Graph Searching and
Routing Reconfiguration in WDM Networks

Nicolas Nisse

MASCOTTE, INRIA, I13S, CNRS, UNS, Sophia Antipolis, France

joint works with: N. Cohen, D. Coudert, F. Huc, D. Mazauric, N. Nepomuceno,
J.-S. Sereni, R.P. Soares

GRASTA, Banff, Canada, October 11th, 2012

1/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations
Outline

“Practical” motivations

© O

Processing and Graph Searching Games

© ‘New’ problems
@ Tradeoff: # agents vs. # occupied vertices
@ Computation: approximation and heuristic

@ Variants and Open questions

2/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

Routing in WDM Networks

Physical Network, Links provide several wavelengths

multi-digraph G = (V| E)
an arc (u, v) < one wavelength on the link (u, v)

Routing of a set of requests/connections

set of requests R C V x V
routing: for each request (u, v),
a path from u to v and 1 wavelength.

Problem: due to dynamicity of traffic, failures

how to maintain an efficient routing?

3/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

What happens in "real” world

Variation of traffic + dynamicity induced by failures
= Online processes to route all requests: e.g., greedy routing

Example of a grid network with directed symmetric links (capacity 1)

® 2 ©)
) 5 6
@ 8 ©

4/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

What happens in "real” world

Variation of traffic + dynamicity induced by failures
= Online processes to route all requests: e.g., greedy routing

Example of a grid network with directed symmetric links (capacity 1)

4d
>
O——= ©)
4 S 6 Requestd : 1 — 3
@ 8 ©

4/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

What happens in "real” world

Variation of traffic + dynamicity induced by failures
= Online processes to route all requests: e.g., greedy routing

Example of a grid network with directed symmetric links (capacity 1)

4d
>
O——= ®
Requestd : 1 — 3
4 3 6 Request e : 6 — 5
€
@ 8 ©

4/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

What happens in "real” world

Variation of traffic + dynamicity induced by failures
= Online processes to route all requests: e.g., greedy routing

Example of a grid network with directed symmetric links (capacity 1)

4d
>
O——= ©
A
C Requestd : 1 — 3
4 S 6 Request e : 6 — 5
A Request c: 2 — 3
(§]
@ 8 ©

4/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

What happens in "real” world

Variation of traffic + dynamicity induced by failures
= Online processes to route all requests: e.g., greedy routing

Example of a grid network with directed symmetric links (capacity 1)

d
>
O——=0 ©
A
C Requestd : 1 — 3
Request e : 6 — 5
4 SA 6 Request c: 2 — 3
Failure of link {8,9}
(§]
O——® ©@

4/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

What happens in "real” world

Variation of traffic + dynamicity induced by failures
= Online processes to route all requests: e.g., greedy routing

Example of a grid network with directed symmetric links (capacity 1)

d
>

O——=0 ©
C Requestd : 1 — 3
Request e : 6 — 5

4 S 6
<— Request c: 2 — 3

€ Rerouting of request e
O———® ©@

4/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

What happens in "real” world

Variation of traffic + dynamicity induced by failures
= Online processes to route all requests: e.g., greedy routing

Example of a grid network with directed symmetric links (capacity 1)

d
>

O—= ©
b Requestd : 1 — 3
~ Y Request e : 6 — 5
4 S 6 Request c: 2 — 3
e Request b: 1 — 5

New link {8,9}
@ 8 ©

4/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

What happens in "real” world

Variation of traffic + dynamicity induced by failures
= Online processes to route all requests: e.g., greedy routing

Example of a grid network with directed symmetric links (capacity 1)

d
>
O—= ©
b Requestd : 1 — 3
>~ C Request e : 6 — 5
4 S 6 Request c: 2 — 3
e Request b: 1 —5
Request a: 4 — 5
a
@ 8 O

4/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

What happens in "real” world

Variation of traffic + dynamicity induced by failures
= Online processes to route all requests: e.g., greedy routing

Example of a grid network with directed symmetric links (capacity 1)

d
>
O—= ©
Leads to a poor usage of ressources
b c
>
4 3 :] 6 Sometimes greedy routing is impossible
€ even if several requests are allowed to be moved

a

@ 8 ©

4/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

What happens in "real” world

Variation of traffic + dynamicity induced by failures
= Online processes to route all requests: e.g., greedy routing

Example of a grid network with directed symmetric links (capacity 1)

d
>
O——= ©
Leads to a poor usage of ressources
b C Sometimes greedy routing is impossible
g > 5 3 even if several requests are allowed to be moved
<l_
(S
If {5, 8} fails:
a Move-to-Vacant impossible
@ 8 O)

4/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

What happens in "real” world

Variation of traffic + dynamicity induced by failures
= Online processes to route all requests: e.g., greedy routing

Example of a grid network with directed symmetric links (capacity 1)

0
2 questions arise:
i b > £ E . @ Compute new routing
<le_ @ Switch from initial routing to final one
a We focus on 2
@ g ©)

4/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

Two ways of switching one request

Make-before-break:

Establish new path before switching the
connection

— Destination resources must be available

Break-before-make:
Break connection before establishing the new path

— Traffic stopped = interruption

5/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

The Routing Reconfiguration Problem

How to go from the initial routing (left) to the final one (right)?

Inputs: Set of connection requests + current & new routing

Output: Scheduling for switching connection requests from
current to new routes

Constraint: A connection is switched only once

ObjectiveS Number of Interruptions (detailled later)

N. Nisse Routing Reconfiguration & Processing Game

6/38

Motivations

Dependency digraph

@

@ D———
b c

u—v

4 S .

—al> <}e— if u needs ressources of v

if v must be rerouted/interrupted before u
b needs ressources used by d and ¢

7 8 9

@ & © 7/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

Dependency digraph

@

© 2 ®
b ©
Dependancy Digraph

n 3 @ one vertex per connection with
— different routes in Z and F

@ arc from u to v if ressources needed
by uin F are used by v in Z

@) a—= © 7/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

A game on dependency digraph

cyclic dependancies
O — 9 = Interruption required

8/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

A game on dependency digraph

put an agent on node d
D—g ©® 2 break request d

8/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

A game on dependency digraph

process node ¢
D—g ©® 2 reroute request ¢

8/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

A game on dependency digraph

b
0y
L
7
b
0y
—_—
a
Z d

process node b
reroute request b

8/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

A game on dependency digraph

@ ‘@

v, 3 g .

Tl - X@vp

process node a
D—g ©® 2 reroute request a

8/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

A game on dependency digraph

process node d
D—g ©® 2 and remove agent
route request d

8/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

Processing Game

Game with Agents on the Dependency digraph D

Sequence of three basic operations,. . .

@ Place a searcher at a node = interrupt the request;

9 Process a node if all its out-neighbors are either processed or occupied by an
agent = (Re)route a connection when final resources are available;

A processed node is removed from the dependency digraph.

© Remove an agent from a node, only if it has been processed.

...that must result in processing all nodes

9/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations
From now on: problem on digraphs

Any directed graph is a dependency digraph @\ /©

2 |El @
< >
e

d > d *"'T“]

wi+2| € > ¢ JLﬂ**iiJ#’
b > b ,7J N

- Il | >

a] O

10/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

Two possible objectives
Minimize overall number of interrupted requests
Minimum Feedback Vertex Set (MFVS), here N/4

Remarks: MFVS is NP-complete and non APX in digraphs
2-approx in undirected (directed symmetric) graphs

11/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

Two possible objectives
Minimize overall number of interrupted requests
Minimum Feedback Vertex Set (MFVS), here N/4

Remarks: MFVS is NP-complete and non APX in digraphs
2-approx in undirected (directed symmetric) graphs

11/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

Two possible objectives

Minimize overall number of interrupted requests
Minimum Feedback Vertex Set (MFVS), here N/4

e

Minimize number of simultaneous interrupted requests

Process Number, pn = smallest number of requests that
have to be simultaneously interrupted.
Here, pn = 1 = Gap with MFVS up to N /2

11/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

Two possible objectives

Minimize overall number of interrupted requests
Minimum Feedback Vertex Set (MFVS), here N/4

o

Minimize number of simultaneous interrupted requests

Process Number, pn = smallest number of requests that
have to be simultaneously interrupted.
Here, pn = 1 = Gap with MFVS up to N /2

11/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

Two possible objectives

Minimize overall number of interrupted requests
Minimum Feedback Vertex Set (MFVS), here N/4

e

Minimize number of simultaneous interrupted requests

Process Number, pn = smallest number of requests that
have to be simultaneously interrupted.
Here, pn = 1 = Gap with MFVS up to N /2

11/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

Two possible objectives

Minimize overall number of interrupted requests
Minimum Feedback Vertex Set (MFVS), here N/4

e

Minimize number of simultaneous interrupted requests

Process Number, pn = smallest number of requests that
have to be simultaneously interrupted.
Here, pn = 1 = Gap with MFVS up to N /2

11/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

Two possible objectives

Minimize overall number of interrupted requests
Minimum Feedback Vertex Set (MFVS), here N/4

R

Minimize number of simultaneous interrupted requests

Process Number, pn = smallest number of requests that
have to be simultaneously interrupted.
Here, pn = 1 = Gap with MFVS up to N /2

11/38

N. Nisse Routing Reconfiguration & Processing Game

Motivations

Routing Reconfiguration, Process number

Game with Agents on the Dependency digraph D

Sequence of three basic operations,. . .

@ Place a searcher at a node = interrupt the request;

@ Process a node if all its out-neighbors are either processed or occupied by an
agent = (Re)route a connection when final resources are available;

A processed node is removed from the dependency digraph.

© Remove an agent from a node, after having processed it.

...that must result in processing all nodes

Process number = min. number of simultaneous interruptions
pn(D)=min number of agents used during the strategy
Min. Feedback Vertex Set = min. total number of interruptions

mfvs(D)= min total number of occupied vertices during the strategy 1238

N. Nisse Routing Reconfiguration & Processing Game

Processing game

QOutline

o

“Practical” motivations

©

Processing and Graph Searching Games

© ‘New’ problems
@ Tradeoff: # agents vs. # occupied vertices
@ Computation: approximation and heuristic

@ Variants and Open questions

13/38

N. Nisse Routing Reconfiguration & Processing Game

Processing game

Processing Game

Let D be a digraph

Sequence of three basic operations,. . .

o Place a searcher at a node;

9 Process a node if all its out-neighbors are either processed or occupied by an
agent; the node does not need to be occupied!

o Remove an agent from a node, only if it has been processed.

...that must result in processing all nodes

Process number, pn(D)=min number of agents used during the strategy

14/38

N. Nisse Routing Reconfiguration & Processing Game

Processing game

Simple Example 1: DAG

Only one operation is used

o Place a searcher at a node;

g Process a node if all its out-neighbors are either processed or occupied by an
agent;

0 Remove an agent from a node, only if it has been processed.

DA

=

pn(D) = 0 iff D is a DAG

15/38

N. Nisse Routing Reconfiguration & Processing Game

Processing game

Simple Example 2: process number 1

One agent is used

o Place a searcher at a node;

e Process a node if all its out-neighbors are either processed or occupied by an
agent;

0 Remove an agent from a node, only if it has been processed.

pn(D) =1 VSCC, MFVS(SCC) =1 16/38

N. Nisse Routing Reconfiguration & Processing Game

Processing game

Simple Example 2: process number 1

One agent is used

o Place a searcher at a node;

e Process a node if all its out-neighbors are either processed or occupied by an
agent;

0 Remove an agent from a node, only if it has been processed.

pn(D) =1 VSCC, MFVS(SCC) =1 16/38

N. Nisse Routing Reconfiguration & Processing Game

Processing game

Simple Example 2: process number 1

One agent is used

o Place a searcher at a node;

e Process a node if all its out-neighbors are either processed or occupied by an
agent;

0 Remove an agent from a node, only if it has been processed.

pn(D) =1 VSCC, MFVS(SCC) =1 16/38

N. Nisse Routing Reconfiguration & Processing Game

Processing game

Processing Game vs. Graph Searching

In undirected graphs or “symmetric” digraphs

Node-search (a.k.a. helicopter game) & pathwidth

Invisible fugitive moves along edges
@ Place a searcher at a node;

@ Remove an agent from a node (if no recontamination). (monotone)

Capture if a cop lands on the fugitive and it cannot flee (it is surrounded)

17/38

N. Nisse Routing Reconfiguration & Processing Game

Processing game

Processing Game vs. Graph Searching

In undirected graphs or “symmetric” digraphs

Node-search (a.k.a. helicopter game) & pathwidth

Invisible fugitive moves along edges
@ Place a searcher at a node;

@ Remove an agent from a node (if no recontamination). (monotone)

Capture if a cop lands on the fugitive and it cannot flee (it is surrounded)

Monotone Process Number

Invisible fugitive moves along edges

@ Place a searcher at a node;
© Process a node (capture) if its neighbors are occupied;

© Remove an agent from a node if no recontamination.

17/38

N. Nisse Routing Reconfiguration & Processing Game

Processing game

Processing Game vs. Graph Searching

In undirected graphs or “symmetric” digraphs

Node-search (a.k.a. helicopter game) & pathwidth

Invisible fugitive moves along edges
@ Place a searcher at a node;

@ Remove an agent from a node (if no recontamination). (monotone)

Capture if a cop lands on the fugitive and it cannot flee (it is surrounded)

Monotone Process Number

Invisible fugitive moves along edges and must always move

@ Place a searcher at a node;

© Remove an agent from a node if no recontamination.

Capture if a cop lands on the fugitive and it cannot flee (it is surrounded)

OR if it is surrounded

17/38

N. Nisse Routing Reconfiguration & Processing Game

Processing game

Processing Game vs. Graph Searching

In directed graphs

directed node-search &> directed pathwidth

Invisible fugitive moves along arcs

@ Place a searcher at a node;

© Remove an agent from a node (if no recontamination). (monotone)

Capture if a cop lands on the fugitive and it cannot flee (its out-neighbor is occupied)

18/38

N. Nisse Routing Reconfiguration & Processing Game

Processing game

Processing Game vs. Graph Searching

In directed graphs

directed node-search &> directed pathwidth

Invisible fugitive moves along arcs

@ Place a searcher at a node;

© Remove an agent from a node (if no recontamination). (monotone)

Capture if a cop lands on the fugitive and it cannot flee (its out-neighbor is occupied)

Monotone Process Number

Invisible fugitive moves backward arcs

o Place a searcher at a node;
g Process a node (capture) if its out-neighbors are occupied or processed;

© Remove an agent from a node if no recontamination.

4 18/38

N. Nisse Routing Reconfiguration & Processing Game

Processing game

Processing Game vs. Graph Searching

In directed graphs

directed node-search &> directed pathwidth

Invisible fugitive moves along arcs

@ Place a searcher at a node;

© Remove an agent from a node (if no recontamination). (monotone)

Capture if a cop lands on the fugitive and it cannot flee (its out-neighbor is occupied)

Monotone Process Number

Invisible fugitive moves backward arcs and must always move

o Place a searcher at a node;

© Remove an agent from a node if no recontamination.

Capture if a cop lands on the fugitive and it cannot flee (it is surrounded)

OR if it is surrounded or stuck in a not strongly-connected component

4 18/38

N. Nisse Routing Reconfiguration & Processing Game

Processing game

Monotone process number

Related parameter of directed (and undirected) graphs
vertex separation vs = (directed) pathwidth Kinnersley [IPL 92]

Theorem (Coudert & Sereni, 2007)

vs(D) < monotone pn(D) < vs(D) + 1

pw(G) < monotone-pn(G) < pw(G) + 1 undirected graph G
dpw(D) < monotone-pn(D) < pw(D) + 1 directed graph D
Complexity

@ NP-Complete, Not APX (Coudert & Sereni, 2007)

@ Characterization of digraphs with process number 0, 1, 2
(Coudert & Sereni, 2007)

@ distributed O(nlog n)-time exact algorithm in trees
19/38

(Coudert, Huc, Mazauric [Algorithmica 12])

N. Nisse Routing Reconfiguration & Processing Game

Processing game

Monotonicity

Theorem (N., Soares, 2012)

For any digraph D, pn(D) = monotone-pn(D)

Process-decompositon
Sequence of pairs P = ((Wq, X1),- -+, (W, X)) such that:
@ (Xi,--,X:)is a partition of V' \ U;_, W;;
o Vi<j<t WinWeCW;
@ X; induces a Directed Acyclic Graph (DAG), for any 1 </ < t;

@ Y(u,v) € A 3j <isuchthatve W;UX;and ue W;UX,.

Width = max;<;<, |Wi|

N

pn(D) = min. width among all decompositions
= pn(D) = pn(D) (D is D where arcs have been reversed) 20/38

N. Nisse Routing Reconfiguration & Processing Game

Processing game

To summarize

undirected graphs directed graphs
fugitive move along edges move along arcs
must must be able | must move
move to move in SCC
invisible pw pn dpw ‘ pn ?
monotone
visible tw DAG-width ‘ visible-pn ~ dtw
monotone ? not monotone
no ratio ‘ ? dtw < 3br

Table: Classification of the graph searching games

21/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

QOutline

@ ‘Practical’ motivations

@ Processing and Graph Searching Games

© ‘New’ problems
@ Tradeoff: # agents vs. # occupied vertices
@ Computation: approximation and heuristic

@ Variants and Open questions

22/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

Routing Reconfiguration, Process number

Game with Agents on the Dependency digraph D

Sequence of three basic operations,. . .

@ Place a searcher at a node = interrupt the request;

@ Process a node if all its out-neighbors are either processed or occupied by an
agent = (Re)route a connection when final resources are available;

A processed node is removed from the dependency digraph.

© Remove an agent from a node, after having processed it.

...that must result in processing all nodes

Process number = min. number of simultaneous interruptions
pn(D)=min number of agents used during the strategy
Min. Feedback Vertex Set = min. total number of interruptions

mfvs(D)= min total number of occupied vertices during the strategy 23/

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

Tradeoff: total/ max simultaneous interruptions

#occupied vertices

mfvs_{pn}-

mfvs

#agents

24/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

Complexity

@ Smallest number of agents such that the number of
occupied vertices is minimum = pnyas(D)

mivs D
o =Py

@ Smallest total number of occupied vertices such that the
number of agents is minimum = mfvs,,(D)

__ mfvspp(D)
° A= mfZ(D)

The problems of determining pnms,s(D), mfvs,,(D), p, and A
are NP-Complete and not APX.

25/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

agents for minimizing # occupied vertices

pnmfvs(D)

3 digraphs with arbitrary large ratio: = (D)

pnmfvs(D) =n

26/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

agents for minimizing # occupied vertices

pnmfvs(D)

3 digraphs with arbitrary large ratio: = (D)

pnmfvs(D) =n

26/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

agents for minimizing # occupied vertices

pnmfvs(D)

3 digraphs with arbitrary large ratio: = (D)

pnmfvs(D) =n

26/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

agents for minimizing # occupied vertices

pnmfvs(D)

3 digraphs with arbitrary large ratio: = (D)

pnmfvs(D) =n

26/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

agents for minimizing # occupied vertices

pnmfvs(D)

3 digraphs with arbitrary large ratio: = (D)

pnmfvs(D) =n

26/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

agents for minimizing # occupied vertices

pnmfvs(D)

3 digraphs with arbitrary large ratio: = (D)

pnmfvs(D) =n

26/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

agents for minimizing # occupied vertices

pnmfvs(D)

3 digraphs with arbitrary large ratio: = (D)

pnmfvs(D) =n

26/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

agents for minimizing # occupied vertices

pnmfvs(D)

3 digraphs with arbitrary large ratio: = (D)

pnmfvs(D) =n

26/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

mfvspn(D)

3 digraphs with arbitrary large ratio: A = mfvs(D) -

mfvspn(D) = n+4

27/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

3 digraphs with arbitrary large ratio: A = m,:‘;i‘s’z(DD)).
° °
o . pn(D) =3
K » mfvspn(D) = n+4

27/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

mfvspn(D)

3 digraphs with arbitrary large ratio: A = mfvs(D) -

mfvspn(D) = n+4

27/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

mfvspn(D)

3 digraphs with arbitrary large ratio: A = mfvs(D) -

mfvspn(D) = n+4

27/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

mfvspn(D)

3 digraphs with arbitrary large ratio: A = mfvs(D) -

mfvspn(D) = n+4

27/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

mfvspn(D)

3 digraphs with arbitrary large ratio: A = mfvs(D) -

mfvspn(D) = n+4

27/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

mfvspn(D)

3 digraphs with arbitrary large ratio: A = mfvs(D) -

mfvspn(D) = n+4

27/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

mfvspn(D)

3 digraphs with arbitrary large ratio: A = mfvs(D) -

mfvspn(D) = n+4

27/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

mfvspn(D)

3 digraphs with arbitrary large ratio: A = mfvs(D) -

mfvspn(D) = n+4

27/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

mfvspn(D)

3 digraphs with arbitrary large ratio: A = mfvs(D) -

mfvspn(D) = n+4

27/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

mfvspn(D)

3 digraphs with arbitrary large ratio: A = mfvs(D) -

mfvspn(D) = n+4

27/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

mfvspn(D)

3 digraphs with arbitrary large ratio: A = mfvs(D) -

mfvspn(D) = n+4

27/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

mfvspn(D)

3 digraphs with arbitrary large ratio: A = mfvs(D) -

mfvspn(D) = n+4

27/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

mfvspn(D)

3 digraphs with arbitrary large ratio: A = mfvs(D) -

mfvspn(D) = n+4

27/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

mfvspn(D)

3 digraphs with arbitrary large ratio: A = mfvs(D) -

mfvspn(D) = n+4

27/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

mfvspn(D)

3 digraphs with arbitrary large ratio: A = mfvs(D) -

mfvspn(D) = n+4

27/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

mfvspn(D)

3 digraphs with arbitrary large ratio: A = mfvs(D) -

mfvspn(D) = n+4

27/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

mfvspn(D)

3 digraphs with arbitrary large ratio: A = mfvs(D) -

mfvspn(D) = n+4

27/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

Directed graphs with BOUNDED Process Number:
A = occupied vertices / mfvs UNBOUNDED

What if G is undirected 77

28/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

Directed graphs with BOUNDED Process Number:
A = occupied vertices / mfvs UNBOUNDED

What if G is undirected 77

Let G be a symmetric directed /undirected graph,

mfvspn(G
A= mfvg((G)) = pn(G)

28/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

Consider a MFVS of G. S using pn(G) agents and occupying mfvsp,(G) vertices,

such that occupies the minimum number of vertices in MFVS

occupied O 0o 0o 0o 0 0O 0o O 0O O O O 0O O

vertices

unoccupied

S~ O 0o o 0o 0o 0O 0O O 0O O O O 0O O Independant

28/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

Consider a MFVS of G. S using pn(G) agents and occupying mfvsp,(G) vertices,

such that occupies the minimum number of vertices in MFVS

MFVS V\MFVS
b X
occupied o 0 0 o o O o|flo o o o o o o
vertices
unoccupied
T o o o o o o o|f]lo o o o o o o Independant
W Z

Independant

_ mfvspn(G) _ Y4+X

>

mfvs(G) Y+W

28/38

N. Nisse

Routing Reconfiguration & Processing Game

Problems

Tradeoff Computation

occupied vertices by the minimum # agents

Consider a MFVS of G. S using pn(G) agents and occupying mfvsp,(G) vertices,

such that occupies the minimum number of vertices in MFVS

MFVS V\MFVS
L * x
occupied o o O O o O |[o o o
vertices (i /O /{ON(W)
unoccupied
vertices M o o o O o O O
W 41<m pniG) .
Independant
)\ — Mn(G) _ |YI+IX]
mfvs(G) Y|+ W|
(X[= XN NW)[+[R] < [W].pn(G) + |R|

N. Nisse

Independant

28/38

Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

Consider a MFVS of G. S using pn(G) agents and occupying mfvsp,(G) vertices,

such that occupies the minimum number of vertices in MFVS

MEVS V\MFVS
Y X
Occupied O (e) O1 O2 03 0450 O O O O O O O
vertices N(R) R | X0 NW)
unoccupied
Vertices (o) (@] (] (] (o) O (] o (o) (@] (] o (o) (@] Independant
W Z
Independant
A\ = mfvspn(G) _ [Y[HIX] ~ |Y[+|W].pn(G)+|R|
mfvs(G) [Y[+W] — [Y[|+|W]
N(R) ={w,---,v.} C Y : ordering in which agents are removed 28/38

N. Nisse

Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

Consider a MFVS of G. S using pn(G) agents and occupying mfvsp,(G) vertices,

such that occupies the minimum number of vertices in MFVS

MFVS V\MFVS
N =
occupied o o i 02 03 0450 0 O © o o0 O
vertices N(R) R | X0 NW)
unoccupied
T o o o o o o oo o o o o o o Independant
w Z
Independant
\ = Misn(G) _ IYIHIX| - [YI+HW].pn(G)+]R
mfvs(G) [Yl+W| — [Y]+W]|

IN(vi)| < pn(G) -1

28/38

N. Nisse

Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

Consider a MFVS of G. S using pn(G) agents and occupying mfvsp,(G) vertices,

such that occupies the minimum number of vertices in MFVS

MFVS V\MFVS
! (r/Jg%:ﬁ::::::::: -
occupied O O 1 O2 03 0450 10/0 le) O O
vertices N(R) R | X0 NW)
unoccupied
e o o o o o o oo o o o o o o Independant
W Z
Independant
\ = Mfsn(G) _ IYIHIX| o |YIEIW].pn(G)+IRI
mfvs(G) [YI+W| — [Y]+W]

IN(v2) \ N(wi)| < pn(G) = 1, [N(vi) \ Uj<; N(v;)| < pn(G) —1

28/38

N. Nisse

Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

Consider a MFVS of G. S using pn(G) agents and occupying mfvsp,(G) vertices,

such that occupies the minimum number of vertices in MFVS

MFVS V\MFVS
! (r/Jg%:ﬁ::::::::: X
occupied O O 1 O2 03 0450 ,O/O le) O o
vertices N(R) R | X0 NW)
unoccupied
T o o o o o o oo o o o o o o Independant
W Z
Independant
\ = Misn(G) _ IYIHIX| - [YI+HW].pn(G)+]R
mfvs(G) [Yl+W| — [Y]+W]|

so |R| < [N(R)[(pn(G) — 1) < [Y[(pn(G) — 1)

28/38

N. Nisse

Routing Reconfiguration & Processing Game

Problems

Tradeoff Computation

occupied vertices by the minimum # agents

Consider a MFVS of G. S using pn(G) agents and occupying mfvsp,(G) vertices,

such that occupies the minimum number of vertices in MFVS

Independant

MFVS V\MFVS
(% X
occupied 1 02 03 0450] O O 0O O O
vertices N(R) e A R | X0 NW)
usglifgg:ed O O (e} O O O (e} O O O O O
Z
Independant
\ = Msen(Q) _ [YIHX| - | Y]+ W].pn(G)+R]
mfvs(G) [YI+W| — [Y]+W]
[Y[+IW|.pn(G)+[Y|(pn(G)—1) _
A VEFW] = pn(G)

N. Nisse

28/38

Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

mfvspn(D)

mfvs(D) >3 —e

Ve, 3 symmetric digraphs D: A\ =

29/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

Ve, 3 symmetric digraphs D: \ = mr:‘;zz(DD)) >3 —c¢.
@-
K2.n v K2.n
Kn+1 29/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

mfvspn(D)
mfvs(D)

Ve, 4 symmetric digraphs D: A = >3 —e

mfvs(D) = n+ 4

K2.n v K2.n

Kn+1 29/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

mfvspn(D)
mfvs(D)

Ve, 4 symmetric digraphs D: A = >3 —e

mifvs(D) = n+ 4

pn(D)=n+1

K2.n v K2.n

Kn+1 29/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

mfvspn(D)
mfvs(D)

Ve, 4 symmetric digraphs D: A = >3 —e

mifvs(D) = n+ 4

pn(D)=n+1

K2.n v K2.n

Kn+1 29/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

mfvspn(D)
mfvs(D)

Ve, 4 symmetric digraphs D: A = >3 —e

mifvs(D) = n+ 4

pn(D)=n+1

K2.n v K2.n

Kn+1 29/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

mfvspn(D)
mfvs(D)

Ve, 4 symmetric digraphs D: A = >3 —e

mifvs(D) = n+ 4

pn(D)=n+1

K2.n v K2.n

Kn+1 29/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

mfvspn(D)
mfvs(D)

Ve, 4 symmetric digraphs D: A = >3 —e

mifvs(D) = n+ 4

pn(D)=n+1

K2.n v K2.n

Kn+1 29/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

mfvspn(D)
mfvs(D)

Ve, 4 symmetric digraphs D: A = >3 —e

mifvs(D) = n+ 4

pn(D)=n+1

K2.n v K2.n

Kn+1 29/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

occupied vertices by the minimum # agents

mfvspn(D)

mfvs(D) >3-«

Ve, 4 symmetric digraphs D: A =

mifvs(D) = n+ 4

pn(D)=n+1

mfvspn(D) = 3n+ 2

K2.n v K2.n

Kn+1 29/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

Some open questions on Tradeoff

A lot of "bad” news... No tradeoff ?

Let G be a symmetric directed/undirected graph,

_ mfvspn(G)
A= mva(G) <3

i.e.,
even using “few” searchers, can we occupy “few” nodes?

30/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

What about computation?

In theory: everything is NP-complete :(
What if we want to compute anyway?

Few approximation algorithms (as far as | know):

o treewidth : O(y/log tw) [Feige et al. 2005]
@ treewidth of planar: O(1) [Seymour & Thomas 94]
@ heuristics for treewidth [Bodlaender, Koster et al.]
31/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

What about computation?

In theory: everything is NP-complete :(
What if we want to compute anyway?

Few approximation algorithms (as far as | know):

o treewidth : O(y/log tw) [Feige et al. 2005]
@ treewidth of planar: O(1) [Seymour & Thomas 94]
@ heuristics for treewidth [Bodlaender, Koster et al.]

Nothing for pathwidth !7?

Heuristic and simulations [Coudert, Huc, Mazauric, N., Sereni’09]

to compute upper bounds on process number

heuristic using LP (Solano [JOCN 09])
31/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

Heuristic / process number

1 Process nodes with all out-neighbors occupied or processed
2 If one non-occupied and non-processed out-neighbor, "slide” the agent

3 Choose of a candidate vertex to receive an agent (to be removed) using a flow
circulation method

4 Remove that vertex and process all possible vertices including removed vertices
and priority connections

5 Repeat 1-4 until processing of all vertices

a a a
® 1 ® 066 ® 077 ® 073

bl@ bﬁ@ bﬁ@ b@
D Yo U U

32/38

Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

Heuristic / process number

1 Process nodes with all out-neighbors occupied or processed
2 If one non-occupied and non-processed out-neighbor, "slide” the agent

3 Choose of a candidate vertex to receive an agent (to be removed) using a flow
circulation method

4 Remove that vertex and process all possible vertices including removed vertices
and priority connections

5 Repeat 1-4 until processing of all vertices

a a a
® 1 ® 066 ® 077 ® 073 e 1

b£© bﬁ@ bﬁ@ bﬁ@ be
D Yo bo Yo LD

32/38

Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

Heuristic / process number

1 Process nodes with all out-neighbors occupied or processed
2 If one non-occupied and non-processed out-neighbor, "slide” the agent

3 Choose of a candidate vertex to receive an agent (to be removed) using a flow
circulation method

4 Remove that vertex and process all possible vertices including removed vertices
and priority connections

5 Repeat 1-4 until processing of all vertices

@ Heuristic for the process number

@ Complexity in O(n?(n+ m)) = large digraphs

N. Nisse Routing Reconfiguration & Processing Game

32/38

Problems Tradeoff Computation

Simulation results: n x n grids

251
] — Jose & Somani
A‘t — This paper 1507
g o= — Exact value il
£
g a0
g 25: o 1007
g “] g
& [
uw 207 g
8 4 [
2 s g
[50
2 101
o
oty ——— L T I S R
0 5 10 15 20 0 2 a4 6 8 10 12
square root of the number of nodes square root of the number of nodes
Number of simultaneous Computation time

agents (break-before-make)

33/38

N. Nisse Routing Reconfiguration & Processing Game

Problems Tradeoff Computation

Simulation results

— heuristic

exact

number of agents required
»
number of agents required

— heuristic

2. T T T
50 100 150

T T S — T)
200 250 300 350 400 450 500 0 10 20 30 40 50 60 70 80 90 100
number of nodes number of nodes

2-digraphs Circular arc graphs

34/38

N. Nisse

Variants
Outline

“Practical” motivations

© O

Processing and Graph Searching Games

© ‘New’ problems
@ Tradeoff: # agents vs. # occupied vertices
@ Computation: approximation and heuristic

@ Variants and Open questions

35/38

N. Nisse Routing Reconfiguration & Processing Game

Variants

When connections can share Bandwidth

Example: Symmetric grid, where each arc has capacity 2.

>
1 e Ll 3 S ——
> T
a
b <
d 6 C 5 4
Routing 1,

Routing 2
r and s cannot be accepted €

Theorem (Coudert, Mazauric, N. [AGT 09])

When arcs have capacity more than 1, to decide whether the reconfiguration can be
done without interruptions is NP-complete.
This is true even if capacities are at most 3.

Recall that if capacities equal 1, this problem is equivalent to recognize a DAG

36/38

N. Nisse Routing Reconfiguration & Processing Game

Variants

Three questions to remember (and solve?)

Is the process-number a “good” directed width?

Visible fugitive: decomposition/bramble/ cost of
monotonicity?

Can we efficiently compute pathwidth?

Approximation, heuristics?

Can graph searching help to study other problems?
related to scheduling

37/38

N. Nisse Routing Reconfiguration & Processing Game

Thank you

38/38

N. Nisse ing Reconfiguration & Processing G

	``Practical" motivations
	Processing and Graph Searching Games
	``New" problems
	Tradeoff: # agents vs. # occupied vertices
	Computation: approximation and heuristic

	Variants and Open questions

