Spy-Game on graphs

Nathann Cohen¹ Mathieu Hilaire² Nícolas A. Martins³ Nicolas Nisse^{4,5} Stéphane Pérennes^{5,4}

¹ CNRS, Univ Paris Sud, LRI, Orsay, France

² ENS Cachan, France

³ Universidade Federal do Ceará, Fortaleza, Brazil

⁴ Inria, France

⁵ Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, Sophia Antipolis, France

Search Games: Theory and Algorithms

Leiden, Netherlands, June 28th, 2016

1/16

Many Two-player games in Graphs

Cops and Robber

[Nowakowski and Winkler; Quilliot 1983]

A team of *Cops* attempts to capture one *Robber*

Angels and Devils

[Conway 1996]

Angel moves on the graph, Devil blocks vertices

Eternel Domination

[Burger *et al* 2004]

A team of *Defenders* protects nodes from one *Attacker*

...

Spy Game

A team of Guards attempts to stay close to the Spy

2/10

Many Two-player games in Graphs

Cops and Robber

[Nowakowski and Winkler; Quilliot 1983]

A team of *Cops* attempts to capture one *Robber*

Angels and Devils

[Conway 1996]

Angel moves on the graph, Devil blocks vertices

Eternel Domination

[Burger *et al* 2004]

A team of *Defenders* protects nodes from one *Attacker*

. . . .

Spy Game

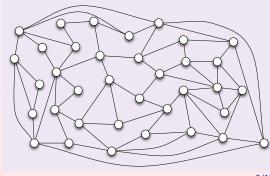
[this work]

2/16

A team of *Guards* attempts to stay close to the *Spy*

◆ロ → ◆個 → ◆量 → ◆量 → りへの

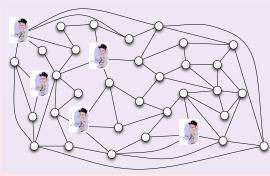
Cops & Robber Games [Nowakowski and Winkler; Quilliot, 1983]



Cops & Robber Games [Nowakowski and Winkler; Quilliot, 1983]

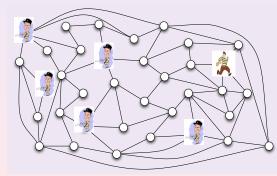
Rules of the $\mathcal{C}\&\mathcal{R}$ game

① Place $k \ge 1$ Cops C on nodes



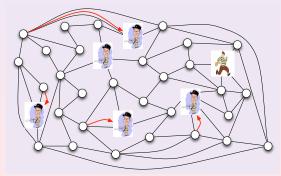
Cops & Robber Games [Nowakowski and Winkler; Quilliot, 1983]

- ① Place $k \ge 1$ Cops \mathcal{C} on nodes
- 2 Visible Robber $\mathcal R$ at one node



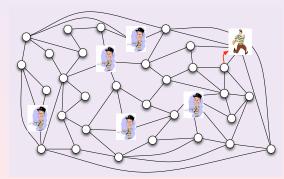
Cops & Robber Games [Nowakowski and Winkler; Quilliot, 1983]

- ① Place $k \ge 1$ Cops \mathcal{C} on nodes
- 2 Visible Robber $\mathcal R$ at one node
- Turn by turn (1) each C slides along < 1 edge



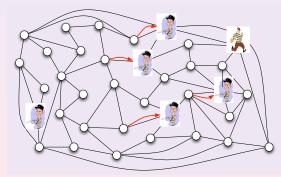
Cops & Robber Games [Nowakowski and Winkler; Quilliot, 1983]

- ① Place $k \ge 1$ Cops \mathcal{C} on nodes
- 2 Visible Robber \mathcal{R} at one node
- Turn by turn
 - (1) each ${\mathcal C}$ slides along ≤ 1 edge
 - (2) ${\cal R}$ slides along ≤ 1 edge



Cops & Robber Games [Nowakowski and Winkler; Quilliot, 1983]

- ① Place $k \ge 1$ Cops \mathcal{C} on nodes
- 2 Visible Robber \mathcal{R} at one node
- Turn by turn
 - (1) each ${\mathcal C}$ slides along ≤ 1 edge
 - (2) ${\cal R}$ slides along ≤ 1 edge



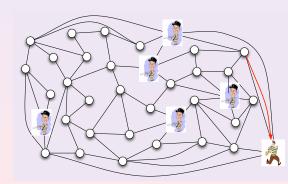
Cops & Robber Games [Nowakowski and Winkler; Quilliot, 1983]

Rules of the C&R game

- ① Place $k \ge 1$ Cops \mathcal{C} on nodes
- 2 Visible Robber \mathcal{R} at one node
- Turn by turn
 - (1) each $\mathcal C$ slides along ≤ 1 edge
 - (2) $\mathcal R$ slides along ≤ 1 edge

Goal of the $\mathcal{C}\&\mathcal{R}$ game

Robber must avoid the Cops



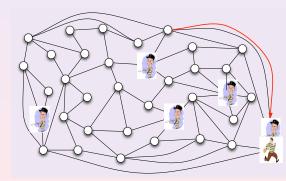
3/16

Cops & Robber Games [Nowakowski and Winkler; Quilliot, 1983]

Rules of the C&R game

- ① Place $k \ge 1$ Cops \mathcal{C} on nodes
- 2 Visible Robber \mathcal{R} at one node
- Turn by turn
 - (1) each $\mathcal C$ slides along ≤ 1 edge
 - (2) $\mathcal R$ slides along ≤ 1 edge

- Robber must avoid the Cops
- Cops must capture Robber (i.e., occupy the same node)



Cops & Robber Games [Nowakowski and Winkler; Quilliot, 1983]

Rules of the C&R game

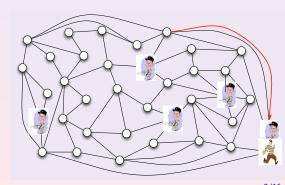
- ① Place $k \ge 1$ Cops \mathcal{C} on nodes
- 2 Visible Robber \mathcal{R} at one node
- Turn by turn
 - (1) each $\mathcal C$ slides along ≤ 1 edge
 - (2) $\mathcal R$ slides along ≤ 1 edge

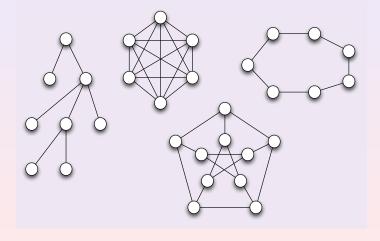
Goal of the $\mathcal{C}\&\mathcal{R}$ game

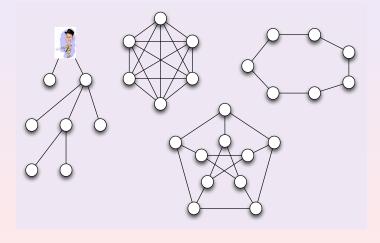
- Robber must avoid the Cops
- Cops must capture Robber (i.e., occupy the same node)

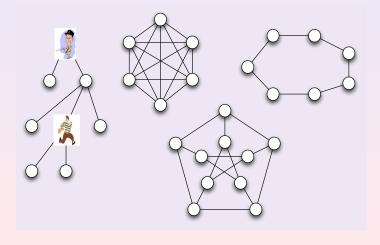
Cop Number of a graph G

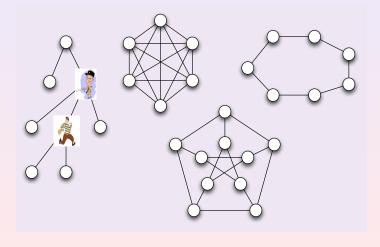
cn(G): min # Cops to win in G

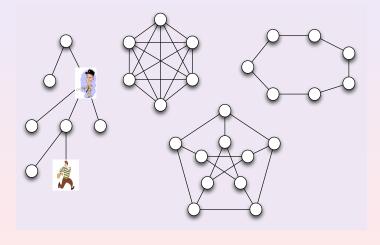


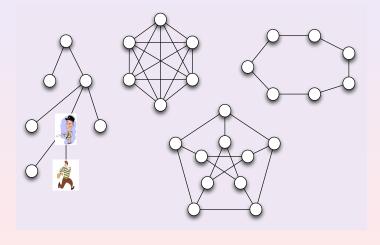


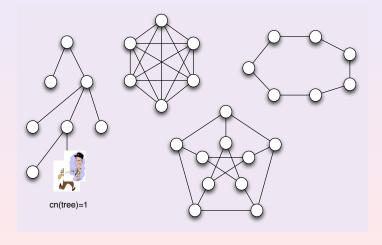


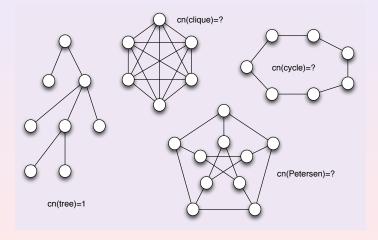


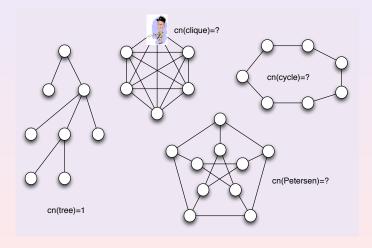


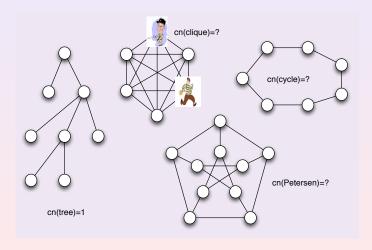


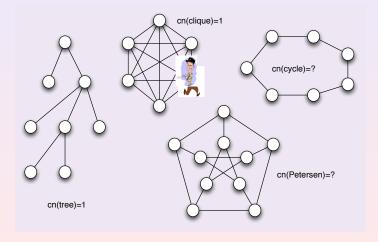


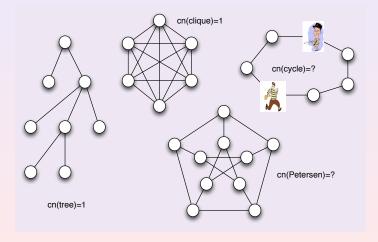


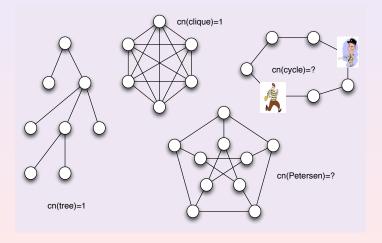


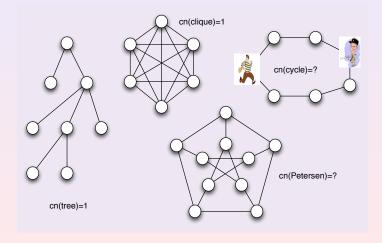


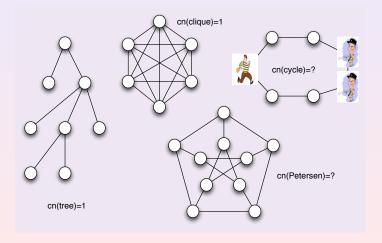


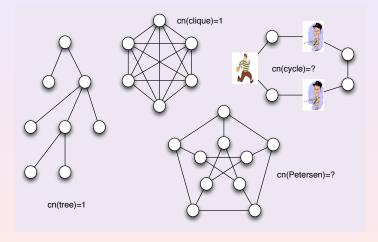


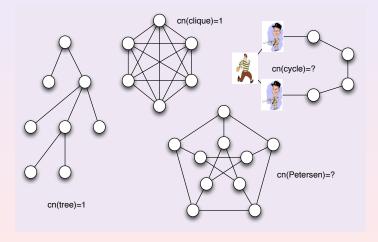


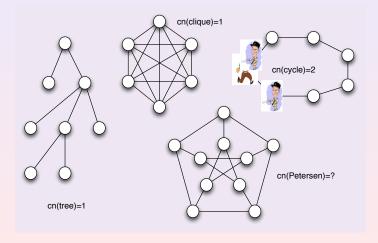


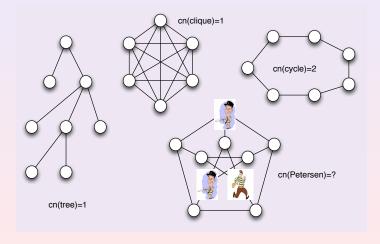


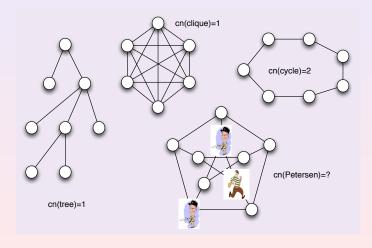


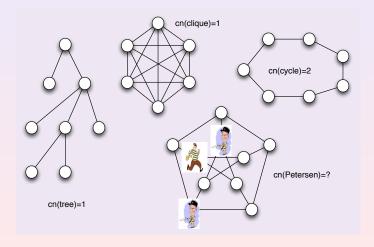


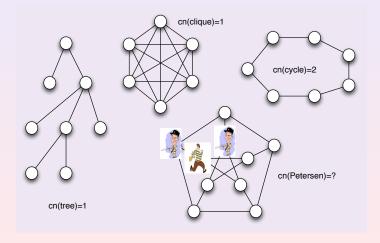


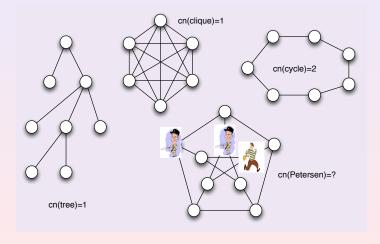


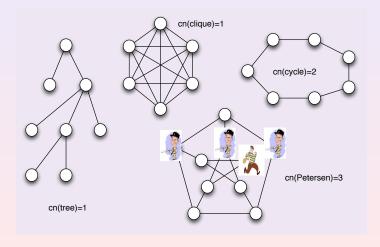












Meyniel Conjecture (1985): \forall connected *n*-node graph G, $cn(G) = O(\sqrt{n})$

True in many graph classes	cn		
dominating set $\leq k$	$\leq k$	[folklore]	
$treewidth \leq t$	$\leq t/2+1$	[Joret, Kaminski,Theis 09]	
chordality $\leq k$	< <i>k</i>	[Kosowski,Li,N.,Suchan 12]	
genus $\leq g$	$\leq \lfloor \frac{3g}{2} \rfloor + 3$	(Conjecture $\leq g+3$) [Schröder, 01]	
planar graphs	≤ 3	[Aigner,Fromme, 84]	
grids	= 2	[folklore]	
H-minor free	$\leq E(H) $	[Andreae, 86]	
$degeneracy \leq d$	$\leq d$	[Lu,Peng 12]	
diameter 2	$O(\sqrt{n})$	_	
bipartite diameter 3	$O(\sqrt{n})$	_	
Erdös-Réyni graphs	$O(\sqrt{n})$	[Bollobas et al. 08] [Luczak, Pralat 10]	
Power law	$O(\sqrt{n})$	[Bonato,Pralat,Wang 07]	

Meyniel Conjecture (1985): \forall connected *n*-node graph G, $cn(G) = O(\sqrt{n})$

True in many graph classes	cn	
dominating set $\leq k$	$\leq k$	[folklore]
$treewidth \leq t$	$\leq t/2+1$	[Joret, Kaminski,Theis 09]
chordality $\leq k$	< <i>k</i>	[Kosowski,Li,N.,Suchan 12]
$genus \leq g$	$\leq \lfloor \frac{3g}{2} \rfloor + 3$	(Conjecture $\leq g+3$) [Schröder, 01]
planar graphs	≤ 3	[Aigner,Fromme, 84]
grids	= 2	[folklore]
H-minor free	$\leq E(H) $	[Andreae, 86]
$degeneracy \leq d$	$\leq d$	[Lu,Peng 12]
diameter 2	$O(\sqrt{n})$	_
bipartite diameter 3	$O(\sqrt{n})$	_
Erdös-Réyni graphs	$O(\sqrt{n})$	[Bollobas et al. 08] [Luczak, Pralat 10]
Power law	$O(\sqrt{n})$	[Bonato,Pralat,Wang 07]

Currently known best general upper bound...

•
$$cn(G) = O(\frac{n}{2^{(1-o(1))\sqrt{\log n}}})$$

[Scott, Sudakov 11, Lu,Peng 12]

note that
$$\frac{n}{2^{(1-o(1))\sqrt{\log n}}} \geq n^{1-\epsilon}$$
 for any $\epsilon > 0$

5/16

To tackle Meyniel's conjecture: new variants have been defined.

When the Robber can run

[Fomin, Golovach, Kratochvil, N., Suchan'10]

New variant with speed: The Robber may move along several edges per turn $cn_s(G)$: min # of Cops to capture Robber with speed s > 1.

Meyniel Conjecture [Alon, Mehrabian'11] and general upper bound [Frieze,Krivelevich,Loh'12] extend to this variant

... but fundamental differences (recall: planar graphs have $\mathit{cn}_1 \leq$

 $\mathit{cn}_2(G)$ unbounded in grids [Fomin, Golovach, Kratochvil, N., Suchan' 10]

 $\Omega(\sqrt{\log n}) \le c n_2(G_{n \times n}) \le O(n)$ in $n \times n$ grid $G_{n \times n}$

Open question: exact value of $cn_2(G_{n\times n})$?

To tackle Meyniel's conjecture: new variants have been defined.

When the Robber can run

[Fomin, Golovach, Kratochvil, N., Suchan'10]

New variant with speed: The Robber may move along several edges per turn $cn_s(G)$: min # of Cops to capture Robber with speed $s \ge 1$.

Meyniel Conjecture [Alon, Mehrabian'11] and general upper bound [Frieze,Krivelevich,Loh'12] extend to this variant

... but fundamental differences (recall: planar graphs have $cn_1 \le 3$) $cn_2(G)$ unbounded in grids [Fomin,Golovach,Kratochvil,N.,Suchan'10]

 $\Omega(\sqrt{\log n}) \le cn_2(G_{n \times n}) \le O(n) \text{ in } n \times n \text{ grid } G_{n \times n}$

Open question: exact value of $cn_2(G_{n\times n})$?

To tackle Meyniel's conjecture: new variants have been defined.

When the Robber can run

[Fomin, Golovach, Kratochvil, N., Suchan'10]

New variant with speed: The Robber may move along several edges per turn $cn_s(G)$: min # of Cops to capture Robber with speed $s \ge 1$.

Meyniel Conjecture [Alon, Mehrabian'11] and general upper bound [Frieze,Krivelevich,Loh'12] extend to this variant

... but fundamental differences

(recall: planar graphs have $cn_1 \leq 3$)

 $cn_2(G)$ unbounded in grids

 $[{\sf Fomin}, {\sf Golovach}, {\sf Kratochvil}, {\sf N., Suchan'10}]$

 $\Omega(\sqrt{\log n}) \le cn_2(G_{n \times n}) \le O(n)$ in $n \times n$ grid $G_{n \times n}$

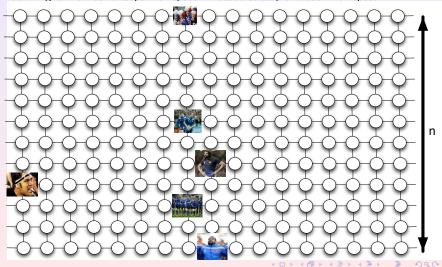
Open question: exact value of $cn_2(G_{n\times n})$?

More simple (?) question:

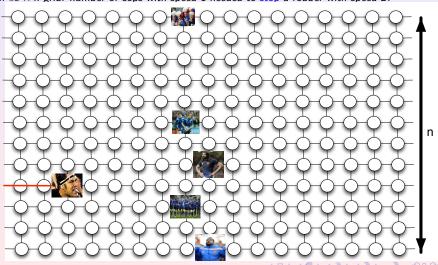
In $\infty \times n$ -grid: number of cops with speed 1 needed to stop a robber with speed 2?

7/16

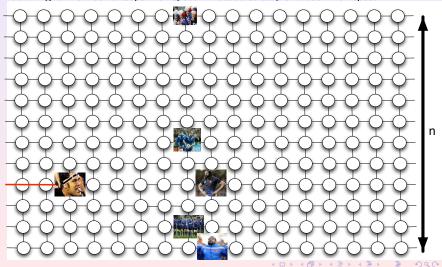
More simple (?) question:



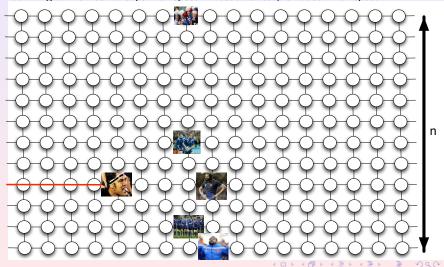
More simple (?) question:



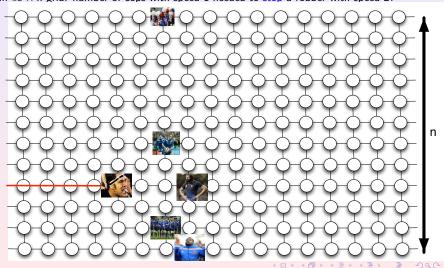
More simple (?) question:



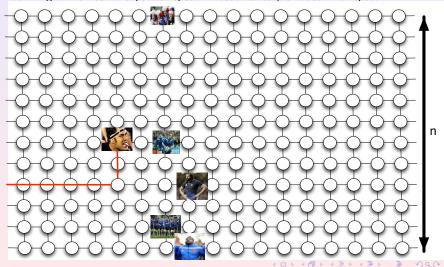
More simple (?) question:



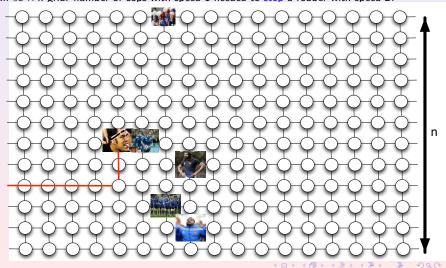
More simple (?) question:



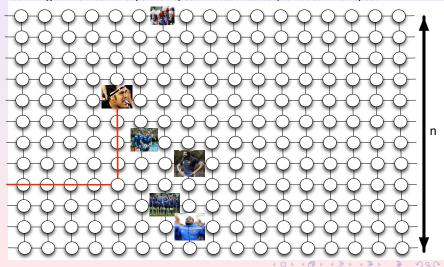
More simple (?) question:



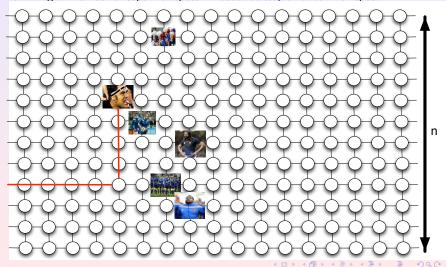
More simple (?) question:



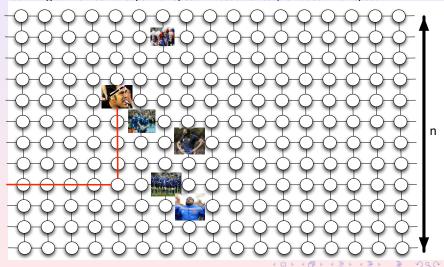
More simple (?) question:



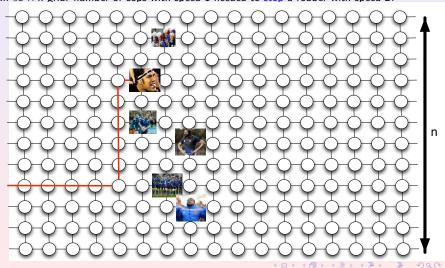
More simple (?) question:



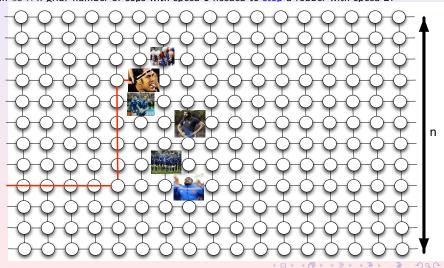
More simple (?) question:



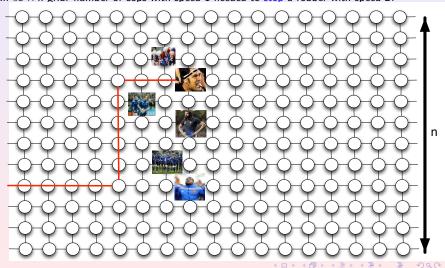
More simple (?) question:



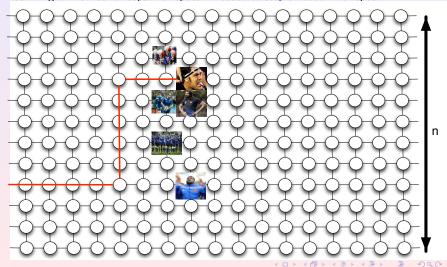
More simple (?) question:



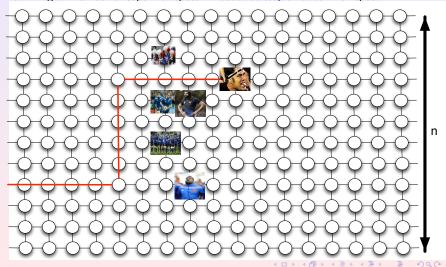
More simple (?) question:



More simple (?) question:

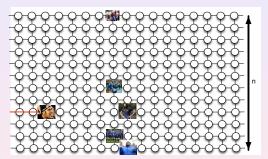


More simple (?) question:



More simple (?) question:

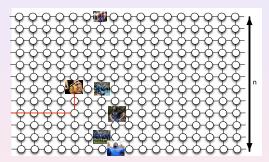
In $\infty \times n$ -grid: number of cops with speed 1 needed to stop a robber with speed 2?



Project the whole game on One column

More simple (?) question:

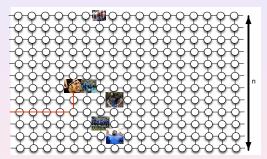
In $\infty \times n$ -grid: number of cops with speed 1 needed to stop a robber with speed 2?

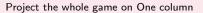


Project the whole game on One column

More simple (?) question:

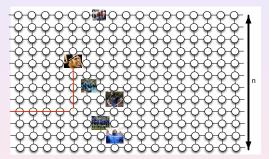
In $\infty \times n$ -grid: number of cops with speed 1 needed to stop a robber with speed 2?



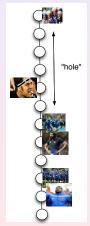


More simple (?) question:

In $\infty \times n$ -grid: number of cops with speed 1 needed to stop a robber with speed 2?

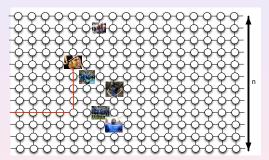


Project the whole game on One column



More simple (?) question:

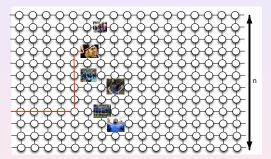
In $\infty \times n$ -grid: number of cops with speed 1 needed to stop a robber with speed 2?



Project the whole game on One column

More simple (?) question:

In $\infty \times n$ -grid: number of cops with speed 1 needed to stop a robber with speed 2?



Project the whole game on One column

Rules of the Spy game

Place the Spy on one node

- Place the Spy on one node
- 2 Place k guards on nodes (here k = 3) (may occupy same nodes)

- Place the Spy on one node
- 2 Place k guards on nodes (here k = 3) (may occupy same nodes)
- 3 Turn by turn (1) Spy moves along $\leq s$ edges (here s = 2)

- Place the Spy on one node
- Place k guards on nodes (here k = 3) (may occupy same nodes)
- Turn by turn
 - (1) Spy moves along $\leq s$ edges (here s = 2)
 - (2) Guards slide along < 1 edge

- Place the Spy on one node
- 2 Place k guards on nodes (here k = 3) (may occupy same nodes)
- Turn by turn
 - (1) Spy moves along $\leq s$ edges (here s = 2)
 - (2) Guards slide along < 1 edge

- Place the Spy on one node
- 2 Place k guards on nodes (here k = 3) (may occupy same nodes)
- Turn by turn
 - (1) Spy moves along $\leq s$ edges (here s = 2)
 - (2) Guards slide along < 1 edge

Rules of the Spy game

- Place the Spy on one node
- 2 Place k guards on nodes (here k = 3) (may occupy same nodes)
- 3 Turn by turn (1) Spy moves along $\leq s$ edges (here s = 2)
 - (2) Guards slide along ≤ 1 edge

Goal of the Spy game

- Spy must reach a node at distance > d from all cops (after Guards' moves)
- Guards must always "control" the Spy at distance < d

Rules of the Spy game

- Place the Spy on one node
- 2 Place k guards on nodes (here k = 3) (may occupy same nodes)
- 3 Turn by turn (1) Spy moves along $\leq s$ edges (here s = 2)
 - (2) Guards slide along ≤ 1 edge

- Spy must reach a node at distance > d from all cops (after Guards' moves)
- Guards must always "control" the Spy at distance < d

Rules of the Spy game

- Place the Spy on one node
- 2 Place k guards on nodes (here k = 3) (may occupy same nodes)
- 3 Turn by turn (1) Spy moves along $\leq s$ edges (here s = 2)
 - (2) Guards slide along ≤ 1 edge

- Spy must reach a node at distance > d from all cops (after Guards' moves)
- Guards must always "control" the Spy at distance < d

Rules of the Spy game

- Place the Spy on one node
- 2 Place k guards on nodes (here k = 3) (may occupy same nodes)
- 3 Turn by turn (1) Spy moves along $\leq s$ edges (here s = 2)
 - (2) Guards slide along ≤ 1 edge

- Spy must reach a node at distance > d from all cops (after Guards' moves)
- Guards must always "control" the Spy at distance < d

Rules of the Spy game

- Place the Spy on one node
- 2 Place k guards on nodes (here k = 3) (may occupy same nodes)
- 3 Turn by turn (1) Spy moves along $\leq s$ edges (here s = 2)
 - (2) Guards slide along ≤ 1 edge

- Spy must reach a node at distance > d from all cops (after Guards' moves)
- Guards must always "control" the Spy at distance < d

Rules of the Spy game

- Place the Spy on one node
- 2 Place k guards on nodes (here k = 3) (may occupy same nodes)
- 3 Turn by turn (1) Spy moves along $\leq s$ edges (here s = 2)
 - (2) Guards slide along ≤ 1 edge

Goal of the Spy game

- Spy must reach a node at distance > d from all cops (after Guards' moves)
- Guards must always "control" the Spy at distance $\leq d$

 $gn_{s,d}(G)$: min # Guards to win in G $d_{s,k}(G)$: min distance s.t. k Guards win

Rules of the Spy game

- Place the Spy on one node
- 2 Place k guards on nodes (here k = 3) (may occupy same nodes)
- Turn by turn(1) Spy moves along ≤ s edges
 - (here s=2)
 - (2) Guards slide along ≤ 1 edge

Goal of the Spy game

- Spy must reach a node at distance > d from all cops (after Guards' moves)
- Guards must always "control" the Spy at distance ≤ d

 $gn_{s,d}(G)$: min # Guards to win in G $d_{s,k}(G)$: min distance s.t. k Guards win

- \Leftrightarrow Cops and Robber for s = 1, d = 0
- \Leftrightarrow Eternal Domination for $s = \infty$, d = 0

Complexity

• Computing $gn_{s,d}$ is NP-hard

- (reduction to Set Cover)
- ullet Computing $gn_{s,d}$ is PSPACE-hard in DAGs if Guards are placed first

Case of Paths and Cycles on *n* vertices

- Paths: $\left\lfloor \frac{n(s-1)}{2ks} \right\rfloor \leq d_{s,k}(P_n) \leq \left\lceil \frac{(n+1)(s-1)}{2ks} \right\rceil$
- Cycles: $\left| \frac{(n-1)(s-1)}{k(2s+2)-4} \right| \le d_{s,k}(C_n) \le \left| \frac{(n+1)(s-1)}{k(2s+2)-4} \right|$

Case of gride

of guards is super-linear in the side r

 $\exists \epsilon > 0$ such that $gn_{s,d}(G_{n \times n}) = \Omega(n^{1+\epsilon})$ in any $n \times n$ grid $G_{n \times n}$

Fractional relaxation of the game

Complexity

• Computing $gn_{s,d}$ is NP-hard

- (reduction to Set Cover)
- ullet Computing $gn_{s,d}$ is PSPACE-hard in DAGs if Guards are placed first

Case of Paths and Cycles on *n* vertices

- Paths: $\left| \frac{n(s-1)}{2ks} \right| \le d_{s,k}(P_n) \le \left[\frac{(n+1)(s-1)}{2ks} \right]$
- Cycles: $\left\lfloor \frac{(n-1)(s-1)}{k(2s+2)-4} \right\rfloor \le d_{s,k}(C_n) \le \left\lfloor \frac{(n+1)(s-1)}{k(2s+2)-4} \right\rfloor$

Case of grids: # of guards is super-linear in the side *n*

 $\exists \epsilon>0$ such that $gn_{s,d}(G_{n imes n})=\Omega(n^{1+\epsilon})$ in any n imes n grid $G_{n imes n}$

Fractional relaxation of the game

9/16

Complexity

• Computing $gn_{s,d}$ is NP-hard

- (reduction to Set Cover)
- ullet Computing $gn_{s,d}$ is PSPACE-hard in DAGs if Guards are placed first

Case of Paths and Cycles on n vertices

- Paths: $\left\lfloor \frac{n(s-1)}{2ks} \right\rfloor \leq d_{s,k}(P_n) \leq \left\lceil \frac{(n+1)(s-1)}{2ks} \right\rceil$
- Cycles: $\left\lfloor \frac{(n-1)(s-1)}{k(2s+2)-4} \right\rfloor \le d_{s,k}(C_n) \le \left\lfloor \frac{(n+1)(s-1)}{k(2s+2)-4} \right\rfloor$

Case of grids:

of guards is super-linear in the side n

 $\exists \epsilon > 0$ such that $gn_{s,d}(G_{n \times n}) = \Omega(n^{1+\epsilon})$ in any $n \times n$ grid $G_{n \times n}$ Fractional relaxation of the game

$$d_{s,k}(P_n) = \Theta(n \cdot \frac{s-1}{2ks})$$

Lower Bound: Spy starts from one end and runs!

$$d_{s,k}(P_n) = \Theta(n \cdot \frac{s-1}{2ks})$$

Lower Bound: Spy starts from one end and runs!

One guard at distance $\leq d$

$$d_{s,k}(P_n) = \Theta(n \cdot \frac{s-1}{2ks})$$

Lower Bound: Spy starts from one end and runs!

$$d_{s,k}(P_n) = \Theta(n \cdot \frac{s-1}{2ks})$$

Lower Bound: Spy starts from one end and runs!

$d_{s,k}(P_n) = \Theta(n \cdot \frac{s-1}{2ks})$

Lower Bound: Spy starts from one end and runs! One guard is "consumed" after 2d/(s-1) steps

$$d_{s,k}(P_n) = \Theta(n \cdot \frac{s-1}{2ks})$$

Lower Bound: Spy starts from one end and runs ! Another one at distance $\leq d$

$$d_{s,k}(P_n) = \Theta(n \cdot \frac{s-1}{2ks})$$

Lower Bound: Spy starts from one end and runs!

Hence, $n \leq k \cdot 2ds/(s-1)$

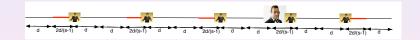
$$d_{s,k}(P_n) = \Theta(n \cdot \frac{s-1}{2ks})$$

Upper Bound: Each guard is assigned its own area of length $\leq 2ds/(s-1)$.

$$d_{s,k}(P_n) = \Theta(n \cdot \frac{s-1}{2ks})$$

Upper Bound: Each guard is assigned its own area of length $\leq 2ds/(s-1)$.

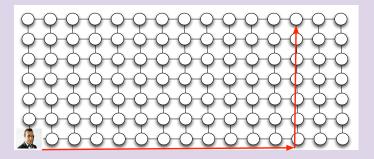
$$d_{s,k}(P_n) = \Theta(n \cdot \frac{s-1}{2ks})$$



Upper Bound: Each guard is assigned its own area of length $\leq 2ds/(s-1)$.

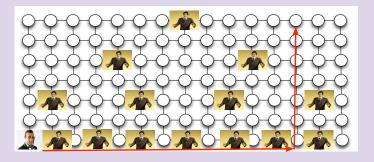
Lemma 1: $gn_{s,d}(G_{n\times n}) = \Omega(n \log n)$ in $n \times n$ grid

Consider only "L - strategies"



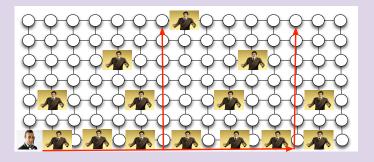
Lemma 1: $gn_{s,d}(G_{n\times n}) = \Omega(n\log n)$ in $n\times n$ grid

Consider only "L - strategies"



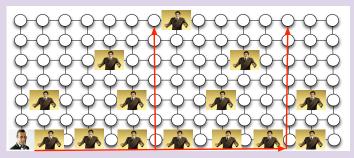
Lemma 1: $gn_{s,d}(G_{n\times n}) = \Omega(n\log n)$ in $n\times n$ grid

Consider only "L - strategies"



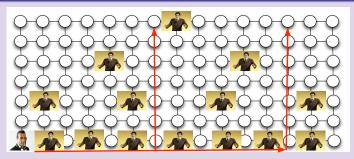
Lemma 1: $gn_{s,d}(G_{n\times n}) = \Omega(n \log n)$ in $n \times n$ grid

Consider only "L - strategies"



After at most O(n) steps: Spy far from $n \log n$ Guards

Lemma 1: $gn_{s,d}(G_{n\times n}) = \Omega(n \log n)$ in $n \times n$ grid



After at most O(n) steps: Spy far from $n \log n$ Guards

Not enough for the announced bound:

$$gn_{s,d}(G_{n\times n})=\Omega(n^{1+\epsilon})$$
 for some $\epsilon>0$

We would like to reduce guards "density" in order to recurse

Consider "fractional guards"

 $fg(v) \in \mathbb{R}^+$: amount of guard on vertex v

Total amount of guards

$$\sum_{v \in V(G)} fg(v)$$

Moves of guards

It is a flow!

Winning condition: control the Spy at each step

$$\sum_{v \in B(Spy,d)} fg(v) \geq 1$$

B(Spy, d): ball of radius d centered on the Spy

12/16

 $frac-gn_{s,d}(G)$: min amount of fractional guards required to win

Theorem: super-linear and sub-quadratic in grids

 $\exists \epsilon, \beta$ such that

$$\Omega(n^{1+\epsilon}) \leq \mathit{frac-gn}_{s,d}(G_{n \times n}) \leq O(n^{2-\beta}).$$

Clearly, frac- $gn_{s,d}(G) \leq gn_{s,d}(G)$ for any graph G

Corollary

 $gn_{s,d}(G_{n imes n})=\Omega(n^{1+\epsilon})$ for some $\epsilon>0$

 $frac-gn_{s,d}(G)$: min amount of fractional guards required to win

Theorem:

super-linear and sub-quadratic in grids

 $\exists \epsilon, \beta$ such that

$$\Omega(n^{1+\epsilon}) \leq \operatorname{frac-gn}_{s,d}(G_{n \times n}) \leq O(n^{2-\beta}).$$

Clearly, $frac-gn_{s,d}(G) \leq gn_{s,d}(G)$ for any graph G

Corollary

$$gn_{s,d}(G_{n\times n})=\Omega(n^{1+\epsilon})$$
 for some $\epsilon>0$

Theorem:

$$\exists \beta > 0$$
 such that $frac-gn_{s,d}(G_{n \times n}) \leq O(n^{2-\beta})$.

Goal: find such a strategy for the guards, i.e., define $fg_t(v)$: amount of cops on v at step t

Consider very simple strategy ime-independent + decreasing function of the distance $f\sigma(v) = \frac{1}{1-v^2}$

 $\operatorname{Ig}(V) = \frac{1}{\operatorname{dist}(V,\operatorname{Spy})^{\beta}}.$

main result (using flows and duality)

 $\exists \beta$ such that such a distribution of guards can be preserved whatever be the move of the spy

Theorem:

$$\exists \beta > 0$$
 such that $frac-gn_{s,d}(G_{n \times n}) \leq O(n^{2-\beta})$.

Goal: find such a strategy for the guards, i.e., define $fg_t(v)$: amount of cops on v at step t

"Trick":

Consider very simple strategy

time-independent + decreasing function of the distance

$$fg(v) = \frac{1}{dist(v, Spy)^{\beta}}.$$

main result (using flows and duality)

 $\exists \beta$ such that such a distribution of guards can be preserved whatever be the move of the spy

Theorem:

$$\exists \beta > 0$$
 such that $frac-gn_{s,d}(G_{n \times n}) \leq O(n^{2-\beta})$.

Goal: find such a strategy for the guards, i.e., define $fg_t(v)$: amount of cops on v at step t

"Trick":

Consider very simple strategy

time-independent + decreasing function of the distance

$$fg(v) = \frac{1}{dist(v, Spy)^{\beta}}.$$

main result (using flows and duality)

 $\exists \beta$ such that such a distribution of guards can be preserved whatever be the move of the spy

Lower bound

Theorem: $\exists \alpha > 0$ such that $\overline{\Omega(n^{1+\alpha})} \leq frac - gn_{s,d}(G_{n \times n})$.

Lower bound

Theorem: $\exists \alpha > 0$ such that $\Omega(n^{1+\alpha}) \leq frac - gn_{s,d}(G_{n \times n})$.

"Fractional version" of Lemma 1

Spy wins against $O(n \log n)$ of guards, in O(n) steps in a grid.

Theorem: $\exists \alpha > 0$ such that $\Omega(n^{1+\alpha}) \leq frac - gn_{s,d}(G_{n \times n})$.

"Fractional version" of Lemma 1

Spy wins against $O(n \log n)$ of guards, in O(n) steps in a grid.

Key "fractional Lemma"

If Spy wins vs. c guards in t steps \Rightarrow

 \forall strategy of k guards, \exists strategy for Spy s.t.

after t steps, at most k/c guards are at distance $\leq d$.

Theorem: $\exists \alpha > 0$ such that $\Omega(n^{1+\alpha}) \leq frac - gn_{s,d}(G_{n \times n})$.

"Fractional version" of Lemma 1

Spy wins against $O(n \log n)$ of guards, in O(n) steps in a grid.

Key "fractional Lemma"

If Spy wins vs. c guards in t steps \Rightarrow \forall strategy of k guards, \exists strategy for Spy s.t.

after t steps, at most k/c guards are at distance $\leq d$.

In fractional version, the density can be reduced!

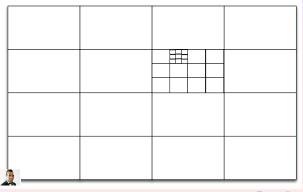
for $a \in \mathbb{N}^*$, after at most 2n steps against k guards, the amount of guards at distance $\leq 2n/a$ from the spy is $< k(aH(a))^{-1}$.

15/16

Lower bound

Theorem: $\exists \alpha > 0$ such that $\Omega(n^{1+\alpha}) \leq frac - gn_{s,d}(G_{n \times n})$.

In fractional version, the density can be reduced! ⇒ induction

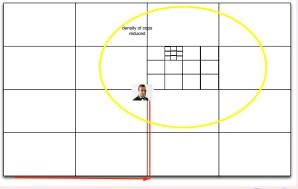


15/16

Lower bound

Theorem: $\exists \alpha > 0$ such that $\overline{\Omega(n^{1+\alpha})} \leq frac - gn_{s,d}(G_{n \times n})$.

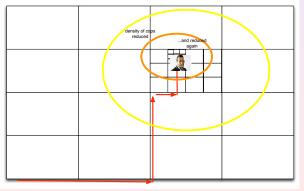
In fractional version, the density can be reduced! ⇒ induction



Lower bound

Theorem: $\exists \alpha > 0$ such that $\Omega(n^{1+\alpha}) \leq frac - gn_{s,d}(G_{n \times n})$.

In fractional version, the density can be reduced! ⇒ induction



Current Work / Open problems

On Cops and Robber games:

• Meyniel Conjecture [1985]:

```
For any n-node connected graph G, cn(G) = O(\sqrt{n})
```

• How many cops with speed 1 to capture a robber with speed 2 in a grid?

On Spy game:

- Complexity of computing $gn_{s,d}$? of computing $frac-gn_{s,d}$?
- actual value of $gn_{s,d}(G)$ in $n \times n$ grid G?

We know:
$$\exists \epsilon, \beta > 0$$
, $\Omega(n^{1+\epsilon}) \leq \mathit{frac-gn} \leq \mathit{gn} \leq O(n^2)$. $\mathit{frac-gn} \leq O(n^{2-\beta})$.

• other graph classes: trees, bounded treewidth...?

Current Work / Open problems

On Cops and Robber games:

• Meyniel Conjecture [1985]:

```
For any n-node connected graph G, cn(G) = O(\sqrt{n})
```

• How many cops with speed 1 to capture a robber with speed 2 in a grid?

On Spy game:

- Complexity of computing $gn_{s,d}$? of computing $frac-gn_{s,d}$?
- actual value of $gn_{s,d}(G)$ in $n \times n$ grid G?

We know:
$$\exists \epsilon, \beta > 0$$
, $\Omega(n^{1+\epsilon}) \leq \mathit{frac-gn} \leq \mathit{gn} \leq O(n^2)$. $\mathit{frac-gn} \leq O(n^{2-\beta})$.

• other graph classes: trees, bounded treewidth...?