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Motivations Processing game Problems Variants

Outline

1 “Practical” motivations

2 Processing and Graph Searching Games

3 “New” problems
Tradeoff: # agents vs. # occupied vertices
Computation: approximation and heuristic

4 Variants and Open questions
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Motivations Processing game Problems Variants

Routing in WDM Networks

Physical Network, Links provide several wavelengths

multi-digraph G = (V ,E )
an arc (u, v) ⇔ one wavelength on the link (u, v)

Routing of a set of requests/connections

set of requests R ⊆ V × V
routing: for each request (u, v),
a path from u to v and 1 wavelength.

Problem: due to dynamicity of traffic, failures

how to maintain an efficient routing?

N. Nisse Routing Reconfiguration & Processing Game



4/38

Motivations Processing game Problems Variants

What happens in ”real” world

Variation of traffic + dynamicity induced by failures
⇒ Online processes to route all requests: e.g., greedy routing

Example of a grid network with directed symmetric links (capacity 1)
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Variation of traffic + dynamicity induced by failures
⇒ Online processes to route all requests: e.g., greedy routing

Example of a grid network with directed symmetric links (capacity 1)
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What happens in ”real” world

Variation of traffic + dynamicity induced by failures
⇒ Online processes to route all requests: e.g., greedy routing

Example of a grid network with directed symmetric links (capacity 1)
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What happens in ”real” world

Variation of traffic + dynamicity induced by failures
⇒ Online processes to route all requests: e.g., greedy routing

Example of a grid network with directed symmetric links (capacity 1)
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What happens in ”real” world

Variation of traffic + dynamicity induced by failures
⇒ Online processes to route all requests: e.g., greedy routing

Example of a grid network with directed symmetric links (capacity 1)
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Request e : 6 → 5
Request c : 2 → 3
Failure of link {8, 9}
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What happens in ”real” world

Variation of traffic + dynamicity induced by failures
⇒ Online processes to route all requests: e.g., greedy routing

Example of a grid network with directed symmetric links (capacity 1)
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Request d : 1 → 3
Request e : 6 → 5
Request c : 2 → 3
Rerouting of request e
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Motivations Processing game Problems Variants

What happens in ”real” world

Variation of traffic + dynamicity induced by failures
⇒ Online processes to route all requests: e.g., greedy routing

Example of a grid network with directed symmetric links (capacity 1)
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Request d : 1 → 3
Request e : 6 → 5
Request c : 2 → 3
Request b : 1 → 5
New link {8, 9}

N. Nisse Routing Reconfiguration & Processing Game



4/38
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What happens in ”real” world

Variation of traffic + dynamicity induced by failures
⇒ Online processes to route all requests: e.g., greedy routing

Example of a grid network with directed symmetric links (capacity 1)
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Request a : 4 → 5
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What happens in ”real” world

Variation of traffic + dynamicity induced by failures
⇒ Online processes to route all requests: e.g., greedy routing

Example of a grid network with directed symmetric links (capacity 1)
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Leads to a poor usage of ressources

Sometimes greedy routing is impossible
even if several requests are allowed to be moved
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What happens in ”real” world

Variation of traffic + dynamicity induced by failures
⇒ Online processes to route all requests: e.g., greedy routing

Example of a grid network with directed symmetric links (capacity 1)
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Leads to a poor usage of ressources

Sometimes greedy routing is impossible
even if several requests are allowed to be moved

If {5, 8} fails:
Move-to-Vacant impossible
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Motivations Processing game Problems Variants

What happens in ”real” world

Variation of traffic + dynamicity induced by failures
⇒ Online processes to route all requests: e.g., greedy routing

Example of a grid network with directed symmetric links (capacity 1)
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2 questions arise:

1 Compute new routing

2 Switch from initial routing to final one

We focus on 2
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Motivations Processing game Problems Variants

Two ways of switching one request

Make-before-break:

Establish new path before switching the
connection

=⇒ Destination resources must be available

Break-before-make:

Break connection before establishing the new path

=⇒ Traffic stopped = interruption

N. Nisse Routing Reconfiguration & Processing Game
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Motivations Processing game Problems Variants

The Routing Reconfiguration Problem
How to go from the initial routing (left) to the final one (right)?
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Inputs: Set of connection requests + current & new routing

Output: Scheduling for switching connection requests from
current to new routes

Constraint: A connection is switched only once

ObjectiveS Number of Interruptions (detailled later)
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Motivations Processing game Problems Variants

Dependency digraph
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Motivations Processing game Problems Variants

Dependency digraph
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Dependancy Digraph

one vertex per connection with
different routes in I and F
arc from u to v if ressources needed
by u in F are used by v in I
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Motivations Processing game Problems Variants

A game on dependency digraph
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Motivations Processing game Problems Variants

A game on dependency digraph
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Motivations Processing game Problems Variants

A game on dependency digraph
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A game on dependency digraph
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Motivations Processing game Problems Variants

A game on dependency digraph
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Motivations Processing game Problems Variants

A game on dependency digraph
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Motivations Processing game Problems Variants

Processing Game

Game with Agents on the Dependency digraph D

Sequence of three basic operations,. . .
1 Place a searcher at a node = interrupt the request;

2 Process a node if all its out-neighbors are either processed or occupied by an
agent = (Re)route a connection when final resources are available;

A processed node is removed from the dependency digraph.

3 Remove an agent from a node, only if it has been processed.

. . . that must result in processing all nodes

N. Nisse Routing Reconfiguration & Processing Game
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Motivations Processing game Problems Variants

From now on: problem on digraphs

Any directed graph is a dependency digraph
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Motivations Processing game Problems Variants

Two possible objectives

Minimize overall number of interrupted requests

Minimum Feedback Vertex Set (MFVS), here N/4

Remarks: MFVS is NP-complete and non APX in digraphs
2-approx in undirected (directed symmetric) graphs

Minimize number of simultaneous interrupted requests

Process Number, pn = smallest number of requests that
have to be simultaneously interrupted.
Here, pn = 1 ⇒ Gap with MFVS up to N/2

N. Nisse Routing Reconfiguration & Processing Game
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Motivations Processing game Problems Variants

Routing Reconfiguration, Process number

Game with Agents on the Dependency digraph D

Sequence of three basic operations,. . .
1 Place a searcher at a node = interrupt the request;

2 Process a node if all its out-neighbors are either processed or occupied by an
agent = (Re)route a connection when final resources are available;

A processed node is removed from the dependency digraph.

3 Remove an agent from a node, after having processed it.

. . . that must result in processing all nodes

Process number = min. number of simultaneous interruptions
pn(D)=min number of agents used during the strategy

Min. Feedback Vertex Set = min. total number of interruptions
mfvs(D)= min total number of occupied vertices during the strategy

N. Nisse Routing Reconfiguration & Processing Game



13/38

Motivations Processing game Problems Variants

Outline

1 “Practical” motivations

2 Processing and Graph Searching Games

3 “New” problems
Tradeoff: # agents vs. # occupied vertices
Computation: approximation and heuristic

4 Variants and Open questions
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Motivations Processing game Problems Variants

Processing Game

Let D be a digraph

Sequence of three basic operations,. . .
1 Place a searcher at a node;

2 Process a node if all its out-neighbors are either processed or occupied by an
agent; the node does not need to be occupied!

3 Remove an agent from a node, only if it has been processed.

. . . that must result in processing all nodes

Process number, pn(D)=min number of agents used during the strategy

N. Nisse Routing Reconfiguration & Processing Game
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Motivations Processing game Problems Variants

Simple Example 1: DAG

Only one operation is used
1 Place a searcher at a node;

2 Process a node if all its out-neighbors are either processed or occupied by an
agent;

3 Remove an agent from a node, only if it has been processed.

DAG

Theorem

pn(D) = 0 iff D is a DAG

N. Nisse Routing Reconfiguration & Processing Game
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Motivations Processing game Problems Variants

Simple Example 2: process number 1

One agent is used
1 Place a searcher at a node;

2 Process a node if all its out-neighbors are either processed or occupied by an
agent;

3 Remove an agent from a node, only if it has been processed.

Theorem

pn(D) = 1 ⇔ ∀SCC , MFVS(SCC ) = 1 O(N + M)

N. Nisse Routing Reconfiguration & Processing Game
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Motivations Processing game Problems Variants

Processing Game vs. Graph Searching

In undirected graphs or “symmetric” digraphs

Node-search (a.k.a. helicopter game) ⇔ pathwidth
Invisible fugitive moves along edges

1 Place a searcher at a node;

2 Remove an agent from a node (if no recontamination). (monotone)

Capture if a cop lands on the fugitive and it cannot flee (it is surrounded)

Monotone Process Number
Invisible fugitive moves along edges

and must always move

1 Place a searcher at a node;

2 Process a node (capture) if its neighbors are occupied;

3 Remove an agent from a node if no recontamination.

Capture if a cop lands on the fugitive and it cannot flee (it is surrounded)

OR if it is surrounded

N. Nisse Routing Reconfiguration & Processing Game
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Motivations Processing game Problems Variants

Processing Game vs. Graph Searching

In directed graphs

directed node-search ⇔ directed pathwidth
Invisible fugitive moves along arcs

1 Place a searcher at a node;

2 Remove an agent from a node (if no recontamination). (monotone)

Capture if a cop lands on the fugitive and it cannot flee (its out-neighbor is occupied)

Monotone Process Number
Invisible fugitive moves backward arcs

and must always move

1 Place a searcher at a node;

2 Process a node (capture) if its out-neighbors are occupied or processed;

3 Remove an agent from a node if no recontamination.

Capture if a cop lands on the fugitive and it cannot flee (it is surrounded)

OR if it is surrounded or stuck in a not strongly-connected component

N. Nisse Routing Reconfiguration & Processing Game
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Motivations Processing game Problems Variants

Monotone process number

Related parameter of directed (and undirected) graphs

vertex separation vs = (directed) pathwidth Kinnersley [IPL 92]

Theorem (Coudert & Sereni, 2007)

vs(D) ≤ monotone pn(D) ≤ vs(D) + 1

pw(G ) ≤ monotone-pn(G ) ≤ pw(G ) + 1 undirected graph G
dpw(D) ≤ monotone-pn(D) ≤ pw(D) + 1 directed graph D

Complexity

NP-Complete, Not APX (Coudert & Sereni, 2007)

Characterization of digraphs with process number 0, 1, 2

(Coudert & Sereni, 2007)

distributed O(n log n)-time exact algorithm in trees

(Coudert, Huc, Mazauric [Algorithmica 12])

N. Nisse Routing Reconfiguration & Processing Game
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Motivations Processing game Problems Variants

Monotonicity

Theorem (N., Soares, 2012)

For any digraph D, pn(D) = monotone-pn(D)

Process-decompositon

Sequence of pairs P = ((W1,X1), · · · , (Wt ,Xt)) such that:

(X1, · · · ,Xt) is a partition of V \
⋃t

i=1 Wi ;

∀i ≤ j ≤ t, Wi ∩Wk ⊆Wj ;

Xi induces a Directed Acyclic Graph (DAG), for any 1 ≤ i ≤ t;

∀(u, v) ∈ A, ∃j ≤ i such that v ∈Wj ∪ Xj and u ∈Wi ∪ Xi .

Width = max1≤i≤n |Wi |

pn(D) = min. width among all decompositions

⇒ pn(D) = pn(D̄) (D̄ is D where arcs have been reversed)

N. Nisse Routing Reconfiguration & Processing Game
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Motivations Processing game Problems Variants

To summarize

undirected graphs directed graphs

fugitive move along edges move along arcs

must must be able must move

move to move in SCC

invisible pw pn dpw pn ?

monotone

visible tw DAG-width visible-pn ≈ dtw

monotone ? not monotone

no ratio ? dtw ≤ 3br

Table: Classification of the graph searching games

N. Nisse Routing Reconfiguration & Processing Game
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Motivations Processing game Problems Variants Tradeoff Computation

Outline

1 “Practical” motivations

2 Processing and Graph Searching Games

3 “New” problems
Tradeoff: # agents vs. # occupied vertices
Computation: approximation and heuristic

4 Variants and Open questions

N. Nisse Routing Reconfiguration & Processing Game
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Motivations Processing game Problems Variants Tradeoff Computation

Routing Reconfiguration, Process number

Game with Agents on the Dependency digraph D

Sequence of three basic operations,. . .
1 Place a searcher at a node = interrupt the request;

2 Process a node if all its out-neighbors are either processed or occupied by an
agent = (Re)route a connection when final resources are available;

A processed node is removed from the dependency digraph.

3 Remove an agent from a node, after having processed it.

. . . that must result in processing all nodes

Process number = min. number of simultaneous interruptions
pn(D)=min number of agents used during the strategy

Min. Feedback Vertex Set = min. total number of interruptions
mfvs(D)= min total number of occupied vertices during the strategy

N. Nisse Routing Reconfiguration & Processing Game
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Motivations Processing game Problems Variants Tradeoff Computation

Tradeoff: total/ max simultaneous interruptions

#agents

mfvs

mfvs_{pn}

pn_{mfvs}pn mfvs

#occupied vertices

N. Nisse Routing Reconfiguration & Processing Game



25/38

Motivations Processing game Problems Variants Tradeoff Computation

Complexity

Smallest number of agents such that the number of
occupied vertices is minimum = pnmfvs(D)

µ = pnmfvs (D)
pn(D)

Smallest total number of occupied vertices such that the
number of agents is minimum = mfvspn(D)

λ = mfvspn(D)
mfvs(D)

Theorem

The problems of determining pnmfvs(D), mfvspn(D), µ, and λ
are NP-Complete and not APX.

N. Nisse Routing Reconfiguration & Processing Game
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Motivations Processing game Problems Variants Tradeoff Computation

# agents for minimizing # occupied vertices

∃ digraphs with arbitrary large ratio: µ = pnmfvs (D)
pn(D)

.

mfvs(D) = n

pn(D) = 2

pnmfvs(D) = n

N. Nisse Routing Reconfiguration & Processing Game



26/38

Motivations Processing game Problems Variants Tradeoff Computation

# agents for minimizing # occupied vertices

∃ digraphs with arbitrary large ratio: µ = pnmfvs (D)
pn(D)

.

mfvs(D) = n

pn(D) = 2

pnmfvs(D) = n

N. Nisse Routing Reconfiguration & Processing Game



26/38

Motivations Processing game Problems Variants Tradeoff Computation

# agents for minimizing # occupied vertices

∃ digraphs with arbitrary large ratio: µ = pnmfvs (D)
pn(D)

.

mfvs(D) = n

pn(D) = 2

pnmfvs(D) = n

N. Nisse Routing Reconfiguration & Processing Game



26/38

Motivations Processing game Problems Variants Tradeoff Computation

# agents for minimizing # occupied vertices

∃ digraphs with arbitrary large ratio: µ = pnmfvs (D)
pn(D)

.

mfvs(D) = n

pn(D) = 2

pnmfvs(D) = n

N. Nisse Routing Reconfiguration & Processing Game



26/38

Motivations Processing game Problems Variants Tradeoff Computation

# agents for minimizing # occupied vertices

∃ digraphs with arbitrary large ratio: µ = pnmfvs (D)
pn(D)

.

mfvs(D) = n

pn(D) = 2

pnmfvs(D) = n

N. Nisse Routing Reconfiguration & Processing Game



26/38

Motivations Processing game Problems Variants Tradeoff Computation

# agents for minimizing # occupied vertices

∃ digraphs with arbitrary large ratio: µ = pnmfvs (D)
pn(D)

.

mfvs(D) = n

pn(D) = 2

pnmfvs(D) = n

N. Nisse Routing Reconfiguration & Processing Game



26/38

Motivations Processing game Problems Variants Tradeoff Computation

# agents for minimizing # occupied vertices

∃ digraphs with arbitrary large ratio: µ = pnmfvs (D)
pn(D)

.

mfvs(D) = n

pn(D) = 2

pnmfvs(D) = n

N. Nisse Routing Reconfiguration & Processing Game



26/38

Motivations Processing game Problems Variants Tradeoff Computation

# agents for minimizing # occupied vertices

∃ digraphs with arbitrary large ratio: µ = pnmfvs (D)
pn(D)

.

mfvs(D) = n

pn(D) = 2

pnmfvs(D) = n

N. Nisse Routing Reconfiguration & Processing Game



27/38

Motivations Processing game Problems Variants Tradeoff Computation

# occupied vertices by the minimum # agents

∃ digraphs with arbitrary large ratio: λ = mfvspn(D)
mfvs(D)

.

mfvs(D) = 4

pn(D) = 3

mfvspn(D) = n+ 4

N. Nisse Routing Reconfiguration & Processing Game



27/38

Motivations Processing game Problems Variants Tradeoff Computation

# occupied vertices by the minimum # agents

∃ digraphs with arbitrary large ratio: λ = mfvspn(D)
mfvs(D)

.

mfvs(D) = 4

pn(D) = 3

mfvspn(D) = n+ 4

N. Nisse Routing Reconfiguration & Processing Game



27/38

Motivations Processing game Problems Variants Tradeoff Computation

# occupied vertices by the minimum # agents

∃ digraphs with arbitrary large ratio: λ = mfvspn(D)
mfvs(D)

.

mfvs(D) = 4

pn(D) = 3

mfvspn(D) = n+ 4

N. Nisse Routing Reconfiguration & Processing Game



27/38

Motivations Processing game Problems Variants Tradeoff Computation

# occupied vertices by the minimum # agents

∃ digraphs with arbitrary large ratio: λ = mfvspn(D)
mfvs(D)

.

mfvs(D) = 4

pn(D) = 3

mfvspn(D) = n+ 4

N. Nisse Routing Reconfiguration & Processing Game



27/38

Motivations Processing game Problems Variants Tradeoff Computation

# occupied vertices by the minimum # agents

∃ digraphs with arbitrary large ratio: λ = mfvspn(D)
mfvs(D)

.

mfvs(D) = 4

pn(D) = 3

mfvspn(D) = n+ 4

N. Nisse Routing Reconfiguration & Processing Game



27/38

Motivations Processing game Problems Variants Tradeoff Computation

# occupied vertices by the minimum # agents

∃ digraphs with arbitrary large ratio: λ = mfvspn(D)
mfvs(D)

.

mfvs(D) = 4

pn(D) = 3

mfvspn(D) = n+ 4

N. Nisse Routing Reconfiguration & Processing Game



27/38

Motivations Processing game Problems Variants Tradeoff Computation

# occupied vertices by the minimum # agents

∃ digraphs with arbitrary large ratio: λ = mfvspn(D)
mfvs(D)

.

mfvs(D) = 4

pn(D) = 3

mfvspn(D) = n+ 4

N. Nisse Routing Reconfiguration & Processing Game



27/38

Motivations Processing game Problems Variants Tradeoff Computation

# occupied vertices by the minimum # agents

∃ digraphs with arbitrary large ratio: λ = mfvspn(D)
mfvs(D)

.

mfvs(D) = 4

pn(D) = 3

mfvspn(D) = n+ 4

N. Nisse Routing Reconfiguration & Processing Game



27/38

Motivations Processing game Problems Variants Tradeoff Computation

# occupied vertices by the minimum # agents

∃ digraphs with arbitrary large ratio: λ = mfvspn(D)
mfvs(D)

.

mfvs(D) = 4

pn(D) = 3

mfvspn(D) = n+ 4

N. Nisse Routing Reconfiguration & Processing Game



27/38

Motivations Processing game Problems Variants Tradeoff Computation

# occupied vertices by the minimum # agents

∃ digraphs with arbitrary large ratio: λ = mfvspn(D)
mfvs(D)

.

mfvs(D) = 4

pn(D) = 3

mfvspn(D) = n+ 4

N. Nisse Routing Reconfiguration & Processing Game



27/38

Motivations Processing game Problems Variants Tradeoff Computation

# occupied vertices by the minimum # agents

∃ digraphs with arbitrary large ratio: λ = mfvspn(D)
mfvs(D)

.

mfvs(D) = 4

pn(D) = 3

mfvspn(D) = n+ 4

N. Nisse Routing Reconfiguration & Processing Game



27/38

Motivations Processing game Problems Variants Tradeoff Computation

# occupied vertices by the minimum # agents

∃ digraphs with arbitrary large ratio: λ = mfvspn(D)
mfvs(D)

.

mfvs(D) = 4

pn(D) = 3

mfvspn(D) = n+ 4

N. Nisse Routing Reconfiguration & Processing Game



27/38

Motivations Processing game Problems Variants Tradeoff Computation

# occupied vertices by the minimum # agents

∃ digraphs with arbitrary large ratio: λ = mfvspn(D)
mfvs(D)

.

mfvs(D) = 4

pn(D) = 3

mfvspn(D) = n+ 4

N. Nisse Routing Reconfiguration & Processing Game



27/38

Motivations Processing game Problems Variants Tradeoff Computation

# occupied vertices by the minimum # agents

∃ digraphs with arbitrary large ratio: λ = mfvspn(D)
mfvs(D)

.

mfvs(D) = 4

pn(D) = 3

mfvspn(D) = n+ 4

N. Nisse Routing Reconfiguration & Processing Game



27/38

Motivations Processing game Problems Variants Tradeoff Computation

# occupied vertices by the minimum # agents

∃ digraphs with arbitrary large ratio: λ = mfvspn(D)
mfvs(D)

.

mfvs(D) = 4

pn(D) = 3

mfvspn(D) = n+ 4

N. Nisse Routing Reconfiguration & Processing Game



27/38

Motivations Processing game Problems Variants Tradeoff Computation

# occupied vertices by the minimum # agents

∃ digraphs with arbitrary large ratio: λ = mfvspn(D)
mfvs(D)

.

mfvs(D) = 4

pn(D) = 3

mfvspn(D) = n+ 4

N. Nisse Routing Reconfiguration & Processing Game



27/38

Motivations Processing game Problems Variants Tradeoff Computation

# occupied vertices by the minimum # agents

∃ digraphs with arbitrary large ratio: λ = mfvspn(D)
mfvs(D)

.

mfvs(D) = 4

pn(D) = 3

mfvspn(D) = n+ 4

N. Nisse Routing Reconfiguration & Processing Game



27/38

Motivations Processing game Problems Variants Tradeoff Computation

# occupied vertices by the minimum # agents

∃ digraphs with arbitrary large ratio: λ = mfvspn(D)
mfvs(D)

.

mfvs(D) = 4

pn(D) = 3

mfvspn(D) = n+ 4

N. Nisse Routing Reconfiguration & Processing Game



28/38

Motivations Processing game Problems Variants Tradeoff Computation

# occupied vertices by the minimum # agents

Directed graphs with BOUNDED Process Number:
λ = occupied vertices / mfvs UNBOUNDED

What if G is undirected ??

Let G be a symmetric directed/undirected graph,

λ = mfvspn(G)
mfvs(G)

≤ pn(G )
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# occupied vertices by the minimum # agents

Consider a MFVS of G. S using pn(G) agents and occupying mfvspn(G) vertices,

such that occupies the minimum number of vertices in MFVS

Independant

vertices

vertices

unoccupied

occupied
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# occupied vertices by the minimum # agents

Consider a MFVS of G. S using pn(G) agents and occupying mfvspn(G) vertices,

such that occupies the minimum number of vertices in MFVS

Z

Y X

W

vertices

vertices

unoccupied

occupied

Independant

MFVS V \ MFVS

Independant

λ = mfvspn(G)
mfvs(G)

= Y +X
Y +W
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# occupied vertices by the minimum # agents

Consider a MFVS of G. S using pn(G) agents and occupying mfvspn(G) vertices,

such that occupies the minimum number of vertices in MFVS

X

Y X

W Z

N(W)

unoccupied
Independant

MFVS

Independant

V \ MFVS

occupied

vertices

vertices
d(v)<= pn(G)

λ = mfvspn(G)
mfvs(G)

= |Y |+|X |
|Y |+|W |

|X | = |X ∩ N(W )|+ |R| ≤ |W |.pn(G ) + |R|
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# occupied vertices by the minimum # agents

Consider a MFVS of G. S using pn(G) agents and occupying mfvspn(G) vertices,

such that occupies the minimum number of vertices in MFVS

X

N(W)

W

X

Z

Y

vertices

vertices
unoccupied

occupied

MFVS

Independant

V \ MFVS

Independant

3

RN(R)
4 51 2

λ = mfvspn(G)
mfvs(G)

= |Y |+|X |
|Y |+|W | ≤

|Y |+|W |.pn(G)+|R|
|Y |+|W |

N(R) = {v1, · · · , vr} ⊆ Y : ordering in which agents are removed
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# occupied vertices by the minimum # agents

Consider a MFVS of G. S using pn(G) agents and occupying mfvspn(G) vertices,

such that occupies the minimum number of vertices in MFVS

N(W)

Y X

X

ZW

vertices

vertices
unoccupied

occupied

Independant

MFVS

Independant

V \ MFVS

RN(R)
4 51 2 3

λ = mfvspn(G)
mfvs(G)

= |Y |+|X |
|Y |+|W | ≤

|Y |+|W |.pn(G)+|R|
|Y |+|W |

|N(v1)| ≤ pn(G )− 1
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# occupied vertices by the minimum # agents

Consider a MFVS of G. S using pn(G) agents and occupying mfvspn(G) vertices,

such that occupies the minimum number of vertices in MFVS

N(W)

Y X

X

ZW

vertices

vertices
unoccupied

occupied

Independant

MFVS

Independant

V \ MFVS

2 3

RN(R)
4 51

λ = mfvspn(G)
mfvs(G)

= |Y |+|X |
|Y |+|W | ≤

|Y |+|W |.pn(G)+|R|
|Y |+|W |

|N(v2) \ N(v1)| ≤ pn(G )− 1, |N(vi ) \
⋃

j<i N(vj )| ≤ pn(G )− 1
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# occupied vertices by the minimum # agents

Consider a MFVS of G. S using pn(G) agents and occupying mfvspn(G) vertices,

such that occupies the minimum number of vertices in MFVS

N(W)

Y X

X

ZW

vertices

vertices
unoccupied

occupied

Independant

MFVS

Independant

V \ MFVS

2 3

RN(R)
4 51

λ = mfvspn(G)
mfvs(G)

= |Y |+|X |
|Y |+|W | ≤

|Y |+|W |.pn(G)+|R|
|Y |+|W |

so |R| ≤ |N(R)|(pn(G )− 1) ≤ |Y |(pn(G )− 1)
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# occupied vertices by the minimum # agents

Consider a MFVS of G. S using pn(G) agents and occupying mfvspn(G) vertices,

such that occupies the minimum number of vertices in MFVS

N(W)

Y X

X

ZW

vertices

vertices
unoccupied

occupied

Independant

MFVS

Independant

V \ MFVS

2 3

RN(R)
4 51

λ = mfvspn(G)
mfvs(G)

= |Y |+|X |
|Y |+|W | ≤

|Y |+|W |.pn(G)+|R|
|Y |+|W |

λ ≤ |Y |+|W |.pn(G)+|Y |(pn(G)−1)
|Y |+|W | = pn(G )
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# occupied vertices by the minimum # agents

∀ε, ∃ symmetric digraphs D: λ = mfvspn(D)
mfvs(D)

> 3− ε.
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# occupied vertices by the minimum # agents

∀ε, ∃ symmetric digraphs D: λ = mfvspn(D)
mfvs(D)

> 3− ε.

Kn+1

K2,n K2,n

mfvs(D) = n + 4

pn(D) = n + 1

mfvspn(D) = 3n + 2
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Some open questions on Tradeoff

A lot of ”bad” news... No tradeoff ?

Conjecture

Let G be a symmetric directed/undirected graph,

λ = mfvspn(G)
mfvs(G)

≤ 3

i.e.,
even using “few” searchers, can we occupy “few” nodes?
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What about computation?

In theory: everything is NP-complete :(
What if we want to compute anyway?

Few approximation algorithms (as far as I know):

treewidth : O(
√

log tw) [Feige et al. 2005]

treewidth of planar: O(1) [Seymour & Thomas 94]

heuristics for treewidth [Bodlaender, Koster et al.]

Nothing for pathwidth !?

Heuristic and simulations [Coudert, Huc, Mazauric, N., Sereni’09]

to compute upper bounds on process number

heuristic using LP (Solano [JOCN 09])
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Heuristic / process number

1 Process nodes with all out-neighbors occupied or processed

2 If one non-occupied and non-processed out-neighbor, ”slide” the agent

3 Choose of a candidate vertex to receive an agent (to be removed) using a flow
circulation method

4 Remove that vertex and process all possible vertices including removed vertices
and priority connections

5 Repeat 1-4 until processing of all vertices

1

1

1

b

a

c

0.66

1.66

0.66

b

a

c

0.77

1.43
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a
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a

c

N. Nisse Routing Reconfiguration & Processing Game



32/38

Motivations Processing game Problems Variants Tradeoff Computation

Heuristic / process number

1 Process nodes with all out-neighbors occupied or processed

2 If one non-occupied and non-processed out-neighbor, ”slide” the agent

3 Choose of a candidate vertex to receive an agent (to be removed) using a flow
circulation method

4 Remove that vertex and process all possible vertices including removed vertices
and priority connections

5 Repeat 1-4 until processing of all vertices

1

1

1

b

a

c

0.66

1.66
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Heuristic / process number

1 Process nodes with all out-neighbors occupied or processed

2 If one non-occupied and non-processed out-neighbor, ”slide” the agent

3 Choose of a candidate vertex to receive an agent (to be removed) using a flow
circulation method

4 Remove that vertex and process all possible vertices including removed vertices
and priority connections

5 Repeat 1-4 until processing of all vertices

Heuristic for the process number

Complexity in O(n2(n + m)) ⇒ large digraphs
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Simulation results: n × n grids

Jose & Somani
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Simulation results
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Outline

1 “Practical” motivations

2 Processing and Graph Searching Games

3 “New” problems
Tradeoff: # agents vs. # occupied vertices
Computation: approximation and heuristic

4 Variants and Open questions
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When connections can share Bandwidth

Example: Symmetric grid, where each arc has capacity 2.

b

a

cd

rs
1 2

456

3

Routing 1,
r and s cannot be accepted

a

r
b

s

c

d
1 2 3

456

Routing 2

Theorem (Coudert, Mazauric, N. [AGT 09])

When arcs have capacity more than 1, to decide whether the reconfiguration can be
done without interruptions is NP-complete.
This is true even if capacities are at most 3.

Recall that if capacities equal 1, this problem is equivalent to recognize a DAG
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Three questions to remember (and solve?)

Is the process-number a “good” directed width?

Visible fugitive: decomposition/bramble/ cost of
monotonicity?

Can we efficiently compute pathwidth?

Approximation, heuristics?

Can graph searching help to study other problems?

related to scheduling

N. Nisse Routing Reconfiguration & Processing Game
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Thank you

N. Nisse Routing Reconfiguration & Processing Game
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