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Graph Searching in a distributed way

an unknown network and an entry (starting point) ;

a team of robots that aims at clearing it ;

Goal : design of a program.
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Graph Searching in a distributed way

The Problem

To design a distributed protocol that enables the minimum
number of searchers to clear any unknown network.
The searchers must compute themselves a strategy in the
network whitout having any global knowledge of it.
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Which model of graph searching ?

Drawbacks of the standard model :
1 the network is known (its size, its topology, etc.) ;

2 a search strategy is performed in a sequential synchronous
way ;

3 searchers can be placed anywhere in the graph.

In a real network :
1 searchers have no knowledge about the network ;

2 networks may be asynchronous ;

3 searchers cannot be teleported,
communications must be safe,
⇒ the clear part must induce a connected subgraph.
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Way of clearing

Monotone connected search strategy

edge-search : An edge is cleared when it is traversed by
a searcher.

connectedness : At any step of the strategy, the clear
part must induce a connected subgraph.

monotonicity : No recontamination ever occurs. Once
an edge has been cleared, it remains clear until the end.

Monotone connected search number

Let mcs(G ) be the smallest number of searchers required to
clear the graph in a monotone connected manner.

Nicolas Nisse Distributed Graph Searching



7/45

Intro Searching Model Protocol Monot-Cost Concl. Constraints Connected

Cost of Connectedness : Example in a tree
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Cost of Connectedness : Example in a tree

mcs(T) = 4 > s(T) = 3
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Cost in terms of number of searchers

Cost of connectedness

For any tree T , s(T ) ≤ mcs(T ) ≤ 2 s(T )− 2 (tight).
[Barrière, Fraigniaud, Santoro and Thilikos. WG, 2003]

For any graph G , s(G ) ≤ mcs(G ) ≤ (1 + log n) s(G )
[Fraigniaud and Nisse. LATIN, 2006]

Does Recontamination help ?

It does not help to clear a tree in a connected way.
[Barrière, Flocchini, Fraigniaud and Santoro. SPAA, 2002]

There are graphs for which imposing monotonicity to
connected search strategies requires strictly more
searchers. [Yang, Dyer and Alspach. ISAAC, 2004]
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Monotone connected graph searching

Given a graph G and a vertex v0 ∈ V (G ).

Alternative definition

v0 ∈ V (G ) is the homebase of the searchers.

Initially, all searchers are placed at v0.

One single operation is allowed : move a searcher along
an edge if it does not imply recontamination.

Remarks

The homebase remains clear during the whole strategy.

mcs(G , v0)
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Cost of asynchronicity

Networks are asynchronous : a move takes a finite time, but
no bound is known about it.
Is it more difficult to clear an asynchronous graph than a
synchronous graph ? Does it cost searchers ?

v v
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Cost of asynchronicity

Let P be a distributed protocol that allows to clear any
unknown asynchronous graph in a monotone connected way.
Is it possible for it to use the optimal number (mcs) of
searchers ?

v v
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Cost of asynchronicity

The searchers cannot distinguish one graph from the other.
The two red searchers have the same local behaviour.
An extra searcher will be called in both cases.

v v
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Cost of asynchronicity

More generally

There exist classes of graphs such that, any distributed
asynchronous graph searching protocol requires mcs(G ) + 1
searchers to clear G in a connected monotone way.
[Flocchini, Huang and Luccio. IPDPS 05]

Coordinator

The extra searcher, the coordinator is used to synchronize the
other searchers.
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Anonymous Network

Unknown

unknown topology

unknown size (no upper bound)

Local Memory on nodes

whiteboards are specific zone of local memory,

accessible in fair mutual exclusion.

Anonymous

No vertex labeling

Local edge labeling
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Example of an anonymous graph
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1
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Mobile Agents

Searchers

autonomous mobile computing entities with distincs IDs,

running the same algorithm (but the coordinator),

Mealy automata.
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Mobile Agents

The decision of a searcher...

leaving a node via some specific port,

switching state,

writing on the whiteboard,

... is local and depends on :

current state,

content of the node’s whiteboard,

incoming port number.
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Distributed graph searching : related work

Protocols have been designed to clear some specific topologies.
The searchers have a prior knowledge of the topology.

Protocols to clear specific topologies

Mesh. Flocchini, Luccio, and Song. [CIC 05]

Hypercube. Flocchini, Huang, and Luccio. [IPDPS 05]

Tori. Flocchini, Luccio, and Song. [IPDPS 06]

Sierpinski’s graph. Luccio. [FUN 07]

- A monotone connected strategy is performed using
mcs + 1 searchers

- Each searcher possesses O(log n) bits of memory ;

- The size of the node’s whiteboard is O(log n) bits.
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Distributed graph searching : related work

Protocols have been designed to clear some specific topologies.
The searchers have a prior knowledge of the topology.

Protocols to clear specific topologies

Hypercube. Flocchini, Huang, and Luccio. [IPDPS 05]

Mesh. Flocchini, Luccio, and Song. [CIC 05]

Tori. Flocchini, Luccio, and Song. [IPDPS 06]

Sierpinski’s graph. Luccio. [FUN 07]

Question :

Is it possible to design a distributed protocol that allows to
clear any unknown graph ?
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Theorem [Blin, Fraigniaud, Nisse and Vial. TCS 08]

We propose an distributed algorithm that enables to clear any
connected, asynchronous, anonymous and unknown network
G , in a connected way and starting from any homebase v0.

1 It uses at most k = mcs(G , v0) + 1 searchers if
mcs(G , v0) > 1, and k = 1 searcher otherwise ;

2 Every searcher involved in the search strategy computed
uses O(log k) bits of memory ;

3 During the execution, at most O(m log n) bits of
information are stored at every whiteboard.

Nicolas Nisse Distributed Graph Searching
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Principles of the distributed algorithm

The Algorithm

Initially, one searcher stands at v0, k = 1
While the graph is not clear :

Try all monotone connected search strategies

(starting from v0) using k searchers ;

If the graph is not clear, call a new

searcher (k++) ;

Predicate

At the end of each loop, the k searchers are standing at v0.
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Basic Idea

to order the possible strategies using k searchers ;

to try all the strategies in the increasing order ;
Somehow, we perform a guided-DFS of the graph of
configurations.

either a strategy clears the graph → OK ;
or after trying all the strategies, the graph remains
contaminated → one searcher more is required.
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Valid moves

Two kinds of moves are compatible with a monotone
connected strategy
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Valid moves

Two kinds of moves are compatible with a monotone
connected strategy
(1) A searcher at a clear (or guarded) vertex can move
through any clear port.
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Valid moves

Two kinds of moves are compatible with a monotone
connected strategy
(1) A searcher at a clear (or guarded) vertex can move
through the clear part to help another searcher,
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Valid moves

Two kinds of moves are compatible with a monotone
connected strategy
(1) A searcher at a clear (or guarded) vertex can move to
help another searcher, and then to clear an edge.
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Valid moves

Two kinds of moves are compatible with a monotone
connected strategy
(2) A searcher at a vertex incident to only one contaminated
port can move to clear the corresponding edge.
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Valid moves

Two kinds of moves are compatible with a monotone
connected strategy
Such a configuration is the result of a failing strategy and
will lead to backtracking.
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Ordering on moves and strategies

Representation of valid moves

(i , j , p) denotes : “searcher i joins searcher j and the smallest
searcher follows the port p to clear the corresponding edge”.
(i , i , p) denotes : “searcher i follows the port p to clear the
corresponding edge”.
The moves are ordered in the lexicographical order.

Ordering on the sequences of valid moves

A sequence of valid moves corresponds to a partial monotone
connected search strategy.
The sequences are ordered in the lexicographical order.
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Proof of Correctness

1 only valid moves are performed → only valid strategies
are performed.

2 valid strategies are performed in the lexicographical order
→ all valid strategies are performed.

3 if the graph is clear, the algorithm stops and if all
strategies with k searchers have been tried, the algorithm
ask for an extra searcher → our algorithm terminates

Searchers know that the graph is clear when all of them are
occupying some vertex with no incident contaminated edge.
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Some difficulties we have to adress

Only one move at time :

the coordinator acts like a token.

It looks for the searcher that can perform the smallest
valid move ;

If none valid move is possible, it looks for the last
searcher that has moved.
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Some difficulties we have to adress

Only one move at time :

the coordinator acts like a token.

It must be possible to backtrack :

all actions performed by the searchers are written in stacks
distributed on the whiteboards.

The last searcher that has moved backtracks its last
action ;

Then, the coordinator looks for the next valid move to be
performed.
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Some difficulties we have to adress

Only one move at time :

the coordinator acts like a token.

It must be possible to backtrack :

all actions performed by the searchers are written in stacks
distributed on the whiteboards.

A searcher must be able to find another searcher :

A trace of any searcher is written in arrays on the whiteboards.

When leaving a node, a searcher writes the port it used.
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Drawbacks of our Protocol

Whiteboards of size O(m log n)

It would be interesting to reduce it.

Finite automata

Our Protocol can be implemented using finite automata in the
class of graph with bounded mcs. Is it possible to do better ?

Monotonicity

The strategy performed by our Protocol is not monotone (we
need to backtrack).
Not surprising but bothersome because the clearing may be
performed in exponential time.
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Plan

1 Introduction

2 Model of Graph Searching

3 Our Model

4 Distributed clearing of an unknown graph

5 The cost of monotonicity
How to force Monotonicity ?
To provide some information about the graph
To allow more searchers to clear the graph.
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How to force Monotonicity ?

Recall : The Problem

To design a distributed protocol for the minimum number of
searchers (i.e., mcs) to clear any network in a monotone
connected way.
The searchers must compute themselves a strategy in the
network whitout having any global knowledge of it.
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How to force Monotonicity ?

Recall : The Problem

To design a distributed protocol for the minimum number of
searchers (i.e., mcs) to clear any network in a monotone
connected way.
The searchers must compute themselves a strategy in the
network whitout having any global knowledge of it.

If the monotonicity property is relaxed → OK ;

If the searchers know the topology of the network in which
they are launched → OK for some topologies (mesh,
hypercube, etc.)
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How to force Monotonicity ?

Recall : The Problem

To design a distributed protocol for the minimum number of
searchers (i.e., mcs) to clear any network in a monotone
connected way.
The searchers must compute themselves a strategy in the
network whitout having any global knowledge of it.

Two opposite Approaches

If we impose the number of searchers to be optimal,
What is the minimum quantity of information that
must be provided about the graph ?

If we impose the graph to be unknown,
What is the minimum number of searchers that must
be used ?
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Results

Extra Information

Θ(n log n) bits of information must be provided to the
mcs(G ) searchers to clear any n-node graph G in a distributed
monotone connected way.
[Nisse and Soguet. SIROCCO 07]

Extra Searchers

Θ( n
log n

)mcs(G ) searchers are necessary and sufficient to clear
any unknown n-node graph G in a distributed connected
monotone way. [Ilcinkas, Nisse and Soguet. OPODIS 07]
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To clear a graph with advice

What is the information that must be given to the searchers
such that it exists a distributed protocol that enables them to
clear all graphs in a monotone connected and optimal way ?

What kind of knowledge ?

Qualitative information

Topology, size, diameter of the network ...

Quantitative information : advice [Fraigniaud et al. PODC06]

Measure the minimum number of bits of information
to efficiently perform a distributed task.
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Advice, size of advice [Fraigniaud et al. 06]

A distributed problem P
Instance of P (for example a graph G )
Advice : information that can be used to solve P efficiently

Information is modeled by

An oracle O that assigns at any instance G a string of
bits O(G ) that is distributed on the vertices of G .

size of advice |O(G )|

Examples

wake-up (linear number of messages) : Θ(n log n) bits ;

broadcast (linear number of messages) : O(n) bits ;

tree exploration, MST, graph coloring ...
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Advice, size of advice [Fraigniaud et al. 06]

Problem : distributed search problem
Instance : an unknown graph G and a homebase v0 ∈ V (G ).
Advice : to monotoneously clear G using mcs(G ) searchers.

Information is modeled by

An oracle O that distributes a string of bits O(G , v0) on
the vertices of G .

size of advice |O(G , v0)|

Question :
What is the minimum size of advice such that it exists a
distributed protocol that efficiently solves the distributed
search problem ?
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Idea of the upper bound : O(n log n)

Upper bound

O(n log n) bits of advice are sufficient to solve the distributed
search problem.

We design an oracle O of size O(n log n) bits and a distributed
protocol P using O that clears all graphs in a monotone
connected and optimal way.

Automata with O(log n) bits of memory.

Node’s whiteboard of size O(log n) bits.

Let S be a monotone connected and optimal strategy for G .
S → order on the vertices and a spanning tree T of G .
Roughly, our oracle “encodes” T on the vertices of G .
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The lower bound : Ω(n log n)
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K

Class of graphs (Gn)n∈N (The figure corresponds to G5).
All the monotone connected and optimal strategies in this
class are strongly constrained.
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The lower bound

Let Gn be the previous graph.
Let L be the set of the local orientations of Gn

Lemma 1

Let f be a particular string of bits of advice. Let P be a
protocol that solves the distributed search problem. P can
clear at most A = |L|( 1

n−2
)n instances of L.

Lemma 2 [Fraigniaud et al. 06]

An oracle O of size q gives at most t = (q + 1)2qC n
n+q

different strings of bits of advice.
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The lower bound

Lemma 1 : P cannot clear more than A instances of L.

Lemma 2 : An oracle O of size q gives at most t strings.

According to lemma 2 :

It exists at least B = |L|/t instances with the same advice.

Asymptotically, if q = αn log n and α < 1/4, B > A.

Hence, any protocol using an oracle of size less than Ω(n log n)
cannot clear all instances of L.
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To clear a graph with extra searchers

[Ilcinkas, Nisse and Soguet. OPODIS 07]

Θ( n
log n

)mcs(G ) searchers are necessary and sufficient to clear
any unknown n-node graph G in a distributed connected
monotone way.
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Idea of the upper bound O(n/ log nmcs(G ))

Distributed Protocol allowing O( n
log n

mcs(G )) searchers to
clear any unknown graph G in a monotone connected way.

Automata with O(log n) bits of memory.

Node’s whiteboard of size O(log n) bits.

Main issue of our protocol

maintains a dynamic rooted tree S

S is a tree of degree at most 3 ;
V (S) is the set of vertices occupied by the searchers ;
S is a minor of the clear part of G .

at each step, the protocol tries to clear an edge of G that
insures that S becomes as close as possible to a complete
tree of degree 3.
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Idea of the upper bound O(n/ log nmcs(G ))

Let Tk be a complete tree of maximum degree 3 of depth k .

At each step, our protocol insures that :

V (S) is the set of vertices of G occupied by a searcher
⇒ if k is the maximum depth of S , the protocol uses at
most |V (Tk)| searchers.

S is a minor of G , and S has depth k ≥ 1 iff there exists
a previous step such that S was isomorphic to Tk−1

⇒ k = O(log |V (Tk)|) = O(s(Tk)) = O(mcs(G , v0))

Then, if N is the number of searchers used by the protocol,

N ≤ |V (Tk)|
log |V (Tk)|

log |V (Tk)| = O(
n

log n
mcs(G , v0))
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Idea of the lower bound Ω(n/ log n)mcs(G )

Let P be any distributed protocol to clear any unknown graph
in a monotone connected way.

A turn by turn game between P and a adversary A
P and A play alternatively, starting with P ;

P aims at clearing a graph that A gradually builds ;

A builds the graph in order to force P to use the
maximum number of searchers.
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Idea of the lower bound Ω(n/ log n)mcs(G )

The adversary A will gradually build a n-node tree T of
maximum degree 3, with root v0.

Turn i of P
P chooses a searcher ;

and moves it toward a vertex v
along an edge e of T .

Turn i of A
if v was not discovered yet, A
decides v is incident to 2
non-explored vertices.

otherwise, A skips its turn.

Example for n = 10.

v0
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Idea of the lower bound Ω(n/ log n)

When the game terminates :

T is a tree with at least (n + 2)/2 leaves.
⇒ P used at least k ≥ n/4 searchers

Since T is a tree, mcs(T , v0) = O(log n)
[Megiddo et al. 88, Barrière et al. 03]

Then P used Ω( n
log n

mcs(T , v0)) searchers.
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Plan

1 Introduction

2 Model of Graph Searching

3 Our Model

4 Distributed clearing of an unknown graph

5 The cost of monotonicity

6 Conclusion
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Conclusion

Is it possible to clear any graph in a distributed manner ?

Yes

Distributed protocol that clears any graph G using
mcs(G ) + 1 searchers.

What if monotonicity is required ?

Extra information

Θ(n log n) bits of information necessary and sufficient if
mcs(G ) + 1 searchers are used.

Extra searchers

Θ( n
log n

)mcs(G ) searchers necessary and sufficient if no
knowledge about the graph is provided.
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Further Work

Monotonicity

Tradeoff : number of searchers / amount of information

Relaxation of monotonicity/connectedness constraints

Distributed protocol to clear a graph G using s(G ) searchers.
( s(G ) denotes the “classical” search number of G )

Random algorithms

Graph’s decompositions

...
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Thank you
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