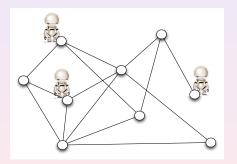
Gathering and Exclusive Searching on Rings under Minimal Assumptions

Gianlorenzo D'Angelo¹ Alfredo Navarra¹ <u>Nicolas Nisse</u>²

Dipartimento di Matematica e Informatica, Univ. degli Studi di Perugia, Italy Inria and Univ. Nice Sophia Antipolis, CNRS, I3S, France

ICDCN 2014


Coimbatore, January 5th, 2014

Let's throw some "stupid" robots in a graph

What can they do?

Distributed computing with robots

Coordination of a team robots in graphs. Perform some task in a distributed setting.

Robots occupy nodes and slide along edges

Distributed Model

Robots' abilities and Model of computation

Very weak Robots

- oblivious (no memory of past actions)
- anonymous and uniform (cannot be distinguished)
- no chirality (no common sense of orientation)
- no explicit way of communication (deaf and mute)

Look-Compute-Move

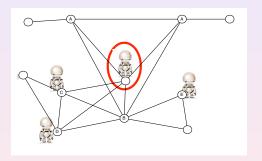
Each robot operates in asynchronous cycles

- ① take a *snapshot* of the graph Look
 - decide what to do (to move or not)
 Compute
- eventually execute the move

Robots' abilities and Model of computation

Very weak Robots

- oblivious (no memory of past actions)
- anonymous and uniform (cannot be distinguished)
- no chirality (no common sense of orientation)
- no explicit way of communication (deaf and mute)


Look-Compute-Move (CORDA)

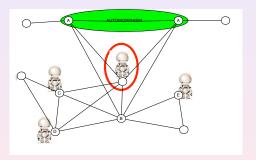
Each robot operates in asynchronous cycles

- 1 take a *snapshot* of the graph Look
- ② decide what to do (to move or not) Compute
- 3 eventually execute the move Move

Robot at node v:

configuration (graph + positions of robots) \rightarrow neighbor in N[v] to move

Example: Red Robot sees *C*, *D*, *E* occupied...

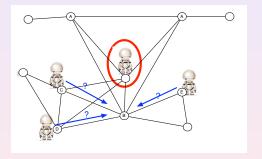

...and must decide to move or stay

BUT...

Robot at node v:

configuration (graph + positions of robots) \rightarrow neighbor in N[v] to move

Example: Red Robot sees *C*, *D*, *E* occupied...

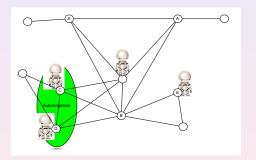

...and must decide to move or stay

Cannot distinguish the 2 nodes A

(symmetry)

Robot at node v:

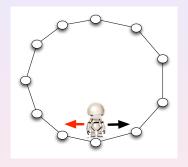
configuration (graph + positions of robots) \rightarrow neighbor in N[v] to move


Example: Red Robot sees C, D, E occupied...

...and must decide to move or stay

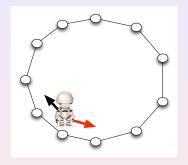
Other Robot(s) may have already moved to B (asynchronicity)

Robot at node v:


configuration (graph + positions of robots) \rightarrow neighbor in N[v] to move

Other difficulty: Exclusivity constraint...

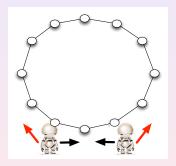
(at most one robot per node)


Robots at C and D cannot move \Rightarrow otherwise collision

1 Robot: cannot distinguish its 2 neighbors

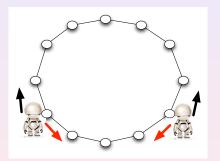
(nodes are anonymous)

Adversarial Model: worst case decision


1 Robot: cannot distinguish its 2 neighbors

(nodes are anonymous)

Adversarial Model: worst case decision


 \Rightarrow The robot oscillates along the same edge

Exclusivity constraint: the 2 Robots must not collide in a node

Initially, Robots have to move in opposite direction

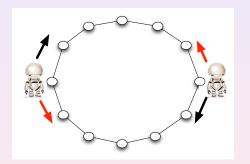
Exclusivity constraint: the 2 Robots must not collide in a node

Either, at some step, they change of direction


 \Rightarrow Each robot oscillates along some edge

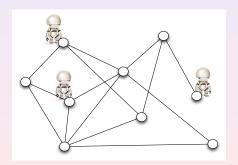
Exclusivity constraint: the 2 Robots must not collide in a node

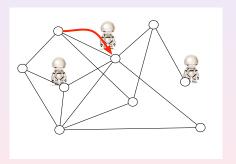
Or, they eventually reach periodic configuration... (case n even)


Exclusivity constraint: the 2 Robots must not collide in a node

Or, they eventually reach periodic configuration... (case n even)

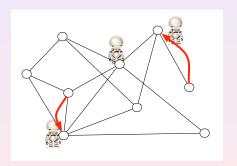
 \Rightarrow ...and turn around the cycle


Exclusivity constraint: the 2 Robots must not collide in a node


Almost nothing is possible with at most 2 Robots in a cycle (in CORDA)

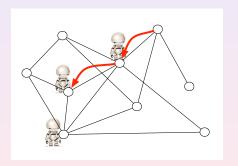
2 Tasks: Gathering and Graph Searching

Gathering: all robots eventually occupy the same node (a.k.a. Rendez-vous)

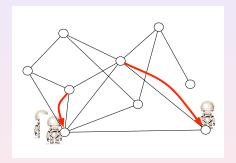


Gathering: all robots eventually occupy the same node (a.k.a. Rendez-vous)

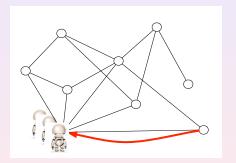
Robots occupy nodes and slide along edges


Gathering: all robots eventually occupy the same node (a.k.a. Rendez-vous)

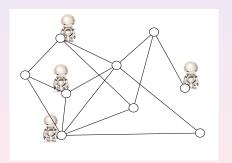
Robots occupy nodes and slide along edges


Gathering: all robots eventually occupy the same node (a.k.a. Rendez-vous)

Robots occupy nodes and slide along edges

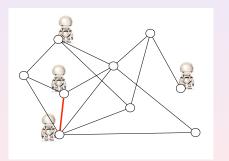


Gathering: all robots eventually occupy the same node (a.k.a. Rendez-vous)

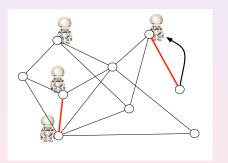

Can we distinguish the number of robots on a node? local multiplicity detection: a robot knows if it is alone on its node or not

Gathering: all robots eventually occupy the same node (a.k.a. Rendez-vous)

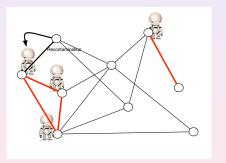
Can we distinguish the number of robots on a node? local multiplicity detection: a robot knows if it is alone on its node or not

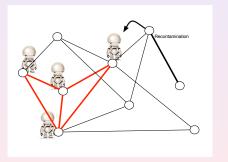

Exclusive Graph Searching: robots must *clear* the graph $G \Leftrightarrow \text{robots must catch an invisible mobile item in } G$ Exclusivity constraint: at most one robot per node

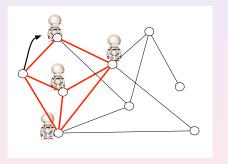
Clear an edge: slide along it OR occupy both its ends

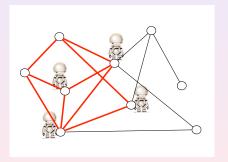

Exclusive Graph Searching: robots must *clear* the graph $G \Leftrightarrow \text{robots must catch an invisible mobile item in } G$ Exclusivity constraint: at most one robot per node

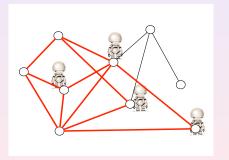
Clear an edge: slide along it OR occupy both its ends


Exclusive Graph Searching: robots must *clear* the graph $G \Leftrightarrow \text{robots must catch an invisible mobile item in } G$ Exclusivity constraint: at most one robot per node

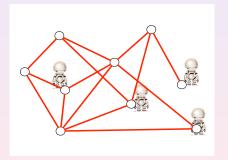

Clear an edge: slide along it OR occupy both its ends


Exclusive Graph Searching: robots must *clear* the graph *G* ⇔ robots must catch an invisible mobile item in *G* Exclusivity constraint: at most one robot per node

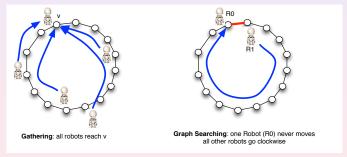

Exclusive Graph Searching: robots must *clear* the graph *G* ⇔ robots must catch an invisible mobile item in *G* Exclusivity constraint: at most one robot per node


Exclusive Graph Searching: robots must *clear* the graph *G* ⇔ robots must catch an invisible mobile item in *G* Exclusivity constraint: at most one robot per node

Exclusive Graph Searching: robots must *clear* the graph *G* ⇔ robots must catch an invisible mobile item in *G* Exclusivity constraint: at most one robot per node


Exclusive Graph Searching: robots must *clear* the graph *G* ⇔ robots must catch an invisible mobile item in *G* Exclusivity constraint: at most one robot per node

Exclusive Graph Searching: robots must *clear* the graph *G* ⇔ robots must catch an invisible mobile item in *G* Exclusivity constraint: at most one robot per node


Exclusive Graph Searching: robots must *clear* the graph *G* ⇔ robots must catch an invisible mobile item in *G* Exclusivity constraint: at most one robot per node

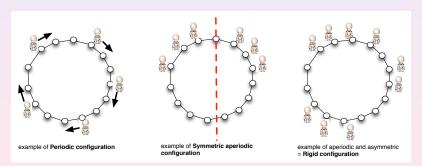
Easy in the ring?

These tasks are easy in the ring when:

- centralized setting
- nodes/robots have identifiers
- sense of direction ...

Note: 2 robots are sufficient to search a ring

The questions


Consider k robots in an n-node ring

- Can they solve the Gathering Problem? the Graph Searching?
- From which initial configurations?

The questions

Consider k robots in an n-node ring

- Can they solve the Gathering Problem? the Graph Searching?
- From which initial configurations?

Note: a configuration is symmetric and aperiodic iff a unique axis

Related Work and Contribution

Related work: Coordination problems in CORDA model

	Paths	l rees	Grids	Arbitrary graphs
Exploration	Flocchini, Ilcinkas, Pelc, Santoro			Chalopin,Flocchini
with stop	IPL11	TCS10		Mans,Santoro,WG'10
	+ multiplicity detection			+ local edge labeling
			Baldoni et al, IPL08	
Exclusive Perpetual			+ orientation	
Exploration			Bonnet et al, OPODIS'11	
			no orientation	
Rendez-vous/				DiStefano, Navarra
Gathering				SIROCCO'13
				+global mult. detection
Exclusive Perpetual	Blin,Burman,Nisse			
Graph Searching	DISC'12,ESA'13			

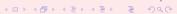
Related work: Coordination problems in CORDA model

	Rings	
Exploration	Flocchini, Ilcinkas, Pelc, Santoro	
with stop	OPODIS'07	
	+ multiplicity detection	
Exclusive Perpetual	Blin et al, DISC'10	
Exploration	D'Angelo,DiStephano,Navarra,Nisse,Suchan, APDCM'13	
Rendez-vous/Gathering		
+global mult. detection	+global mult. detection D'Angelo,DiStephano,Navarra,DISC'12	
+local mult. detection	Izumi et al SIROCCO'10 (partial solutions)	
	Kamei et al, SIROCCO'11,MFCS'12 (partial solutions)	
	D'Angelo,DiStephano,Navarra,Nisse,Suchan, APDCM'13	
Exclusive Perpetual	D'Angelo,DiStephano,Navarra,Nisse,Suchan, APDCM'13	
Graph Searching		

All these works (but some of Kamei et al) assume:

aperiodic AND asymmetric initial configuration

Unified algorithm: D'Angelo, DiStephano, Navarra, Nisse, Suchan, APDCM'13


Related work: Coordination problems in CORDA model

	Rings	
Exploration	Flocchini, Ilcinkas, Pelc, Santoro	
with stop	OPODIS'07	
	+ multiplicity detection	
Exclusive Perpetual	Blin et al, DISC'10	
Exploration	D'Angelo,DiStephano,Navarra,Nisse,Suchan, APDCM'13	
Rendez-vous/Gathering		
+global mult. detection	D'Angelo,DiStephano,Navarra,DISC'12	
+local mult. detection	Izumi et al SIROCCO'10 (partial solutions)	
	Kamei et al, SIROCCO'11,MFCS'12 (partial solutions)	
	D'Angelo,DiStephano,Navarra,Nisse,Suchan, APDCM'13	
Exclusive Perpetual	D'Angelo,DiStephano,Navarra,Nisse,Suchan, APDCM'13	
Graph Searching		

In this work: initial configuration only aperiodic

i.e., it may be one axis of symmetry

This (almost) fully characterize the case of Gathering in rings.

Our contribution

Consider any *n*-node ring and $k \ge 1$ robots

Gathering in Ring

impossible k = 2 or periodic configuration or 1 axis of symmetry passing through two edges (already known)

unknown cases k = 4 or $k \ge n - 4$

possible all other cases

Exclusive Perpetual Graph Searching in Ring

impossible $n \ge 9$ or $k \le 3$ or $k \ge n-2$

[ADN+13]

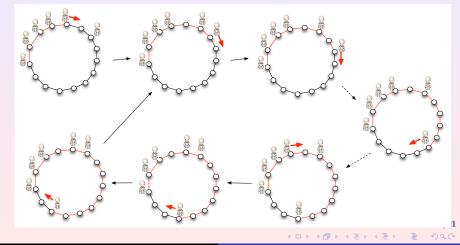
or (k even and 1 axis of symmetry passing through an empty node)

possible all aperiodic configurations not listed above

(but for k = 4 or $(n = 10 \text{ and } k \in \{5, 6\})$)

unknown cases k = 4 or $(n = 10 \text{ and } k \in \{5, 6\})$ or periodic configurations

Main idea of the algorithms


2 Phases

- reach one of 3 specific configurations difficult part
- easy part (hidden difficulty: make sure that the 2 phases do not interfer)

Example of Phase 2: Graph Searching from aperiodic configuration [APDCM'13]

Key point: at each step, a unique Robot moves (no ambiguity)

Flavour of Phase 1: supermin representation

Representation of configuration: binary string

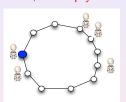
0=Robot, 1=empty node

which string?

$$\begin{matrix} (0,1,1,0,0,1,0,1,1,1,0) \\ (1,0,0,1,0,1,1,1,0,0,1) \\ (0,0,1,1,1,0,1,0,0,1,1) \end{matrix}$$

supermin: minimum in lexicographical order

Lemma


[D'Angelo,DiStephano,Navarra DISC'12]

configuration aperiodic ⇔ unique supermin configuration symmetric aperiodic ⇒ 2 supermins

So we can (almost) distinguish all Robots

Flavour of Phase 1: supermin representation

Representation of configuration: binary string 0=Robot, 1=empty node

which string?

$$(0,1,1,0,0,1,0,1,1,1,0) (1,0,0,1,0,1,1,1,0,0,1) (0,0,1,1,1,0,1,0,0,1,1)$$

supermin: minimum in lexicographical order

Lemma

 $[{\sf D'Angelo,DiStephano,Navarra\ DISC'12}]$

configuration aperiodic \Leftrightarrow unique supermin configuration symmetric aperiodic \Rightarrow 2 supermins

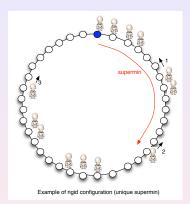
So we can (almost) distinguish all Robots

(重) < 重 > 重 り < (で

Flavour of Phase 1: few rules

- unique supermin ⇒ distinguish Robots
- segment: maximal sequence of consecutive Robots
- segments ordered as the supermin
 - ssuming at least 2 robots adjacent
- first robot of second segment
- last robot of last "segment"

or each rigid configuration, define the rule to be applied such that


at each step, a unique Robot moves

(no ambiguity)

(no ambiguity)

ullet each move reduces the supermin (\Rightarrow eventually reach the desired config

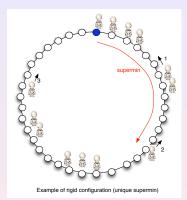
Flavour of Phase 1: few rules

- unique supermin ⇒ distinguish Robots
- segment: maximal sequence of consecutive Robots
- segments ordered as the supermin

3 simple rules

(assuming at least 2 robots adjacent)

- 1 first robot of second "segment"
- 2 first robot of third "segment"
- 3 last robot of last "segment"


[APDCM'13]

or each rigid configuration, define the rule to be applied such that

at each step, a unique Robot moves
 (no ambiguity)

lacktriangle each move reduces the supermin (\Rightarrow eventually reach the desired c

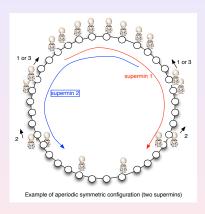
Flavour of Phase 1: few rules

- unique supermin ⇒ distinguish Robots
- segment: maximal sequence of consecutive Robots
- segments ordered as the supermin

3 simple rules

(assuming at least 2 robots adjacent)

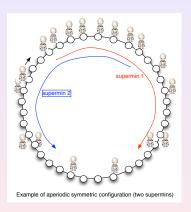
- 1 first robot of second "segment"
- 2 first robot of third "segment"
- last robot of last "segment"


Algorithm starting from rigid configuration

[APDCM'13]

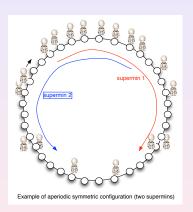
for each rigid configuration, define the rule to be applied such that

- at each step, a unique Robot moves (no ambiguity)
- each move reduces the supermin (\Rightarrow eventually reach the desired configuration)


Flavour of Phase 1: symmetry and asynchronicity

- two supermins ⇒ ambiguity
- two Robots may perform move

In configuration \mathcal{C} , R and R' must move, if only R moves (due to asynchronicity) and reaches configuration \mathcal{C}'


Flavour of Phase 1: symmetry and asynchronicity

- two supermins ⇒ ambiguity
- two Robots may perform move

In configuration \mathcal{C} , R and R' must move, if only R moves (due to asynchronicity) and reaches configuration \mathcal{C}'

Flavour of Phase 1: symmetry and asynchronicity

- two supermins ⇒ ambiguity
- two Robots may perform move

In configuration \mathcal{C} , R and R' must move, if only R moves (due to asynchronicity) and reaches configuration \mathcal{C}'

we must ensure that R' executes his move in configuration C'
 i.e., R' must be the only robot to move in C'

Algorithm starting from aperiodic symmetric configuration

tedious characterization of aperiodic symmetric configurations to avoid ambiguity

Conclusion

Gathering in Ring

```
impossible k=2 or periodic configuration or 1 axis of symmetry passing through two edges (already known) unknown cases k=4 or k>n-4
```

possible all other cases

Exclusive Perpetual Graph Searching in Ring

impossible $n \ge 9$ or $k \le 3$ or $k \ge n - 2$ [ADN+13] or (k even and 1 axis of symmetry passing through an empty node)

possible all aperiodic configurations not listed above

(but for k=4 or (n=10 and $k\in\{5,6\}))$

unknown cases k = 4 or $(n = 10 \text{ and } k \in \{5, 6\})$ or periodic configurations

other coordination problems? other graph topologies?

...

Thank you!