Probabilistically Checkable Proofs (PCP) and Hardness of Approximations

Nicolas Nisse

Inria, France

Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, Sophia Antipolis, France

JCALM 2015

March 10th, 2015

Outline

- 1 Introduction on Approximation Algorithms
- 2 PCP & PCP Theorem $(NP = PCP(O(\log n), O(1)))$
- From Label-Cover to MAX-Clique

Outline

- 1 Introduction on Approximation Algorithms
- 2 PCP & PCP Theorem $(NP = PCP(O(\log n), O(1)))$
- 4 From Label-Cover to MAX-Clique

Approximation Algorithms

Π a maximization Problem

c-Approximation for Π

1 < c constant or depends on input length

- lacktriangle deterministic polynomial-time algorithm ${\cal A}$
- for any input I, A returns a solution with value at least OPT(I)/c.

Example: MAX-3SAT

input: a 3CNF formula Φ

output: maximum (over all assignments A) number of clauses of Φ satisfied by A

remark: MAX-3SAT is NP-hard

Algorithm: Random assignment

each clause is satisfied with probability &

Application of PCP Theorem : above algorithm (derandomized) is optimal unless P = NP

-7/20

Approximation Algorithms

Π a maximization Problem

c-Approximation for П

1 < c constant or depends on input length

- lacktriangle deterministic polynomial-time algorithm ${\cal A}$
- for any input I, A returns a solution with value at least OPT(I)/c.

Example: MAX-3SAT

input: a 3CNF formula Φ

output: maximum (over all assignments A) number of clauses of Φ satisfied by A

remark: MAX-3SAT is NP-hard

Algorithm: Random assignment

 $\Rightarrow rac{8}{7}$ -approximation for MAX-3SA

each clause is satisfied with probability $\frac{7}{8}$

Application of PCP Theorem : above algorithm (derandomized) is optimal unless P = NP

Approximation Algorithms

Π a maximization Problem

c-Approximation for Π

1 < c constant or depends on input length

- ullet deterministic polynomial-time algorithm ${\cal A}$
- for any input I, A returns a solution with value at least OPT(I)/c.

Example: MAX-3SAT

input: a 3CNF formula Φ

output: maximum (over all assignments A) number of clauses of Φ satisfied by A

remark: MAX-3SAT is NP-hard

Algorithm: Random assignment

 $\Rightarrow \frac{8}{7}$ -approximation for MAX-3SA

each clause is satisfied with probability $\frac{7}{8}$

Application of PCP Theorem : above algorithm (derandomized) is optimal unless P = NP.

Fully Polynomial Time Approximation Scheme (FPTAS)

For any ϵ , \exists (1 + ϵ)-approximation algorithm, polynomial in both n and 1/ ϵ e.g., Knapsack

```
Polynomial Time Approximation Scheme (PTAS)
```

For any $\epsilon, \exists \ (1+\epsilon)$ -approximation algorithm, polynomial in n (typically $n^{(\epsilon)}$) but no FPTAS (unless P=NP) e.g., Euclidean TSP

 $\Theta(1)$ -approximation but no PTAS (unless P=NP)

e.g., Vertex Cover, MAX-3SAT

 $O(\log n)$ -approximation but no constant approximation (unless P=NF

.g., Set Cover

only $n^{\Theta(1)}$ -approximation, no $n^{1-\epsilon}$ -approximation for any $\epsilon>0$ (unless P=NP)

Fully Polynomial Time Approximation Scheme (FPTAS)

For any $\epsilon,$ \exists (1 + $\epsilon)$ -approximation algorithm, polynomial in both n and 1/ ϵ e.g., Knapsack

Polynomial Time Approximation Scheme (PTAS)

For any ϵ , \exists $(1+\epsilon)$ -approximation algorithm, polynomial in n (typically $n^{f(\epsilon)}$) but no FPTAS (unless P=NP) e.g., Euclidean TSP

 $\Theta(1)$ -approximation but no PTAS (unless P=NP

e.g., Vertex Cover, MAX-3SA

 $O(\log n)$ -approximation but no constant approximation (un

e.g., Set Cover

only $n^{\Theta(1)}$ -approximation, no $n^{1-\epsilon}$ -approximation for any $\epsilon>0$ (unless P=NP)

Fully Polynomial Time Approximation Scheme (FPTAS)

For any $\epsilon,$ \exists (1 + $\epsilon)$ -approximation algorithm, polynomial in both n and $1/\epsilon$ e.g., Knapsack

Polynomial Time Approximation Scheme (PTAS)

For any ϵ , \exists $(1+\epsilon)$ -approximation algorithm, polynomial in n (typically $n^{f(\epsilon)}$) but no FPTAS (unless P=NP) e.g., Euclidean TSP

$\Theta(1)$ -approximation but no PTAS (unless P=NP)

e.g., Vertex Cover, MAX-3SAT

 $O(\log n)$ -approximation but no constant approximation (unless P=NP)

e.g., Set Cover

only $n^{\Theta(1)}$ -approximation, no $n^{1-\epsilon}$ -approximation for any $\epsilon>0$ (unless P=NP)

Fully Polynomial Time Approximation Scheme (FPTAS)

For any ϵ , \exists (1 + ϵ)-approximation algorithm, polynomial in both n and 1/ ϵ e.g., Knapsack

Polynomial Time Approximation Scheme (PTAS)

For any ϵ , \exists $(1+\epsilon)$ -approximation algorithm, polynomial in n (typically $n^{f(\epsilon)}$) but no FPTAS (unless P=NP) e.g., Euclidean TSP

$\Theta(1)$ -approximation but no PTAS (unless P=NP)

e.g., Vertex Cover, MAX-3SAT

$O(\log n)$ -approximation but no constant approximation (unless P=NP)

e.g., Set Cover

Fully Polynomial Time Approximation Scheme (FPTAS)

For any ϵ , \exists (1 + ϵ)-approximation algorithm, polynomial in both n and 1/ ϵ e.g., Knapsack

Polynomial Time Approximation Scheme (PTAS)

For any ϵ , \exists $(1+\epsilon)$ -approximation algorithm, polynomial in n (typically $n^{f(\epsilon)}$) but no FPTAS (unless P=NP) e.g., Euclidean TSP

$\Theta(1)$ -approximation but no PTAS (unless P=NP)

e.g., Vertex Cover, MAX-3SAT

$O(\log n)$ -approximation but no constant approximation (unless P=NP)

e.g., Set Cover

only $n^{\Theta(1)}$ -approximation, no $n^{1-\epsilon}$ -approximation for any $\epsilon>0$ (unless P=NP)

e.g., MAX-Clique

Outline

- 1 Introduction on Approximation Algorithms
- 2 PCP & PCP Theorem $(NP = PCP(O(\log n), O(1)))$
- From Label-Cover to MAX-Clique

Reminder: Definition of NP

$L \in NP$ iff \exists a deterministic Verifier V s.t.

for any input (word) w

- V polynomial-time in |w|
- and
 - if $w \in L$ then \exists proof (certificate) x with V(w, x) = 1
 - if $w \notin L$ then \forall proof x, V(w, x) = 0

examples:

3-SAT: proof= assignment of variables

3-Coloriage: proof= Labelling of vertices

Verifier checks (1) that certificate is consistent (2) that the answer is correct

Definition of the class PCP(r,q)

$L \in PCP(r, q)$ iff \exists a randomized Verifier V s.t.

for any input w

- V polynomial-time in |w|, uses a string ρ of O(r(|w|)) bits of randomness and only checks O(q(|w|)) bits of the proof, and
 - if $w \in L$ then \exists proof x with $Pr_{\rho}(V(w, x, \rho) = 1) = 1$ (completeness).
 - if $w \notin L$ then \forall proof x, $Pr_{\rho}(V(w, x, \rho) = 1) \le 1/2$ (soundness).

```
proof x has size \leq q(|w|) \cdot 2^{r(|w|)} and only O(q(|w|)) bits of x are checked.
```

If the proof x is correct, then w is accepted with proba 1 (completeness). Otherwise (if proof x is a fake), w is rejected with probability at least 1/2 (soundness).

tradeoff between randomness (r) and number of bits (q) checked

$NP \subseteq PCP(0, poly(n))$

idea: NP-proof has polynomial size and the PCP-Verifier can check it completely

$NP \subseteq PCP(0, poly(n))$

idea: NP-proof has polynomial size and the PCP-Verifier can check it completely

$PCP(O(\log n), O(1)) \subseteq NP$

idea: NP-Verifier: apply PCP-Verifier for each of the $2^{O(\log n)}$ possible random strings i.e., "check the full proof" in polynomial-time

$NP \subseteq PCP(0, poly(n))$

idea: NP-proof has polynomial size and the PCP-Verifier can check it completely

$PCP(O(\log n), O(1)) \subseteq \overline{NP}$

idea: NP-Verifier: apply PCP-Verifier for each of the $2^{O(\log n)}$ possible random strings i.e., "check the full proof" in polynomial-time

$NP \subseteq PCP(n^{O(1)}, O(1))$

idea: Increase the size of NP-proof s.t. if it is a fake, the mistakes are "everywhere"

$NP \subseteq PCP(0, poly(n))$

idea: NP-proof has polynomial size and the PCP-Verifier can check it completely

$PCP(O(\log n), O(1)) \subseteq NP$

idea: NP-Verifier: apply PCP-Verifier for each of the $2^{O(\log n)}$ possible random strings i.e., "check the full proof" in polynomial-time

$NP \subseteq PCP(n^{O(1)}, O(1))$

idea: Increase the size of NP-proof s.t. if it is a fake, the mistakes are "everywhere"

PCP Theorem: $NP \subseteq PCP(O(\log n), O(1))$ Corollary: $NP = PCP(O(\log n), O(1))$

Initial proof: [Arora,Safra FOCS'92] [Arora,Lund,Motwani,Sudan,Szegedy FOCS'92] [Arora FOCS'95]

improvements: [Raz STOC'95] [Hastad JACM'01] "easier" proof: [Dinur STOC'06, JACM'07]

9/20

PCP Theorem

$NP = PCP(O(\log n), O(1))$

[Arora et al.'92]

Consequence: for any $L \in NP$, \exists a Verifier V s.t.

for any input w of size n

- V polynomial-time in |w|, uses a string ρ of $O(\log n)$ bits of randomness and only checks O(1) bits of the proof, and
 - if $w \in L$ then \exists proof x with $Pr_{\rho}(V(w, x, \rho) = 1) = 1$ (completeness).
 - if $w \notin L$ then \forall proof x, $Pr_{\rho}(V(w, x, \rho) = 1) \le 1/2$ (soundness).

Remark 1: $PCP(O(\log n), O(1))$ is stable by polynomial-time reductions.

i.e., if
$$L' \prec_{poly} L$$
 and $L \in PCP(O(\log n), O(1))$ then $L' \in PCP(O(\log n), O(1))$

 $L' \prec_{poly} L$ means \exists a poly-time reduction from L to L' (i.e., L not "easier" than L').

Remark 2: V may have extra/restricted properties [Arora et al.'92, Raz'95, Hastadt'01]

Outline

- 1 Introduction on Approximation Algorithms
- 2 PCP & PCP Theorem $(NP = PCP(O(\log n), O(1)))$
- From Label-Cover to MAX-Clique

MAX-3SAT is hard to Approximate (1/2)

Goal: prove that $\exists c_0$ s.t. $\forall \epsilon$, there is no $(c_0 - \epsilon)$ -approx of MAX-3SAT unless P = NP

MAX-3SAT

input: a 3CNF formula \$

output: maximum (over all assignments A) number of clauses of Φ satisfied by A

GAP-3SAT

0 < s < 1

input: a 3CNF formula Φ with m clauses

- 0 VEC 10 ± 1
 - NO if at most s · m clauses are satisfiable

(for all assignments)

anything otherwise

Lemma

 $< 1 \text{ s.t. } \mathsf{GAP}\text{-3SAT}_{s} \mathsf{ is } \mathsf{NP}\text{-hard}$

then there is no s-approx of MAX-3SAT unless P = NP

MAX-3SAT is hard to Approximate (1/2)

Goal: prove that $\exists c_0$ s.t. $\forall \epsilon$, there is no $(c_0 - \epsilon)$ -approx of MAX-3SAT unless P = NP

MAX-3SAT

input: a 3CNF formula Φ

output: maximum (over all assignments A) number of clauses of Φ satisfied by A

GAP-3SAT_s

0 < s < 1

input: a 3CNF formula Φ with m clauses **output:**

- YES if Φ is satisfiable
- NO if at most $s \cdot m$ clauses are satisfiable

(for all assignments)

anything otherwise

Lemm

If $\exists s < 1$ s.t. GAP-3SAT_s is NP-hard

then there is no s-approx of MAX-3SAT unless P = NI

MAX-3SAT is hard to Approximate (1/2)

Goal: prove that $\exists c_0$ s.t. $\forall \epsilon$, there is no $(c_0 - \epsilon)$ -approx of MAX-3SAT unless P = NP

MAX-3SAT

input: a 3CNF formula Φ

output: maximum (over all assignments A) number of clauses of Φ satisfied by A

GAP-3SATs

0 < s < 1

input: a 3CNF formula Φ with m clauses **output:**

- YES if Φ is satisfiable
- NO if at most $s \cdot m$ clauses are satisfiable

(for all assignments)

anything otherwise

Lemma

If $\exists s < 1$ s.t. GAP-3SAT_s is NP-hard

then there is no s-approx of MAX-3SAT unless P = NP

MAX-3SAT is hard to Approximate (2/2)

PCP ⇔ Hardness of Approximation

 $NP \subseteq PCP(O(\log n), O(1)) \Leftrightarrow \exists s < 1 \text{ s.t. } GAP-3SAT_s \text{ is } NP-hard$

MAX-3SAT is hard to Approximate (2/2)

$PCP \Leftrightarrow Hardness of Approximation$

 $NP \subseteq PCP(O(\log n), O(1)) \Leftrightarrow \exists s < 1 \text{ s.t. } GAP-3SAT_s \text{ is } NP-hard$

\Leftarrow

roughly, prove that GAP-3SAT_s \in $PCP(O(\log n), O(1))$

For any $L \in NP$ there is Φ polynomial-time s.t.

- for any word w, $\Phi(w)$ is an instance of GAP-3SAT_s
- if $w \in L$ then $\Phi(w)$ satisfiable; else at most a fraction s of the clauses can be satisfied

Verifier:

- **1** Compute $\Phi(w)$, m its number of clauses
- 2 use $\lceil \log m \rceil$ random bits to choose a clause
- 3 read the value of the litterals in this clause
- answer 1 if the clause is satisfied, 0 otherwise

If $w \notin L$ (i.e., at most s.m clauses can be satisfied), it is detected with proba $\geq 1-s$. Repeat constant number of times to achieve the desired probability

MAX-3SAT is hard to Approximate (2/2)

PCP ⇔ Hardness of Approximation

 $\mathit{NP} \subseteq \mathit{PCP}(\mathit{O}(\log n), \mathit{O}(1)) \Leftrightarrow \exists \mathit{s} < 1 \text{ s.t. } \mathsf{GAP}\text{-3SAT}_\mathit{s} \text{ is NP-hard}$

reduce $L \in \overline{\mathit{NP}}$ to $\overline{\mathsf{GAP-kSAT}_{1-\frac{1}{2^{k+1}}}}$

L has a Verifier *V* using $O(\log n)$ random bits and read k = O(1) bits in the proof. given a word *w* and a random string ρ , $V(w, \rho, x) \in \{0, 1\}$ reads *k* bits of the proof *x*

 $f_{w,\rho}: x \to V(w,\rho,x)$ expressed as k-SAT formula with $\leq 2^k$ clauses.

Let
$$\Phi_w = \wedge_{\rho \in \{0,1\}^{O(\log n)}} f_{w,\rho}$$
.

if $w \in L$ then Φ_w satisfied by x otherwise at most a fraction $1 - \frac{1}{2^{k+1}}$ of clauses can be satisfied.

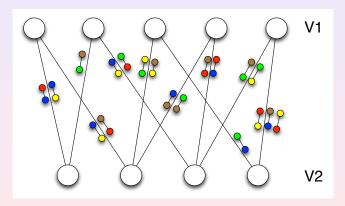
Outline

- 1 Introduction on Approximation Algorithms

- 4 From Label-Cover to MAX-Clique

regular bipartite graph $G=(V_1\cup V_2,E)$ and, $\forall e\in E$, partial function

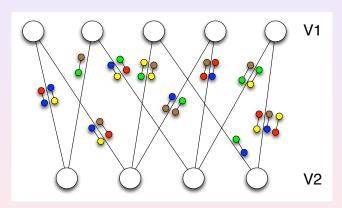
$$\Pi_e:[1,N]\to[1,N]$$



(Maximization version)

regular bipartite graph $G = (V_1 \cup V_2, E)$ and, $\forall e \in E$, partial function

$$\Pi_e:[1,N]\to[1,N]$$

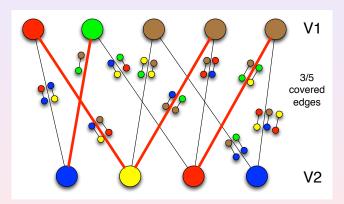


Let $c: V \to [1, N]$ be a coloring of V. an edge $e = \{u, v\} \in E$, $u \in V_1, v \in V_2$, is covered if $\Pi_e(c(u)) = c(v)$.

Goal: Find a coloring maximizing the fraction of covered edges.

regular bipartite graph $G=(V_1\cup V_2,E)$ and, $\forall e\in E$, partial function

$$\Pi_e:[1,N]\to[1,N]$$



Let $c: V \to [1, N]$ be a coloring of V. an edge $e = \{u, v\} \in E$, $u \in V_1, v \in V_2$, is covered if $\Pi_e(c(u)) = c(v)$.

Goal: Find a coloring maximizing the fraction of covered edges.

LABEL COVER hard to approximate

 \exists reduction f from 3SAT to LABEL COVER s.t.

for any instance I of 3SAT and instance f(I) of LABEL COVER

if X clauses of I can be satisfied, $\geq X$ edges of f(I) can be covered if Y edges of f(I) can be covered, $\geq Y/3$ clauses of I can be satisfied

Gap-Preserving Reduction

Corollary

 $\exists \epsilon$ s.t. finding an $(1+\epsilon)$ -approximation to Label Cover is NP-hard.

LABEL COVER very hard to approximate

Theorem

 $\forall 0 < \epsilon < 1/2 \text{ and } c(n) \geq 2^{\log^{0.5 - \epsilon} n}$, and there is a reduction f in time $n^{poly(\log n)}$, from any NP problem Π to Label Cover such that

- for any $w \in \Pi$, f(w) has value 1
- for any $w \notin \Pi$, f(w) has value at most 1/c(n).

Corollary: if $\exists 0 < \epsilon < 1/2$ and a $2^{\log^0, 5-\epsilon}$ n -approximation algorithm for Label Cover, then any problem in NP can be solved in time $n^{poly(\log n)}$.

Conjecture: Exponential Time Hypothesis (ETH)

There is no sub-exponential-time algorithm to solve 3-SAT unless P = NP

 $\forall \epsilon$, there is no $2^{\log^{0.5-\epsilon}n}$ -approximation algorithm for Label Cover unless P=NP

Corollary 2: Assuming ETH

 $\forall \epsilon$, there is no $2^{\log^{0.5-\epsilon} n}$ -approximation algorithm for Max Clique unless P=NP

LABEL COVER very hard to approximate

Theorem

 $\forall 0 < \epsilon < 1/2 \text{ and } c(n) \geq 2^{\log^{0.5-\epsilon} n}$, and there is a reduction f in time $n^{poly(\log n)}$, from any NP problem Π to Label Cover such that

- for any $w \in \Pi$, f(w) has value 1
- for any $w \notin \Pi$, f(w) has value at most 1/c(n).

Corollary: if $\exists 0 < \epsilon < 1/2$ and a $2^{\log^0, 5-\epsilon} n$ -approximation algorithm for Label Cover, then any problem in NP can be solved in time $n^{poly(\log n)}$.

Conjecture: Exponential Time Hypothesis (ETH)

There is no sub-exponential-time algorithm to solve 3-SAT unless P = NP

 $\forall \epsilon$, there is no $2^{\log^{0.5-\epsilon}n}$ -approximation algorithm for Label Cover unless P=NP

Corollary 2: Assuming ETH

 $\forall \epsilon$, there is no $2^{\log^{0.5-\epsilon}n}$ -approximation algorithm for Max Clique unless P=NP

LABEL COVER very hard to approximate

Theorem

 $\forall 0<\epsilon<1/2$ and $c(n)\geq 2^{\log^{0.5-\epsilon}n}$, and there is a reduction f in time $n^{poly(\log n)}$, from any NP problem Π to Label Cover such that

- for any $w \in \Pi$, f(w) has value 1
- for any $w \notin \Pi$, f(w) has value at most 1/c(n).

Corollary: if $\exists 0 < \epsilon < 1/2$ and a $2^{\log^0, 5-\epsilon}$ n-approximation algorithm for Label Cover, then any problem in NP can be solved in time $n^{poly(\log n)}$.

Conjecture: Exponential Time Hypothesis (ETH)

There is no sub-exponential-time algorithm to solve 3-SAT unless P = NP

Corollary 1: Assuming ETH

 $\forall \epsilon$, there is no $2^{\log^{0.5-\epsilon} n}$ -approximation algorithm for Label Cover unless P=NP

Corollary 2: Assuming ETH

 $\forall \epsilon$, there is no $2^{\log^0,5-\epsilon}$ n-approximation algorithm for Max Clique unless P=NP

Proof of Cor. 2: "Max Clique hard to approx."

Gap preserving reduction from Label Cover Reduce any instance of Label Cover to instance of Max Clique s.t. both optima coincide

Let $G = (V_1 \cup V_2, E)$ and, $\forall e \in E, \Pi_e : [1, N] \rightarrow [1, N]$

- for any $e \in E$ and any $a, b \in [1, N]$ s.t., $\Pi_e(a) = b$ add a vertex (e, a, b)
- 2 nodes are adjacent if they are consistent e.g., (uv, a, b) and (uw, a', b') are adjacent iff a = a'

Proof of Theorem

$L \in RPCP(r, s, p)$ iff \exists a restricted Verifier V s.t.

- V polynomial-time in |w|, uses a string ρ of O(r(|w|)) bits of randomness
- the proof uses an alphabet with $2^{O(s(|w|))}$ symbols
- the proof consists of 2 Tables T_1, T_2
- V chooses 1 location (chosen uniformly at random) in each table, and read only the corresponding 2 symbols a₁ and a₂
- V confirms that T_1 coherent with T_2 : for any a_1 at most one symbol a_2 makes V accepting
 - if $w \in L$ then \exists proof x with $Pr_{\rho}(V(w, x, \rho) = 1) = 1$ (completeness).
 - if $w \notin L$ then \forall proof x, $Pr_{\rho}(V(w, x, \rho) = 1) \le 2^{-\rho(|w|)}$ (soundness).

Theorem [Feige,Lovász'92]

improved by Raz'95

For any integer $k \geq 2$,

$$NP \subseteq RPCP(\log^{2k+2} n, \log^{k+2} n, \log^k n)$$

For any $L \in NP$, use a restricted PCP-Verifier of it to build an instance of Label Cover.

References

- Sanjeev Arora, Probabilistic Checking of Proofs and Hardness of Approximation Problems, Ph.D. thesis, 1994
- Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, Mario Szegedy: Proof Verification and the Hardness of Approximation Problems. J. ACM 45(3): 501-555 (1998)
- Irit Dinur: The PCP theorem by gap amplification. J. ACM 54(3): 12 (2007)
- Johan Hastad: Some optimal inapproximability results. J. ACM 48(4): 798-859 (2001)
- Ran Raz: A Parallel Repetition Theorem. SIAM J. Comput. 27(3): 763-803 (1998)

lecture of Nicolas Schabanel on proof PCP theorem (video online)

lecture of Luca Trevisan on PCP (video online)