Spy-Game on graphs

Nathann Cohen1 Mathieu Hilaire2 Nícolas A. Martins3 Nicolas Nisse4,5 Stéphane Pérennes5,4

1 CNRS, Univ Paris Sud, LRI, Orsay, France
2 ENS Cachan, France
3 Universidade Federal do Ceará, Fortaleza, Brazil
4 Inria, France
5 Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, Sophia Antipolis, France

Search Games: Theory and Algorithms

Leiden, Netherlands, June 28th, 2016
Many Two-player games in Graphs

Cops and Robber [Nowakowski and Winkler; Quilliot 1983]
A team of *Cops* attempts to capture one *Robber*

Angels and Devils [Conway 1996]
Angel moves on the graph, *Devil* blocks vertices

Eternal Domination [Burger *et al* 2004]
A team of *Defenders* protects nodes from one *Attacker*

Spy Game [this work]
A team of *Guards* attempts to stay close to the *Spy*
Many Two-player games in Graphs

Cops and Robber [Nowakowski and Winkler; Quilliot 1983]
A team of *Cops* attempts to capture one *Robber*

Angels and Devils [Conway 1996]
Angel moves on the graph, *Devil* blocks vertices

Eternel Domination [Burger et al 2004]
A team of *Defenders* protects nodes from one *Attacker*

Spy Game [this work]
A team of *Guards* attempts to stay close to the *Spy*
Motivations to define yet another game

Cops & Robber Games [Nowakowski and Winkler; Quilliot, 1983]

Rules of the $C&R$ game

Place

$k \geq 1$ Cops

C on nodes

Visible Robber

R at one node

Turn by turn (1) each C slides along ≤ 1 edge

(2) R slides along ≤ 1 edge

Goal of the $C&R$ game

Robber must avoid the Cops

Cops must capture Robber (i.e., occupy the same node)

Cop Number of a graph G

$cn(G)$: min # Cops to win in G
Motivations to define yet another game

Cops & Robber Games [Nowakowski and Winkler; Quilliot, 1983]

Rules of the C&R game

1. Place $k \geq 1$ Cops C on nodes
Motivations to define yet another game

Cops & Robber Games [Nowakowski and Winkler; Quilliot, 1983]

Rules of the C&R game
1. Place $k \geq 1$ Cops C on nodes
2. Visible Robber R at one node
Motivations to define yet another game

Cops & Robber Games [Nowakowski and Winkler; Quilliot, 1983]

Rules of the \(C&\mathcal{R}\) game

1. Place \(k \geq 1\) Cops \(C\) on nodes
2. Visible Robber \(\mathcal{R}\) at one node
3. Turn by turn
 (1) each \(C\) slides along \(\leq 1\) edge
Motivations to define yet another game

Cops & Robber Games [Nowakowski and Winkler; Quilliot, 1983]

Rules of the $C&R$ game

1. Place $k \geq 1$ Cops C on nodes
2. Visible Robber R at one node
3. Turn by turn
 (1) each C slides along ≤ 1 edge
 (2) R slides along ≤ 1 edge
Motivations to define yet another game

Cops & Robber Games [Nowakowski and Winkler; Quilliot, 1983]

Rules of the $C\&R$ game

1. Place $k \geq 1$ Cops C on nodes
2. Visible Robber R at one node
3. Turn by turn
 (1) each C slides along ≤ 1 edge
 (2) R slides along ≤ 1 edge
Motivations to define yet another game

Cops & Robber Games [Nowakowski and Winkler; Quilliot, 1983]

Rules of the $C&R$ game

1. Place $k \geq 1$ Cops C on nodes
2. Visible Robber R at one node
3. Turn by turn
 (1) each C slides along ≤ 1 edge
 (2) R slides along ≤ 1 edge

Goal of the $C&R$ game

- Robber must avoid the Cops
Motivations to define yet another game

Cops & Robber Games [Nowakowski and Winkler; Quilliot, 1983]

Rules of the C&R game
1. Place $k \geq 1$ Cops C on nodes
2. Visible Robber R at one node
3. Turn by turn
 (1) each C slides along ≤ 1 edge
 (2) R slides along ≤ 1 edge

Goal of the C&R game
- Robber must avoid the Cops
- Cops must capture Robber (i.e., occupy the same node)
Motivations to define yet another game

Cops & Robber Games [Nowakowski and Winkler; Quilliot, 1983]

Rules of the C&R game
1. Place $k \geq 1$ Cops C on nodes
2. Visible Robber R at one node
3. Turn by turn
 (1) each C slides along ≤ 1 edge
 (2) R slides along ≤ 1 edge

Goal of the C&R game
- Robber must avoid the Cops
- Cops must capture Robber (i.e., occupy the same node)

Cop Number of a graph G
$cn(G)$: min # Cops to win in G
Motivations to define yet another game

Let’s play a bit
Motivations to define yet another game

Let’s play a bit

Cohen et al
Spy-Game on graphs
Motivations to define yet another game

Let’s play a bit
Motivations to define yet another game

Let’s play a bit
Motivations to define yet another game

Let’s play a bit

Spy-Game on graphs
Motivations to define yet another game

Let’s play a bit
Motivations to define yet another game

Let’s play a bit

cn(tree)=1
Motivations to define yet another game

Let’s play a bit

- cn(tree) = 1
- cn(clique) = ?
- cn(cycle) = ?
- cn(Petersen) = ?
Motivations to define yet another game

Let’s play a bit

\[
\begin{align*}
cn(\text{tree}) &= 1 \\
cn(\text{clique}) &= ? \\
cn(\text{cycle}) &= ? \\
cn(\text{Petersen}) &= ?
\end{align*}
\]
Motivations to define yet another game

Let’s play a bit

- $cn(\text{tree}) = 1$
- $cn(\text{clique}) = ?$
- $cn(\text{cycle}) = ?$
- $cn(\text{Petersen}) = ?$
Motivations to define yet another game

Let’s play a bit

c_{\text{tree}} = 1

\begin{align*}
c_{\text{clique}} &= 1 \\
c_{\text{cycle}} &= ? \\
c_{\text{Petersen}} &= ?
\end{align*}
Motivations to define yet another game

Let’s play a bit

cn(tree) = 1

cn(clique) = 1

cn(cycle) = ?

cn(Petersen) = ?
Motivations to define yet another game

Let’s play a bit

- cn(tree) = 1
- cn(clique) = 1
- cn(cycle) = ?
- cn(Petersen) = ?

Spy-Game on graphs
Motivations to define yet another game

Let’s play a bit

cn(tree) = 1

cn(clique) = 1

Question marks indicate unknown values.

Cohen et al.
Spy-Game on graphs
Motivations to define yet another game

Let’s play a bit

cn(tree) = 1

cn(clique) = 1

cn(cycle) = ?

cn(Petersen) = ?

Cohen et al. Spy-Game on graphs
Motivations to define yet another game

Let’s play a bit

- cn(tree) = 1
- cn(clique) = 1
- cn(cycle) = ?
- cn(Petersen) = ?
Motivations to define yet another game

Let’s play a bit

- cn(tree) = 1
- cn(clique) = 1
- cn(cycle) = ?
- cn(Petersen) = ?
Motivations to define yet another game

Let’s play a bit

- cn(tree) = 1
- cn(clique) = 1
- cn(cycle) = 2
- cn(Petersen) = ?
Motivations to define yet another game

Let’s play a bit

- cn(tree) = 1
- cn(clique) = 1
- cn(cycle) = 2
- cn(Petersen) = ?
Motivations to define yet another game

Let’s play a bit

\[
\begin{align*}
\text{cn}(\text{tree}) &= 1 \\
\text{cn}(\text{clique}) &= 1 \\
\text{cn}(\text{cycle}) &= 2 \\
\text{cn}(\text{Petersen}) &= ?
\end{align*}
\]
Motivations to define yet another game

Let’s play a bit

cn(tree) = 1

cn(clique) = 1

cn(cycle) = 2

cn(Petersen) = ?
Motivations to define yet another game

Let’s play a bit

\[
\begin{align*}
\text{cn(tree)} &= 1 \\
\text{cn(clique)} &= 1 \\
\text{cn(cycle)} &= 2 \\
\text{cn(Petersen)} &= ?
\end{align*}
\]
Motivations to define yet another game

Let’s play a bit

cn(tree)=1
cn(clique)=1
cn(cycle)=2

cn(Petersen)=?
Motivations to define yet another game

Let’s play a bit

- **cn(tree) = 1**
- **cn(clique) = 1**
- **cn(cycle) = 2**
- **cn(Petersen) = 3**
Motivations to define yet another game

Meyniel Conjecture (1985): \(\forall \) connected \(n \)-node graph \(G \), \(cn(G) = O(\sqrt{n}) \)
Motivations to define yet another game

Meyniel Conjecture (1985): \(\forall \) connected \(n \)-node graph \(G \), \(cn(G) = O(\sqrt{n}) \)

<table>
<thead>
<tr>
<th>True in many graph classes</th>
<th>(cn)</th>
<th>[\text{folklore}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>dominating set (\leq k)</td>
<td>(\leq k)</td>
<td>[Joret, Kaminski, Theis 09]</td>
</tr>
<tr>
<td>treewidth (\leq t)</td>
<td>(\leq t/2 + 1)</td>
<td>[Joret, Kaminski, Theis 09]</td>
</tr>
<tr>
<td>chordality (\leq k)</td>
<td>(\leq k)</td>
<td>[Kosowski, Li, N., Suchan 12]</td>
</tr>
<tr>
<td>genus (\leq g)</td>
<td>(\leq \lfloor \frac{3g}{2} \rfloor + 3)</td>
<td>((\text{Conjecture} \leq g + 3)) [Schröder, 01]</td>
</tr>
<tr>
<td>planar graphs</td>
<td>(\leq 3)</td>
<td>[Aigner, Fromme, 84]</td>
</tr>
<tr>
<td>grids</td>
<td>(= 2)</td>
<td>[folklore]</td>
</tr>
<tr>
<td>(H)-minor free</td>
<td>(\leq</td>
<td>E(H)</td>
</tr>
<tr>
<td>degeneracy (\leq d)</td>
<td>(\leq d)</td>
<td>[Lu, Peng 12]</td>
</tr>
<tr>
<td>diameter 2</td>
<td>(O(\sqrt{n}))</td>
<td>[Bollobás et al. 08]</td>
</tr>
<tr>
<td>bipartite diameter 3</td>
<td>(O(\sqrt{n}))</td>
<td>[Luczak, Pralat 10]</td>
</tr>
<tr>
<td>Erdös-Rényi graphs</td>
<td>(O(\sqrt{n}))</td>
<td>[Bonato, Pralat, Wang 07]</td>
</tr>
<tr>
<td>Power law</td>
<td>(O(\sqrt{n}))</td>
<td>[]</td>
</tr>
</tbody>
</table>
Motivations to define yet another game

Meyniel Conjecture (1985): \(\forall \) connected \(n \)-node graph \(G \), \(cn(G) = O(\sqrt{n}) \)

<table>
<thead>
<tr>
<th>True in many graph classes</th>
<th>(cn)</th>
<th>([\text{folklore}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{dominating set} \leq k)</td>
<td>(\leq k)</td>
<td>([\text{folklore}])</td>
</tr>
<tr>
<td>(\text{treewidth} \leq t)</td>
<td>(\leq t/2 + 1)</td>
<td>([\text{Joret, Kaminski, Theis 09}])</td>
</tr>
<tr>
<td>(\text{chordality} \leq k)</td>
<td>(< k)</td>
<td>([\text{Kosowski, Li, N., Suchan 12}])</td>
</tr>
<tr>
<td>(\text{genus} \leq g)</td>
<td>(\leq \left\lfloor \frac{3g}{2} \right\rfloor + 3)</td>
<td>((\text{Conjecture} \leq g + 3) \ [\text{Schröder, 01}])</td>
</tr>
<tr>
<td>(\text{planar graphs})</td>
<td>(\leq 3)</td>
<td>([\text{Aigner, Fromme, 84}])</td>
</tr>
<tr>
<td>(\text{grids})</td>
<td>(= 2)</td>
<td>([\text{folklore}])</td>
</tr>
<tr>
<td>(\text{(H)-minor free})</td>
<td>(\leq</td>
<td>E(H)</td>
</tr>
<tr>
<td>(\text{degeneracy} \leq d)</td>
<td>(\leq d)</td>
<td>([\text{Lu, Peng 12}])</td>
</tr>
<tr>
<td>(\text{diameter} 2)</td>
<td>(O(\sqrt{n}))</td>
<td>(-)</td>
</tr>
<tr>
<td>(\text{bipartite diameter} 3)</td>
<td>(O(\sqrt{n}))</td>
<td>(-)</td>
</tr>
<tr>
<td>(\text{Erdös-Rényi graphs})</td>
<td>(O(\sqrt{n}))</td>
<td>([\text{Bollobás et al. 08}])</td>
</tr>
<tr>
<td>(\text{Power law})</td>
<td>(O(\sqrt{n}))</td>
<td>([\text{Luczak, Pralat 10}])</td>
</tr>
</tbody>
</table>

Currently known best general upper bound...

\[cn(G) = O(\frac{n}{2^{(1-o(1))}\sqrt{\log n}}) \]

[Scott, Sudakov 11, Lu, Peng 12]

Note that \(\frac{n}{2^{(1-o(1))}\sqrt{\log n}} \geq n^{1-\epsilon} \) for any \(\epsilon > 0 \)
Motivations to define yet another game

To tackle Meyniel’s conjecture: new variants have been defined.

When the Robber can run [Fomin,Golovach,Kratochvil,N.,Suchan’10]

New variant with speed: The Robber may move along several edges per turn

\[cn_s(G) : \text{min } \# \text{ of Cops to capture Robber with speed } s \geq 1. \]

Meyniel Conjecture [Alon, Mehrabian’11] and general upper bound [Frieze,Krivelevich,Loh’12] extend to this variant

... but fundamental differences (recall: planar graphs have \(cn_1 < 3 \))

\(cn_2(G) \) unbounded in grids [Fomin,Golovach,Kratochvil,N.,Suchan’10]

\[\Omega(\sqrt{\log n}) \leq cn_2(G_{n \times n}) \leq O(n) \text{ in } n \times n \text{ grid } G_{n \times n} \]

Open question: exact value of \(cn_2(G_{n \times n}) \)?
Motivations to define yet another game

To tackle Meyniel’s conjecture: new variants have been defined.

When the Robber can run

[Fomin, Golovach, Kratochvil, N., Suchan’10]

New variant with speed: The Robber may move along several edges per turn

\(cn_s(G) \): min \# of Cops to capture Robber with speed \(s \geq 1 \).

Meyniel Conjecture [Alon, Mehrabian’11] and general upper bound [Frieze, Krivelevich, Loh’12] extend to this variant

... but fundamental differences (recall: planar graphs have \(cn_1 \leq 3 \))

\(cn_2(G) \) unbounded in grids

[Fomin, Golovach, Kratochvil, N., Suchan’10]

\[\Omega(\sqrt{\log n}) \leq cn_2(G_{n \times n}) \leq O(n) \text{ in } n \times n \text{ grid } G_{n \times n} \]

Open question: exact value of \(cn_2(G_{n \times n}) \)?
Motivations to define yet another game

To tackle Meyniel’s conjecture: new variants have been defined.

When the Robber can run

New variant with speed: The Robber may move along several edges per turn

\[cn_s(G) \]: min \# of Cops to capture Robber with speed \(s \geq 1 \).

Meyniel Conjecture [Alon, Mehrabian’11] and general upper bound [Frieze,Krivelevich,Loh’12] extend to this variant

... but fundamental differences (recall: planar graphs have \(cn_1 \leq 3 \))

\(cn_2(G) \) unbounded in grids [Fomin,Golovach,Kratochvil,N.,Suchan’10]

\[\Omega(\sqrt{\log n}) \leq cn_2(G_{n\times n}) \leq O(n) \] in \(n \times n \) grid \(G_{n\times n} \)

Open question: exact value of \(cn_2(G_{n\times n}) \) ?
Motivations to define yet another game: Rugby!

More simple (?) question:
In $\infty \times n$-grid: number of cops with speed 1 needed to stop a robber with speed 2?
More simple (?) question:
In \(\infty \times n \)-grid: number of cops with speed 1 needed to stop a robber with speed 2?
Motivations to define yet another game: Rugby!

More simple (?) question:
In $\infty \times n$-grid: number of cops with speed 1 needed to stop a robber with speed 2?
Motivations to define yet another game: Rugby!

More simple (?) question:
In $\infty \times n$-grid: number of cops with speed 1 needed to stop a robber with speed 2?
Motivations to define yet another game: Rugby!

More simple (?) question:
In $\infty \times n$-grid: number of cops with speed 1 needed to stop a robber with speed 2?
Motivations to define yet another game: Rugby!

More simple (?) question:
In $\infty \times n$-grid: number of cops with speed 1 needed to stop a robber with speed 2?
Motivations to define yet another game: Rugby!

More simple (?) question:
In $\infty \times n$-grid: number of cops with speed 1 needed to stop a robber with speed 2?
Motivations to define yet another game: Rugby!

More simple (?) question:
In $\infty \times n$-grid: number of cops with speed 1 needed to stop a robber with speed 2?
Motivations to define yet another game: Rugby!

More simple (?) question:
In $\infty \times n$-grid: number of cops with speed 1 needed to stop a robber with speed 2?
Motivations to define yet another game: Rugby!

More simple (?) question:
In $\infty \times n$-grid: number of cops with speed 1 needed to stop a robber with speed 2?
Motivations to define yet another game: Rugby!

More simple (?) question:
In $\infty \times n$-grid: number of cops with speed 1 needed to stop a robber with speed 2?
Motivations to define yet another game: Rugby!

More simple (?) question:
In $\infty \times n$-grid: number of cops with speed 1 needed to stop a robber with speed 2?
Motivations to define yet another game: Rugby!

More simple (?) question:
In $\infty \times n$-grid: number of cops with speed 1 needed to stop a robber with speed 2?
Motivations to define yet another game: Rugby!

More simple (?) question:
In $\infty \times n$-grid: number of cops with speed 1 needed to stop a robber with speed 2?
Motivations to define yet another game: Rugby!

More simple (?) question:
In $\infty \times n$-grid: number of cops with speed 1 needed to stop a robber with speed 2?
Motivations to define yet another game: Rugby!

More simple (?) question:
In $\infty \times n$-grid: number of cops with speed 1 needed to stop a robber with speed 2?
Motivations to define yet another game: Rugby!

More simple (?) question:
In $\infty \times n$-grid: number of cops with speed 1 needed to stop a robber with speed 2?

Project the whole game on One column
Goal of Robber: go far to all cops
"Find a hole"
Motivations to define yet another game: Rugby!

More simple (?) question:
In $\infty \times n$-grid: number of cops with speed 1 needed to stop a robber with speed 2?

Project the whole game on One column

Goal of Robber: go far to all cops
"Find a hole"
Motivations to define yet another game: Rugby!

More simple (?) question:
In $\infty \times n$-grid: number of cops with speed 1 needed to stop a robber with speed 2?

Project the whole game on One column

Goal of Robber: go far to all cops
"Find a hole"
Motivations to define yet another game: Rugby!

More simple (?) question:
In $\infty \times n$-grid: number of cops with speed 1 needed to stop a robber with speed 2?

Project the whole game on One column

Goal of Robber: go far to all cops
"Find a hole"
Motivations to define yet another game: Rugby!

More simple (?) question:
In $\infty \times n$-grid: number of cops with speed 1 needed to stop a robber with speed 2?

Project the whole game on One column

Goal of Robber: go far to all cops
"Find a hole"
Motivations to define yet another game: Rugby!

More simple (?) question:
In $\infty \times n$-grid: number of cops with speed 1 needed to stop a robber with speed 2?

Project the whole game on One column

Goal of Robber: go far to all cops
"Find a hole"
Spy Game in graphs

Rules of the Spy game

1. Place the Spy on one node
2. Place k guards on nodes (here $k = 3$) (may occupy same nodes)
3. Turn by turn
 (1) Spy moves along $\leq s$ edges (here $s = 2$)
 (2) Guards slide along ≤ 1 edge

Goal of the Spy game
Spy must reach a node at distance $> d$ from all cops (after Guards' moves)

Guards must always "control" the Spy at distance $\leq d$
Spy Game in graphs

Rules of the Spy game

1. Place the Spy on one node

Place \(k \) guards on nodes (here \(k = 3 \))

Turn by turn (1) Spy moves along \(\leq s \) edges (here \(s = 2 \))
(2) Guards slide along \(\leq 1 \) edge

Goal of the Spy game
Spy must reach a node at distance \(> d \) from all cops (after Guards' moves)
Guards must always "control" the Spy at distance \(\leq d \)

\(g_n, d(G) \): min # Guards to win in \(G \)
\(d(G), k \): min distance s.t. \(k \) Guards win

\(\iff \) Cops and Robber for \(s = 1, d = 0 \)
\(\iff \) Eternal Domination for \(s = \infty, d = 0 \)
Spy Game in graphs

Rules of the Spy game

1. Place the Spy on one node
2. Place k guards on nodes (here $k = 3$) (may occupy same nodes)
Spy Game in graphs

Rules of the Spy game

1. Place the Spy on one node
2. Place k guards on nodes (here $k = 3$) (may occupy same nodes)
3. Turn by turn
 (1) Spy moves along $\leq s$ edges
 (here $s = 2$)
Spy Game in graphs

Rules of the Spy game

1. Place the Spy on one node
2. Place k guards on nodes (here $k = 3$) (may occupy same nodes)
3. Turn by turn
 (1) Spy moves along $\leq s$ edges (here $s = 2$)
 (2) Guards slide along ≤ 1 edge
Spy Game in graphs

Rules of the Spy game

1. Place the Spy on one node
2. Place k guards on nodes (here $k = 3$) (may occupy same nodes)
3. Turn by turn
 (1) Spy moves along $\leq s$ edges (here $s = 2$)
 (2) Guards slide along ≤ 1 edge
Spy Game in graphs

Rules of the Spy game

1. Place the Spy on one node
2. Place k guards on nodes (here $k = 3$) (may occupy same nodes)
3. Turn by turn
 (1) Spy moves along $\leq s$ edges (here $s = 2$)
 (2) Guards slide along ≤ 1 edge
Spy Game in graphs

Rules of the Spy game

1. Place the Spy on one node
2. Place k guards on nodes (here $k = 3$) (may occupy same nodes)
3. Turn by turn
 (1) Spy moves along $\leq s$ edges (here $s = 2$)
 (2) Guards slide along ≤ 1 edge

Goal of the Spy game

- Spy must reach a node at distance $> d$ from all cops (after Guards’ moves)
- Guards must always “control” the Spy at distance $\leq d$
Spy Game in graphs

Rules of the Spy game

1. Place the Spy on one node
2. Place k guards on nodes (here $k = 3$) (may occupy same nodes)
3. Turn by turn
 (1) Spy moves along $\leq s$ edges (here $s = 2$)
 (2) Guards slide along ≤ 1 edge

Goal of the Spy game

- Spy must reach a node at distance $> d$ from all cops (after Guards’ moves)
- Guards must always “control” the Spy at distance $\leq d$
Spy Game in graphs

Rules of the Spy game

1. Place the Spy on one node
2. Place \(k \) guards on nodes (here \(k = 3 \)) (may occupy same nodes)
3. Turn by turn
 (1) Spy moves along \(\leq s \) edges (here \(s = 2 \))
 (2) Guards slide along \(\leq 1 \) edge

Goal of the Spy game

- Spy must reach a node at distance > \(d \) from all cops (after Guards’ moves)
- Guards must always “control” the Spy at distance \(\leq d \)
Spy Game in graphs

Rules of the Spy game

1. Place the Spy on one node
2. Place k guards on nodes (here $k = 3$) (may occupy same nodes)
3. Turn by turn
 (1) Spy moves along $\leq s$ edges (here $s = 2$)
 (2) Guards slide along ≤ 1 edge

Goal of the Spy game

- Spy must reach a node at distance $> d$ from all cops (after Guards’ moves)
- Guards must always “control” the Spy at distance $\leq d$
Spy Game in graphs

Rules of the Spy game

1. Place the Spy on one node
2. Place \(k \) guards on nodes (here \(k = 3 \)) (may occupy same nodes)
3. Turn by turn
 (1) Spy moves along \(\leq s \) edges (here \(s = 2 \))
 (2) Guards slide along \(\leq 1 \) edge

Goal of the Spy game

- Spy must reach a node at distance \(> d \) from all cops (after Guards’ moves)
- Guards must always “control” the Spy at distance \(\leq d \)
Spy Game in graphs

Rules of the Spy game

1. Place the Spy on one node
2. Place k guards on nodes (here $k = 3$) (may occupy same nodes)
3. Turn by turn
 (1) Spy moves along $\leq s$ edges (here $s = 2$)
 (2) Guards slide along ≤ 1 edge

Goal of the Spy game

- Spy must reach a node at distance $> d$ from all cops (after Guards’ moves)
- Guards must always “control” the Spy at distance $\leq d$

$gn_{s,d}(G)$: min # Guards to win in G

$d_{s,k}(G)$: min distance s.t. k Guards win
Spy Game in graphs

Rules of the Spy game

1. Place the Spy on one node
2. Place k guards on nodes (here $k = 3$) (may occupy same nodes)
3. Turn by turn
 (1) Spy moves along $\leq s$ edges (here $s = 2$)
 (2) Guards slide along ≤ 1 edge

Goal of the Spy game

- Spy must reach a node at distance $> d$ from all cops (after Guards’ moves)
- Guards must always “control” the Spy at distance $\leq d$

$gn_{s,d}(G)$: min $\#$ Guards to win in G
$d_{s,k}(G)$: min distance s.t. k Guards win

\Leftrightarrow Cops and Robber for $s = 1$, $d = 0$
\Leftrightarrow Eternal Domination for $s = \infty$, $d = 0$
Spy Game in graphs

Results

Complexity

- Computing $g_{n_s,d}$ is NP-hard (reduction to Set Cover)
- Computing $g_{n_s,d}$ is PSPACE-hard in DAGs if Guards are placed first

Case of Paths and Cycles on n vertices

- Paths: $\left\lfloor \frac{n(s-1)}{2ks} \right\rfloor \leq d_{s,k}(P_n) \leq \left\lceil \frac{(n+1)(s-1)}{2ks} \right\rceil$
- Cycles: $\left\lfloor \frac{(n-1)(s-1)}{k(2s+2)-4} \right\rfloor \leq d_{s,k}(C_n) \leq \left\lceil \frac{(n+1)(s-1)}{k(2s+2)-4} \right\rceil$

Case of grids: # of guards is super-linear in the side n

$\exists \epsilon > 0$ such that $g_{n_s,d}(G_{n \times n}) = \Omega(n^{1+\epsilon})$ in any $n \times n$ grid $G_{n \times n}$

Fractional relaxation of the game

9/16
Spy Game in graphs

Complexity

- Computing $g_{n,s,d}$ is NP-hard (reduction to Set Cover)
- Computing $g_{n,s,d}$ is PSPACE-hard in DAGs if Guards are placed first

Case of Paths and Cycles on n vertices

- Paths: $\left\lceil \frac{n(s-1)}{2ks} \right\rceil \leq d_{s,k}(P_n) \leq \left\lceil \frac{(n+1)(s-1)}{2ks} \right\rceil$
- Cycles: $\left\lceil \frac{(n-1)(s-1)}{k(2s+2)-4} \right\rceil \leq d_{s,k}(C_n) \leq \left\lceil \frac{(n+1)(s-1)}{k(2s+2)-4} \right\rceil$

Case of grids: # of guards is super-linear in the side n

$\exists \epsilon > 0$ such that $g_{n,s,d}(G_{n \times n}) = \Omega(n^{1+\epsilon})$ in any $n \times n$ grid $G_{n \times n}$

Fractional relaxation of the game

Cohen et al: Spy-Game on graphs
Spy Game in graphs

Results

Complexity

- Computing $g_{n,s,d}$ is NP-hard (reduction to Set Cover)
- Computing $g_{n,s,d}$ is PSPACE-hard in DAGs if Guards are placed first

Case of Paths and Cycles on n vertices

- Paths: $\left\lfloor \frac{n(s-1)}{2ks} \right\rfloor \leq d_{s,k}(P_n) \leq \left\lceil \frac{(n+1)(s-1)}{2ks} \right\rceil$
- Cycles: $\left\lfloor \frac{(n-1)(s-1)}{k(2s+2)-4} \right\rfloor \leq d_{s,k}(C_n) \leq \left\lceil \frac{(n+1)(s-1)}{k(2s+2)-4} \right\rceil$

Case of grids:

- # of guards is super-linear in the side n
 - $\exists \epsilon > 0$ such that $g_{n,s,d}(G_{n \times n}) = \Omega(n^{1+\epsilon})$ in any $n \times n$ grid $G_{n \times n}$
 - Fractional relaxation of the game

Cohen et al
Spy-Game on graphs
The case of paths

\[d_{s,k}(P_n) = \Theta(n \cdot \frac{s-1}{2ks}) \]

Lower Bound: Spy starts from one end and runs!
The case of paths

\[d_{s,k}(P_n) = \Theta(n \cdot \frac{s-1}{2ks}) \]

Lower Bound: Spy starts from one end and runs! One guard at distance \(\leq d \)
The case of paths

\[d_{s,k}(P_n) = \Theta(n \cdot \frac{s-1}{2ks}) \]

Lower Bound: Spy starts from one end and runs!
The case of paths

\[d_{s,k}(P_n) = \Theta(n \cdot \frac{s-1}{2ks}) \]

Lower Bound: Spy starts from one end and runs!
The case of paths

\[d_{s,k}(P_n) = \Theta(n \cdot \frac{s-1}{2ks}) \]

Lower Bound: Spy starts from one end and runs! One guard is “consumed” after \(2d/(s-1)\) steps
The case of paths

\[d_{s,k}(P_n) = \Theta(n \cdot \frac{s-1}{2ks}) \]

Lower Bound: Spy starts from one end and runs! Another one at distance \(\leq d \)
The case of paths

$$d_{s,k}(P_n) = \Theta(n \cdot \frac{s-1}{2ks})$$

Lower Bound: Spy starts from one end and runs! Hence, $n \leq k \cdot 2ds/(s - 1)$
The case of paths

$$d_{s,k}(P_n) = \Theta(n \cdot \frac{s-1}{2ks})$$

Upper Bound: Each guard is assigned its own area of length $\leq \frac{2ds}{(s - 1)}$.
Upper Bound: Each guard is assigned its own area of length $\leq \frac{2ds}{(s - 1)}$.

$$d_{s,k}(P_n) = \Theta(n \cdot \frac{s-1}{2ks})$$
The case of paths

\[d_{s,k}(P_n) = \Theta(n \cdot \frac{s-1}{2ks}) \]

Upper Bound: Each guard is assigned its own area of length \(\leq \frac{2ds}{(s-1)} \).
Lemma 1: $g_{n,d}(G_{n \times n}) = \Omega(n \log n)$ in $n \times n$ grid

Consider only "L - strategies"
Lemma 1: $g_{n,s,d}(G_{n \times n}) = \Omega(n \log n)$ in $n \times n$ grid

Consider only "L - strategies"
Lemma 1: \(gn_{s,d}(G_{n \times n}) = \Omega(n \log n) \) in \(n \times n \) grid

Consider only "L - strategies"
Lemma 1: $gn_{s,d}(G_{n \times n}) = \Omega(n \log n)$ in $n \times n$ grid

Consider only "L - strategies"

After at most $O(n)$ steps: Spy far from $n \log n$ Guards
Case of Grids

Lemma 1: \(g_{s,d}(G_{n \times n}) = \Omega(n \log n) \) in \(n \times n \) grid

After at most \(O(n) \) steps: Spy far from \(n \log n \) Guards

Not enough for the announced bound:

\[
g_{s,d}(G_{n \times n}) = \Omega(n^{1+\epsilon}) \quad \text{for some } \epsilon > 0
\]

We would like to reduce guards “density” in order to recurse.
Consider “fractional guards”

$$fg(v) \in \mathbb{R}^+: \text{amount of guard on vertex } v$$

Total amount of guards

$$\sum_{v \in V(G)} fg(v)$$

Moves of guards

It is a flow!

Winning condition: control the Spy at each step

$$\sum_{v \in B(Spy, d)} fg(v) \geq 1$$

$B(Spy, d)$: ball of radius d centered on the Spy
Fractional Spy-Game

\(\frac{\text{gns}}{d}(G) \): min amount of fractional guards required to win

Theorem: super-linear and sub-quadratic in grids

\[\exists \epsilon, \beta \text{ such that } \Omega(n^{1+\epsilon}) \leq \frac{\text{gns}}{d}(G)_{n \times n} \leq O(n^{2-\beta}). \]

Clearly, \(\frac{\text{gns}}{d}(G) \leq \text{gns}(G) \) for any graph \(G \)

Corollary

\(\text{gns}(G)_{n \times n} = \Omega(n^{1+\epsilon}) \) for some \(\epsilon > 0 \)
Fractional Spy-Game

\(\text{frac-} gn_{s,d}(G) \): min amount of fractional guards required to win

Theorem: super-linear and sub-quadratic in grids

\[\exists \epsilon, \beta \text{ such that } \Omega(n^{1+\epsilon}) \leq \text{frac-} gn_{s,d}(G_{n \times n}) \leq O(n^{2-\beta}). \]

Clearly, \(\text{frac-} gn_{s,d}(G) \leq gn_{s,d}(G) \) for any graph \(G \)

Corollary

\(gn_{s,d}(G_{n \times n}) = \Omega(n^{1+\epsilon}) \) for some \(\epsilon > 0 \)
Theorem:

\[\exists \beta > 0 \text{ such that } \text{frac-}gn_{s,d}(G_n \times n) \leq O(n^{2-\beta}). \]

Goal: find such a strategy for the guards, i.e., define

\[fg_t(v) : \text{amount of cops on } v \text{ at step } t \]

"Trick": Consider very simple strategy
time-independent + decreasing function of the distance

\[fg(v) = \frac{1}{\text{dist}(v, \text{Spy})^\beta}. \]

main result (using flows and duality)

\[\exists \beta \text{ such that such a distribution of guards can be preserved} \]

whatever be the move of the spy
Fractional Spy-Game

Theorem:

\[\exists \beta > 0 \text{ such that } \frac{\text{frac}_s \cdot \text{gn}_d}{G_n \times n} \leq O(n^{2-\beta}). \]

Goal: find such a strategy for the guards, i.e., define

\[f_{gt}(v): \text{amount of cops on } v \text{ at step } t \]

“Trick”:

Consider very simple strategy

\[f_g(v) = \frac{1}{\text{dist}(v, \text{Spy})^\beta}. \]

main result (using flows and duality)

\[\exists \beta \text{ such that such a distribution of guards can be preserved whatever be the move of the spy}. \]
Fractional Spy-Game

Theorem:
\[\exists \beta > 0 \text{ such that } \frac{\text{frac-gn}_{s,d}(G_{n \times n})}{O(n^{2-\beta})}. \]

Goal: find such a strategy for the guards, i.e., define
\[f_{g_t}(v) : \text{amount of cops on } v \text{ at step } t \]

"Trick": Consider very simple strategy

- time-independent + decreasing function of the distance

\[f_{g}(v) = \frac{1}{\text{dist}(v, \text{Spy})^\beta}. \]

Main result (using flows and duality)
\[\exists \beta \text{ such that such a distribution of guards can be preserved} \]
\[\text{whatever be the move of the spy} \]
Theorem: \(\exists \alpha > 0 \) such that \(\Omega(n^{1+\alpha}) \leq \frac{g\text{n}_{s,d}(G_{n \times n})}{d} \).
Theorem: \(\exists \alpha > 0 \) such that \(\Omega(n^{1+\alpha}) \leq \frac{\text{gn}_s,d(G_{n \times n})}{n} \).

“Fractional version” of Lemma 1

Spy wins against \(O(n \log n) \) of guards, in \(O(n) \) steps in a grid.
Fractional Spy-Game

Theorem: \(\exists \alpha > 0 \) such that \(\Omega(n^{1+\alpha}) \leq \text{frac-gn}_{s,d}(G_{n \times n}) \).

“Fractional version” of Lemma 1
Spy wins against \(O(n \log n) \) of guards, in \(O(n) \) steps in a grid.

Key “fractional Lemma”
If Spy wins vs. \(c \) guards in \(t \) steps \(\Rightarrow \)

\(\forall \) strategy of \(k \) guards, \(\exists \) strategy for Spy s.t.

after \(t \) steps, at most \(k/c \) guards are at distance \(\leq d \).
Theorem: \(\exists \alpha > 0 \) such that \(\Omega(n^{1+\alpha}) \leq \frac{gn_s}{d}(G_{n \times n}) \).

"Fractional version" of Lemma 1
Spy wins against \(O(n \log n) \) of guards, in \(O(n) \) steps in a grid.

Key "fractional Lemma"
If Spy wins vs. \(c \) guards in \(t \) steps \(\Rightarrow \)
\(\forall \) strategy of \(k \) guards, \(\exists \) strategy for Spy s.t.
\[\text{after } t \text{ steps, at most } k/c \text{ guards are at distance } \leq d. \]

In fractional version, the density can be reduced!
for \(a \in \mathbb{N}^* \), after at most \(2n \) steps against \(k \) guards, the amount of guards at distance \(\leq 2n/a \) from the spy is \(< k(aH(a))^{-1} \).
Fractional Spy-Game

Theorem: \(\exists \alpha > 0 \) such that \(\Omega(n^{1+\alpha}) \leq \frac{\text{frac}-gn_{s,d}(G_{n \times n})}{d} \).

In fractional version, the density can be reduced! \(\Rightarrow \) induction
Theorem: $\exists \alpha > 0$ such that $\Omega(n^{1+\alpha}) \leq \frac{gn_{s,d}}{d}(G_{n\times n})$.

In fractional version, the density can be reduced! \Rightarrow induction.
Theorem: \(\exists \alpha > 0 \text{ such that } \Omega(n^{1+\alpha}) \leq \frac{\text{frac}-\text{gn}_{s,d}(G_{n \times n})}{d(G_{n \times n})}. \)

In fractional version, the density can be reduced! \(\Rightarrow \) induction
On Cops and Robber games:

- **Meyniel Conjecture [1985]:**

 For any n-node connected graph G, $cn(G) = O(\sqrt{n})$

- How many cops with speed 1 to capture a robber with speed 2 in a grid?

On Spy game:

- Complexity of computing $gn_{s,d}$? of computing $frac-gn_{s,d}$?

- actual value of $gn_{s,d}(G)$ in $n \times n$ grid G?

 We know: $\exists \epsilon, \beta > 0,$

 $\Omega(n^{1+\epsilon}) \leq frac-gn \leq gn \leq O(n^2).$

 $frac-gn \leq O(n^{2-\beta}).$

- other graph classes: trees, bounded treewidth...?
On Cops and Robber games:

- **Meyniel Conjecture [1985]:**

 For any \(n \)-node connected graph \(G \), \(cn(G) = O(\sqrt{n}) \)

- How many cops with speed 1 to capture a robber with speed 2 in a grid?

On Spy game:

- Complexity of computing \(gn_{s,d} \)? of computing \(frac-gn_{s,d} \)?

- Actual value of \(gn_{s,d}(G) \) in \(n \times n \) grid \(G \)?

 We know: \(\exists \epsilon, \beta > 0, \Omega(n^{1+\epsilon}) \leq frac-gn \leq gn \leq O(n^2) \).

 \(frac-gn \leq O(n^{2-\beta}) \).

- Other graph classes: trees, bounded treewidth...?

Thank you!