. Duchêne, V. Gledel, F. Mc Inerney, N. Oijid, A. Parreau and M. Stojaković .

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

17/23

 $2Q$

目

Maker-Breaker game on edge-set of graphs

Given a graph $G = (V, E)$, Alice and Bob select elements of E.

Also played in Erdös-Rényi random graph model G

e.g., [Hefetz, Krivelevich, Stojaković, Szabó 14; Nenadov, Steger, Stojaković 16]

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

18/23

つくい

Maker-Breaker game on edge-set of graphs

Given a graph $G = (V, E)$, Alice and Bob select elements of E.

e.g., [Hefetz, Krivelevich, Stojaković, Szabó 14; Nenadov, Steger, Stojaković 16]

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

18/23

つくい

Here, complexity of the outcome in any graph G.

Nicolas Nisse [On some positional games in graphs](#page-0-0)

Complexity [Duchêne, Gledel, Mc Inerney, N., Oijid, Parreau, Stojaković]

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

Arboricity-k game: Alice wins if red graph has arboricity at least k

Theorem: Arboricity-k game is in P $(k = 2: \text{ cycle game})$

Alice wins the arboricity-k game in G iff $k < \lceil$ arboricity(G)/2.

Theorem: Perfect matching game is PSPACE-complete

Reduction from Uniform POS CNF 6.

H-game: H is a fixed graph. Given a graph G as input, can Alice select edges to create an induced copy of H?

Theorem: H-game is PSPACE-complete. More precisely

- \bullet \exists a tree T, s.t. T-game PSPACE-c in graphs with diameter \leq 6.
- \exists a graph H' of order 51 (size 57), s.t. H' -game PSPACE-c.

19/23 $2Q$

Complexity Tree-game [Duchêne, Gledel, Mc Inerney, N., Oijid, Parreau, Stojaković]

Theorem: \exists a tree T , s.t. T -game PSPACE-c.

Reduction from Uniform POS CNF 6 where falsifier starts.

T -game: some poly. cases \sqrt{D} _{Duchêne, Gledel, Mc Inerney, N., Oijid, Parreau, Stojaković]}

Theorem: \overline{Bob} wins the P_4 -game in G iff.

- 1 G is bipartite and all the vertices of degree at least 3 are in the same part; or
- 2 G is an odd cycle; or
- \bigodot G is a subgraph of the bull, K_4 , or a C_5 with a leaf attached to one vertex.

Theorem: Star-game in trees

Let $\ell \ge 1$, the outcome of the $K_{1,\ell}$ -game can be decided in linear time in a trees.

Theorem: Parameterized complexity

• The $K_{1,\ell}$ -game is FPT by the length t of the game.

(small (w.r.t. ℓ) max. degree + bounded (in t) diameter)

• The H-game in trees is FPT by the length of the game.

21/23

Further work on the H-game

Complexity in general graphs

- Smallest graph H such that H-game is PSPACE-complete?
- \bullet Dichotomy of graphs H: H-game PSPACE-complete vs. Polynomial?
- \bullet Is the H-game W[1]-hard parameterized by the length of the game?

H-game in trees

- Complexity?
- Cost of connectedness?

(if Alice's edges must induce a connected component)

イロメ イ押 レイモ レイモ レー

22/23

 Ω

H-game in other graph classes?

Other conventions: Avoider-Enforcer, Waiter-Client...?

[Introduction,](#page-1-0) [Largest Con. Subgraph,](#page-19-0) H[-game,](#page-72-0) [Conclusion](#page-79-0)

Conclusion: many other games

Impartial games: allowable moves depend only on the position, not on the current player. **[Sprague 36, Grundy 39, Berlekamp, Conway, Guy 82]**

Impartial games in graphs

Alice and Bob alternately "select" vertices, according to some common rule.

The first player who cannot "select" a vertex loses.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ..

23/23

 $2Q$

[Introduction,](#page-1-0) [Largest Con. Subgraph,](#page-19-0) H[-game,](#page-72-0) [Conclusion](#page-79-0)

Conclusion: many other games

Impartial games: allowable moves depend only on the position, not on the current player. [Sprague 36, Grundy 39, Berlekamp, Conway, Guy 82]

Impartial games in graphs

Alice and Bob alternately "select" vertices, according to some common rule. The first player who cannot "select" a vertex loses.

Kayles game / Clique forming game: selected vertices must induce a stable set (resp., a clique) [Schaefer 78]

Coloring game: Alice and Bob colour vertices with k colours in a proper way.

[Bodlaender 91, Costa, Pessoa, Sampaio, Soares 20]

Harmonious Coloring game: see the next talk of Nicolas Martins :)

[Linhares, Martins, N., Sampaio 24+]

Convex forming game: selected vertices must induce a convex set.

[Brosse, Martins, N., Sampaio 24+]

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

23/23

つくい

[Introduction,](#page-1-0) [Largest Con. Subgraph,](#page-19-0) H[-game,](#page-72-0) [Conclusion](#page-79-0)

Conclusion: many other games

Impartial games: allowable moves depend only on the position, not on the current player. [Sprague 36, Grundy 39, Berlekamp, Conway, Guy 82]

Impartial games in graphs

Alice and Bob alternately "select" vertices, according to some common rule. The first player who cannot "select" a vertex loses.

Kayles game / Clique forming game: selected vertices must induce a stable set (resp., a clique) [Schaefer 78]

Coloring game: Alice and Bob colour vertices with k colours in a proper way.

[Bodlaender 91, Costa, Pessoa, Sampaio, Soares 20]

Harmonious Coloring game: see the next talk of Nicolas Martins :)

[Linhares, Martins, N., Sampaio 24+]

Convex forming game: selected vertices must induce a convex set.

[Brosse, Martins, N., Sampaio 24+]

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶

Obrigado!

23/23 つくい