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Approximation Algorithms

Π a maximization Problem

c-Approximation for Π 1 < c constant or depends on input length

deterministic polynomial-time algorithm A
for any input I , A returns a solution with value at least OPT (I )/c.

Example: MAX-3SAT
input: a 3CNF formula Φ
output: maximum (over all assignments A) number of clauses of Φ satisfied by A

remark: MAX-3SAT is NP-hard

Algorithm: Random assignment ⇒ 8
7

-approximation for MAX-3SAT

each clause is satisfied with probability 7
8

Application of PCP Theorem : above algorithm (derandomized) is optimal unless
P = NP.

N. Nisse PCP & Inapproximability
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Hierarchy of NP-hard Problems

Fully Polynomial Time Approximation Scheme (FPTAS)

For any ε, ∃ (1 + ε)-approximation algorithm, polynomial in both n and 1/ε
e.g., Knapsack

Polynomial Time Approximation Scheme (PTAS)

For any ε, ∃ (1 + ε)-approximation algorithm, polynomial in n (typically nf (ε))
but no FPTAS (unless P=NP) e.g., Euclidean TSP

Θ(1)-approximation but no PTAS (unless P=NP)

e.g., Vertex Cover, MAX-3SAT

O(log n)-approximation but no constant approximation (unless P=NP)

e.g., Set Cover

only nΘ(1)-approximation, no n1−ε-approximation for any ε > 0 (unless P=NP)

e.g., MAX-Clique

N. Nisse PCP & Inapproximability
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Reminder: Definition of NP

L ∈ NP iff ∃ a deterministic Verifier V s.t.

for any input (word) w

V polynomial-time in |w |

and

if w ∈ L then ∃ proof (certificate) x with V (w , x) = 1

if w /∈ L then ∀ proof x , V (w , x) = 0

examples:
3-SAT: proof= assignment of variables
3-Coloriage: proof= Labelling of vertices

Verifier checks (1) that certificate is consistent (2) that the answer is correct

N. Nisse PCP & Inapproximability
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Definition of the class PCP(r,q)

L ∈ PCP(r , q) iff ∃ a randomized Verifier V s.t.

for any input w

V polynomial-time in |w |, uses a string ρ of O(r(|w |)) bits of randomness and
only checks O(q(|w |)) bits of the proof, and

if w ∈ L then ∃ proof x with Prρ(V (w , x , ρ) = 1) = 1 (completeness).

if w /∈ L then ∀ proof x , Prρ(V (w , x , ρ) = 1) ≤ 1/2 (soundness).

proof x has size ≤ q(|w |) · 2r(|w|) and only O(q(|w |)) bits of x are checked.

If the proof x is correct, then w is accepted with proba 1 (completeness).
Otherwise (if proof x is a fake), w is rejected with probability at least 1/2 (soundness).

tradeoff between randomness (r) and number of bits (q) checked

N. Nisse PCP & Inapproximability
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Relationships between PCP and NP

NP ⊆ PCP(0, poly(n))

idea: NP-proof has polynomial size and the PCP-Verifier can check it completely

PCP(O(log n),O(1)) ⊆ NP

idea: NP-Verifier: apply PCP-Verifier for each of the 2O(log n) possible random strings
i.e., “check the full proof” in polynomial-time

NP ⊆ PCP(nO(1),O(1))

idea: Increase the size of NP-proof s.t. if it is a fake, the mistakes are “everywhere”

PCP Theorem: NP ⊆ PCP(O(log n),O(1)) Corollary: NP = PCP(O(log n),O(1))

Initial proof: [Arora,Safra FOCS’92] [Arora,Lund,Motwani,Sudan,Szegedy FOCS’92]
[Arora FOCS’95]

improvements: [Raz STOC’95] [Hastad JACM’01]
“easier” proof: [Dinur STOC’06, JACM’07]

N. Nisse PCP & Inapproximability
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PCP Theorem

NP = PCP(O(log n),O(1)) [Arora et al.’92]

Consequence: for any L ∈ NP, ∃ a Verifier V s.t.

for any input w of size n

V polynomial-time in |w |, uses a string ρ of O(log n) bits of randomness and
only checks O(1) bits of the proof, and

if w ∈ L then ∃ proof x with Prρ(V (w , x , ρ) = 1) = 1 (completeness).

if w /∈ L then ∀ proof x , Prρ(V (w , x , ρ) = 1) ≤ 1/2 (soundness).

Remark 1: PCP(O(log n),O(1)) is stable by polynomial-time reductions.

i.e., if L′ ≺poly L and L ∈ PCP(O(log n),O(1)) then L′ ∈ PCP(O(log n),O(1))

L′ ≺poly L means ∃ a poly-time reduction from L to L′ (i.e., L not “easier” than L′).

Remark 2: V may have extra/restricted properties [Arora et al.’92, Raz’95,Hastadt’01]

N. Nisse PCP & Inapproximability
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MAX-3SAT is hard to Approximate (1/2)

Goal: prove that ∃c0 s.t. ∀ε, there is no (c0 − ε)-approx of MAX-3SAT unless P = NP

MAX-3SAT

input: a 3CNF formula Φ
output: maximum (over all assignments A) number of clauses of Φ satisfied by A

GAP-3SATs 0 < s < 1

input: a 3CNF formula Φ with m clauses
output:

YES if Φ is satisfiable

NO if at most s ·m clauses are satisfiable (for all assignments)

anything otherwise

Lemma

If ∃s < 1 s.t. GAP-3SATs is NP-hard
then there is no s-approx of MAX-3SAT unless P = NP

N. Nisse PCP & Inapproximability
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MAX-3SAT is hard to Approximate (2/2)

PCP ⇔ Hardness of Approximation

NP ⊆ PCP(O(log n),O(1))⇔ ∃s < 1 s.t. GAP-3SATs is NP-hard

N. Nisse PCP & Inapproximability
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MAX-3SAT is hard to Approximate (2/2)

PCP ⇔ Hardness of Approximation

NP ⊆ PCP(O(log n),O(1))⇔ ∃s < 1 s.t. GAP-3SATs is NP-hard

⇐ roughly, prove that GAP-3SATs ∈ PCP(O(log n),O(1))

For any L ∈ NP there is Φ polynomial-time s.t.

for any word w , Φ(w) is an instance of GAP-3SATs

if w ∈ L then Φ(w) satisfiable; else at most a fraction s of the clauses can be
satisfied

Verifier:

1 Compute Φ(w), m its number of clauses

2 use dlog me random bits to choose a clause

3 read the value of the litterals in this clause

4 answer 1 if the clause is satisfied, 0 otherwise

If w /∈ L (i.e., at most s.m clauses can be satisfied), it is detected with proba ≥ 1− s.
Repeat constant number of times to achieve the desired probability

N. Nisse PCP & Inapproximability
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MAX-3SAT is hard to Approximate (2/2)

PCP ⇔ Hardness of Approximation

NP ⊆ PCP(O(log n),O(1))⇔ ∃s < 1 s.t. GAP-3SATs is NP-hard

⇒ reduce L ∈ NP to GAP-kSAT1− 1
2k+1

L has a Verifier V using O(log n) random bits and read k = O(1) bits in the proof.
given a word w and a random string ρ, V (w , ρ, x) ∈ {0, 1} reads k bits of the proof x

fw,ρ : x → V (w , ρ, x) expressed as k-SAT formula with ≤ 2k clauses.

Let Φw = ∧ρ∈{0,1}O(log n) fw,ρ.

if w ∈ L then Φw satisfied by x
otherwise at most a fraction 1− 1

2k+1 of clauses can be satisfied.

N. Nisse PCP & Inapproximability
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LABEL COVER (Maximization version)
regular bipartite graph G = (V1 ∪ V2,E) and, ∀e ∈ E , partial function

Πe : [1,N]→ [1,N]

V1

V2

Let c : V → [1,N] be a coloring of V .
an edge e = {u, v} ∈ E , u ∈ V1, v ∈ V2, is covered if Πe(c(u)) = c(v).

Goal: Find a coloring maximizing the fraction of covered edges.

N. Nisse PCP & Inapproximability
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LABEL COVER hard to approximate

∃ reduction f from 3SAT to LABEL COVER s.t.

for any instance I of 3SAT and instance f (I ) of LABEL COVER

if X clauses of I can be satisfied, ≥ X edges of f (I ) can be covered
if Y edges of f (I ) can be covered, ≥ Y /3 clauses of I can be satisfied

Gap-Preserving Reduction

Corollary

∃ε s.t. finding an (1 + ε)-approximation to Label Cover is NP-hard.

N. Nisse PCP & Inapproximability
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LABEL COVER very hard to approximate

Theorem

∀0 < ε < 1/2 and c(n) ≥ 2log0,5−ε n, and there is a reduction f in time npoly(log n),
from any NP problem Π to Label Cover such that

for any w ∈ Π, f (w) has value 1

for any w /∈ Π, f (w) has value at most 1/c(n).

Corollary: if ∃0 < ε < 1/2 and a 2log0,5−ε n-approximation algorithm for Label Cover,
then any problem in NP can be solved in time npoly(log n).

Conjecture: Exponential Time Hypothesis (ETH)

There is no sub-exponential-time algorithm to solve 3-SAT unless P = NP

Corollary 1: Assuming ETH

∀ε, there is no 2log0,5−ε n-approximation algorithm for Label Cover unless P = NP

Corollary 2: Assuming ETH

∀ε, there is no 2log0,5−ε n-approximation algorithm for Max Clique unless P = NP

N. Nisse PCP & Inapproximability
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Proof of Cor. 2: “Max Clique hard to approx.”

Gap preserving reduction from Label Cover
Reduce any instance of Label Cover to instance of Max Clique s.t. both optima
coincide

Let G = (V1 ∪ V2,E) and, ∀e ∈ E , Πe : [1,N]→ [1,N]

for any e ∈ E and any a, b ∈ [1,N] s.t., Πe(a) = b
add a vertex (e, a, b)

2 nodes are adjacent if they are consistent
e.g., (uv , a, b) and (uw , a′, b′) are adjacent iff a = a′

N. Nisse PCP & Inapproximability
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Proof of Theorem

L ∈ RPCP(r , s, p) iff ∃ a restricted Verifier V s.t.

V polynomial-time in |w |, uses a string ρ of O(r(|w |)) bits of randomness

- the proof uses an alphabet with 2O(s(|w|)) symbols

- the proof consists of 2 Tables T1,T2

- V chooses 1 location (chosen uniformly at random) in each table, and read only
the corresponding 2 symbols a1 and a2

- V confirms that T1 coherent with T2: for any a1 at most one symbol a2 makes
V accepting

if w ∈ L then ∃ proof x with Prρ(V (w , x , ρ) = 1) = 1 (completeness).

if w /∈ L then ∀ proof x , Prρ(V (w , x , ρ) = 1) ≤ 2−p(|w|) (soundness).

Theorem [Feige,Lovász’92] improved by Raz’95

For any integer k ≥ 2,

NP ⊆ RPCP(log2k+2 n, logk+2 n, logk n)

For any L ∈ NP, use a restricted PCP-Verifier of it to build an instance of Label Cover.
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