Jeux des gendarmes et du voleur dans les graphes.

Nicolas Nisse

LRI, Université Paris-Sud, France.

Réunion FRAGILE 19 juin 2007

Nicolas Nisse Jeux des gendarmes et du voleur

イロト イヨト イヨト イヨト

1/40

Outline

- Motivations
- Variants of the game
- Definitions and Models
- Related Works
- 2 Non-deterministic Graph Searching
- 3 Connected Graph Searching
- Distributed Graph Searching

5 Conclusion and Further Works

2/40

向下 イヨト イヨト

・ロン ・回 と ・ ヨ と ・ ヨ と

Motivation: Practical Applications

Genese

A speleologist is lost in a caves' network. What is the smallest number of persons that is required to save him? How to compute a rescue strategy? [Breish 67, Parson 78]

Auto-coordination of mobile agents

- Surveillance of building
- Localisation of a mobile target,
- Clearing of a contaminated pipeline's network,
- Clearing of a contaminated internet network, etc.

・ロト ・ 日 ・ ・ ヨ ・ ・

Motivation: Practical Applications

Genese

A speleologist is lost in a caves' network. What is the smallest number of persons that is required to save him? How to compute a rescue strategy? [Breish 67, Parson 78]

Auto-coordination of mobile agents

- Surveillance of building,
- Localisation of a mobile target,
- Clearing of a contaminated pipeline's network,
- Clearing of a contaminated internet network, etc.

◆□ > ◆□ > ◆ □ > ◆ □ > ●

Motivations: Fundamental Approachs

VLSI design

Embedding of circuit layout.

Pebble games

Model for the allocation of registers in a processor.

- Number of pebbles = space complexity
- Number of *moves* = time complexity

Graph Minors Theory,

Wagner's conjecture: any minor-closed class of graphs admits a finite obstruction set (e.g., Kuratowski's theorem); T<mark>ree-like decompositions</mark> of graphs excluding a minor.

・ロン ・回 と ・ ヨ と ・ ヨ と

Motivations: Fundamental Approachs

VLSI design

Embedding of circuit layout.

Pebble games

Model for the allocation of registers in a processor.

- Number of pebbles = space complexity
- Number of *moves* = time complexity

Graph Minors Theory,

Wagner's conjecture: any minor-closed class of graphs admits a finite obstruction set (e.g., Kuratowski's theorem); T<mark>ree-like decompositions</mark> of graphs excluding a minor.

イロト イヨト イヨト イヨト

Motivations: Fundamental Approachs

VLSI design

Embedding of circuit layout.

Pebble games

Model for the allocation of registers in a processor.

- Number of pebbles = space complexity
- Number of *moves* = time complexity

Graph Minors Theory, Robertson and Seymour

Wagner's conjecture: any minor-closed class of graphs admits a finite obstruction set (e.g., Kuratowski's theorem); Tree-like decompositions of graphs excluding a minor.

General problem

Context

A fugitive is running in a graph.

A team of searchers is aiming at capturing the fugitive.

Goal(Alternative goal)

To design a strategy that capture any fugitive (clear the contaminated graph) using the **fewest searchers as possible**.

(ロ) (同) (E) (E)

5/40

- fugitive/searchers' visibility: visible or invisible; (Case fugitive and searchers invisble: random walk, graph's exploration)
- playing rules: turn by turn, or simultaneous moves;
- way to capture the fugitive: same location, domination;
- **fugitive/searchers'moves**: move along edges or/and jump from a vertex to another one;
- fugitive/searchers' velocity: bounded speed or arbitrary fast.

- fugitive/searchers' visibility: visible or invisible; (Case fugitive and searchers invisble: random walk, graph's exploration)
- playing rules: turn by turn, or simultaneous moves;
- way to capture the fugitive: same location, domination;
- fugitive/searchers'moves: move along edges or/and jump from a vertex to another one;
- fugitive/searchers' velocity: bounded speed or arbitrary fast.

- fugitive/searchers' visibility: visible or invisible; (Case fugitive and searchers invisble: random walk, graph's exploration)
- playing rules: turn by turn, or simultaneous moves;
- way to capture the fugitive: same location, domination;
- fugitive/searchers'moves: move along edges or/and jump from a vertex to another one;
- fugitive/searchers' velocity: bounded speed or arbitrary fast.

- fugitive/searchers' visibility: visible or invisible; (Case fugitive and searchers invisble: random walk, graph's exploration)
- playing rules: turn by turn, or simultaneous moves;
- way to capture the fugitive: same location, domination;
- **fugitive/searchers'moves**: move along edges or/and jump from a vertex to another one;
- fugitive/searchers' velocity: bounded speed or arbitrary fast.

・ロン ・回 と ・ ヨン ・ ヨン

- fugitive/searchers' visibility: visible or invisible; (Case fugitive and searchers invisble: random walk, graph's exploration)
- playing rules: turn by turn, or simultaneous moves;
- way to capture the fugitive: same location, domination;
- **fugitive/searchers'moves**: move along edges or/and jump from a vertex to another one;
- **fugitive/searchers' velocity**: bounded speed or arbitrary fast.

Taxonomy of graph searching games

	fugitive's caracteristics			
	bounded speed		arbitrary fast	
	visible invisible		visible	invisible
turn by turn	Cops and robber	Clarke		
game	Quilliot 83,	and	?	?
	Nowakowski	Nowakowski		
	and Winkler 83	00		
simultaneous			Seymour	Graph
moves	?	Fomin 98	and	searching
			Thomas	Breish 67,
			93	Parson 78

Table: Classification of the graph searching games

・ロッ ・回 ・ ・ ヨ ・ ・ ヨ ・ ・

Taxonomy of graph searching games

	fugitive's caracteristics			
	bounded speed		arbitrary fast	
	visible invisible		visible	invisible
turn by turn	Cops and robber Clarke			
game	Quilliot 83, and		?	?
	Nowakowski Nowakowski			
	and Winkler 83	00		
simultaneous			Seymour	Graph
moves	?	Fomin 98	and	searching
			Thomas	Breish 67,
			93	Parson 78

Table: Classification of the graph searching games

・ロッ ・回 ・ ・ ヨ ・ ・ ヨ ・ ・

8/40

Search Strategy, Parson. [GTC,1978] Variant of Kirousis and Papadimitriou. [TCS,86]

Sequence of two basic operations,...

- Place a searcher at a vertex of the graph;
- Remove a searcher from a vertex of the graph.

... that must result in catching the fugitive

The fugitive moves from one vertex to another by following the paths of the graph.

It is caugth when it meets a searcher at a vertex.

The node-search number

Let s(G) be the smallest number of searchers needed to catch an **invisible** fugitive in a graph G.

Visibility of the fugitive

Visible fugitive

The fugitive is visible if, at every step, searchers know its position. Let vs(G) be the visible search number of the graph G.

Obviously, for any graph G, $vs(G) \leq s(G)$.

In trees

For any *n*-nodes tree *T*, $s(T) \le 1 + \log_3(n-1)$ (tight) Megiddo *et. al.* [JACM 88] For any tree *T* (with at least 2 vertices), vs(T) = 2.

Visibility of the fugitive

Visible fugitive

The fugitive is visible if, at every step, searchers know its position. Let vs(G) be the visible search number of the graph G.

Obviously, for any graph G, $vs(G) \leq s(G)$.

In trees

For any *n*-nodes tree T, $s(T) \le 1 + \log_3(n-1)$ (tight) Megiddo *et. al.* [JACM 88] For any tree T (with at least 2 vertices), vs(T) = 2.

Motivations Variants Definitions Related Works

NP-hardness

The foll	owing	problems	are	NP-hard

Input:	a graph G , an integer $k > 0$,	Megiddo <i>et. al.</i> ,
Output:	$s(G) \leq k?$	[JACM 88]
Input:	a graph G , an integer $k>0$,	Seymour and Thomas
Output:	$vs(G) \leq k?$	[JCTB 93]

Remark: linear in the class of trees, Skodinis [JAlg 03] Do these problems belong to NP7 Certificate?

・ロン ・回 と ・ ヨン ・ ヨン

12/40

3
NP-hardness

The following problems are NP-hard		
Input: Output:	a graph G , an integer $k > 0$, $s(G) \leq k?$	Megiddo <i>et. al.</i> , [JACM 88]
Input: Output:	a graph G , an integer $k>0$, $vs(G)\leq k?$	Seymour and Thomas [JCTB 93]

Remark: linear in the class of trees, Skodinis [JAlg 03] Do these problems belong to NP? Certificate?

イロト イヨト イヨト イヨト

Monotonicity and NP-completness

A vertex v is recontaminated if the fugitive can move to v after v has been occupied by a searcher.

Monotonicity

A search strategy is monotone if no recontamination ever occurs. That is, a vertex is occupied by a searcher only once.

Recontamination does not help

Threre always exists an optimal monotone search strategy.

nvisible fugitive: LaPaugh, Bienstock and Seymour [JACM 93] [JAlg 91]

Corollary: The above problems belong to NP

・ロン ・回 と ・ ヨン ・ ヨン

Monotonicity and NP-completness

A vertex v is recontaminated if the fugitive can move to v after v has been occupied by a searcher.

Monotonicity

A search strategy is monotone if no recontamination ever occurs. That is, a vertex is occupied by a searcher only once.

Recontamination does not help

Threre always exists an optimal monotone search strategy.

invisible fugitive: LaPaugh, Bienstock and Seymour [JACM 93] [JAlg 91] visible fugitive: Seymour and Thomas [JCTB 93]

Corollary: The above problems belong to NP.

・ロト ・回ト ・ヨト ・ヨト

Monotonicity and NP-completness

A vertex v is recontaminated if the fugitive can move to v after v has been occupied by a searcher.

Monotonicity

A search strategy is monotone if no recontamination ever occurs. That is, a vertex is occupied by a searcher only once.

Recontamination does not help

Threre always exists an optimal monotone search strategy.

invisible fugitive: LaPaugh, Bienstock and Seymour [JACM 93] [JAlg 91] visible fugitive: Seymour and Thomas [JCTB 93]

Corollary: The above problems belong to NP.

(日) (四) (三) (三)

14/40

Search numbers and graphs' decompositions

Thanks to the monotonicity, we get:

Search number and Pathwidth (pw)

For any graph G, s(G) = pw(G) + 1Kinnersley [IPL 92], Ellis, Sudborough, and Turner [Inf.Comp.94]

Visible search number and Treewidth (tw)

For any graph G, vs(G) = tw(G) + 1Seymour and Thomas [JCTB 93]

Nicolas Nisse Jeux des gendarmes et du voleur

(ロ) (同) (三) (三)

Outline

- 2 Non-deterministic Graph Searching
- 3 Connected Graph Searching
- Distributed Graph Searching
- 5 Conclusion and Further Works

15/40

< □ > < □ > < □ >

Non-deterministic Graph Searching

Invisible fugitive An Oracle permanently knows the position of the fugitive

One extra operation is allowed

Searchers can perform a query to the oracle: "What is the current position of the fugitive?"

Sequence of three basic operations

- Place a searcher at a vertex of the graph;
- Remove a searcher from a vertex of the graph;
- Perform a query to the Oracle.

Tradeoff number of searchers / number of queries

q-limited (non-deterministic) search number, $s_q(G)$

Non-deterministic Graph Searching

Invisible fugitive An Oracle permanently knows the position of the fugitive

One extra operation is allowed

Searchers can perform a query to the oracle: "What is the current position of the fugitive?"

Sequence of three basic operations

- Place a searcher at a vertex of the graph;
- Remove a searcher from a vertex of the graph;
- **O** Perform a query to the Oracle.

Tradeoff number of searchers / number of queries

q-limited (non-deterministic) search number, $s_q(G)$

Controlled Amount of Nondeterminism

Results

In collaboration with F. Mazoit

For any $q \ge 0$, recontamination does not help to catch a fugitive in G performing at most q queries.

- Constructive proof;
- Generalize the existing proofs $(q = 0 \text{ and } q = \infty)$.

In collaboration with F.V. Fomin and P. Fraigniaud

- Equivalence between non-deterministic graph searching and branched tree-decomposition;
- Exponential exact algorithm computing s_q(G) in time O^{*}(2ⁿ);
- $s_q(G) \leq 2 s_{q+1}(G)$ (almost tight).

・ロン ・回 と ・ ヨ と ・ ヨ と

Outline

- 2 Non-deterministic Graph Searching
- Connected Graph Searching
 Cost of connectivity
 Non Monotonicity
 - Non-Monotonicity
- Distributed Graph Searching

5 Conclusion and Further Works

20/40

向下 イヨト イヨト

Connected Graph Searching

Limits of the Parson's model

- Searchers cannot move at will in a real network;
- It would be better to let searchers be grouped.

Connected Search Strategy, Barrière et. al., [SPAA 02]

At any step, the cleared part of the graph must induced a connected subgraph. Let cs(G) be the connected search number of the graph G

Two main questions

What is the cost of connectivity? ratio *cs/s*? Monotonicity property of connected graph searching?

・ロト ・回ト ・ヨト ・ヨト

Connected Graph Searching

Limits of the Parson's model

- Searchers cannot move at will in a real network;
- It would be better to let searchers be grouped.

Connected Search Strategy, Barrière et. al., [SPAA 02]

At any step, the cleared part of the graph must induced a connected subgraph.

Let cs(G) be the connected search number of the graph G.

Two main questions

What is the cost of connectivity? ratio *cs/s*? Monotonicity property of connected graph searching?

・ロト ・回ト ・ヨト ・ヨト

Connected Graph Searching

Limits of the Parson's model

- Searchers cannot move at will in a real network;
- It would be better to let searchers be grouped.

Connected Search Strategy, Barrière et. al., [SPAA 02]

At any step, the cleared part of the graph must induced a connected subgraph.

Let cs(G) be the connected search number of the graph G.

Two main questions

What is the cost of connectivity? ratio cs/s? Monotonicity property of connected graph searching?

The cost of connectedness

In terms of number of searchers

For any tree T, $s(T) \le cs(T) \le 2 s(T) - 2$. (tight) Barrière, Flocchini, Fraigniaud, and Thilikos [WG 03]

For any connected graph G, $cs(G) \leq s(G) (2 + \log |E(G)|)$. Fomin, Fraigniaud, and Thilikos 04

About monotonicity

Recontamination does not help in trees. Barrière, Flocchini, Fraigniaud, and Santoro [SPAA 02]

Recontamination helps in general. Alspach, Dyer, and Yang [ISAAC 04]

(ロ) (同) (三) (三)

Results: Case of a invisible fugitive

In collaboration with P. Fraigniaud

For any *n*-nodes connected graph *G*, $cs(G)/s(G) \le \log n$.

Graphs with bounded chordality k

(T, X) an optimal tree-decomposition of G $cs(G) \leq (tw(G)\lfloor k/2 \rfloor + 1)cs(T).$

 $\Rightarrow cs(G)/s(G) \le 2(tw(G)+1)$ if G chordal

Results: Case of a visible fugitive

In collaboration with P. Fraigniaud

For any *n*-nodes graph G, $cvs(G)/vs(G) \le \log n$ (tight for monotone strategies).

In visible connected graph searching, recontamination helps

 For any k ≥ 4, there exists a graph G such that cvs(G) = 4k + 1 and any monotone connected visible search strategy uses at least 4k + 2 searchers.

・ロト ・回 ト ・ヨト ・ヨト

Non-monotonicity

Recontamination helps in visible connected graph searching

Let G be the graph below: mcvs(G) > cvs(G) = 4.

Outline

- 2 Non-deterministic Graph Searching
- 3 Connected Graph Searching
- Distributed Graph Searching
 - Model
 - Importance of a priori Knowledge

26/40

個 と く ヨ と く ヨ と

Graph searching in a distributed way

Distributed search problem

To design a distributed protocol that enables the minimum *number* of searchers to clear the network. The searchers must compute themselves a strategy.

・ロト ・回ト ・ヨト ・ヨト

Graph searching in a distributed way

Distributed search problem

To design a *distributed protocol* that enables the *minimum number* of searchers to clear the network. The searchers must compute themselves a strategy.

In this part, we consider connected search strategies.

mcs refers to the smallest number of searchers required to catch an invisible fugitive in a monotone connected way.

・ロ・ ・ 日・ ・ ヨ・ ・

Distributed graph searching: Environment

- undirected connected graph;
- local orientation of the edges;
- whiteboards on vertices;
- synchronous/asynchronous environment.

Distributed graph searching: the searchers

- autonomous mobile computing entities with distinct IDs;
- automata with O(log n) bits of memory.

Decision is computed locally and depends on:

- its current state;
- the states of the other searchers present at the vertex;
- the content of the local whiteboard:
- if appropriate the incoming port number.

A searcher can decide to:

- leave a vertex via a specific port number;
- switch its state.
- write/erase content of the local whiteboard.

Distributed graph searching, related work

The searchers have a prior knowledge of the topology.

Protocols to clear specific topologies

- Tree. Barrière et. al., [SPAA 02]
- Mesh. Flocchini, Luccio, and Song. [CIC 05]
- Hypercube. Flocchini, Huang, and Luccio. [IPDPS 05]
- Tori. Flocchini, Luccio, and Song. [IPDPS 06]
- Siperski's graph. Luccio. [FUN 07]

A monotone connected and optimal strategy is performed.

Distributed graph searching, related work

The searchers have a prior knowledge of the topology.

Protocols to clear specific topologies

- Tree. Barrière et. al., [SPAA 02]
- Mesh. Flocchini, Luccio, and Song. [CIC 05]
- Hypercube. Flocchini, Huang, and Luccio. [IPDPS 05]
- Tori. Flocchini, Luccio, and Song. [IPDPS 06]
- Siperski's graph. Luccio. [FUN 07]

A monotone connected and optimal strategy is performed.

Remark:

Compared with the synchronous case, an additional searcher may be necessary and is sufficient in an asynchronous network to clear a graph in a monotone connected way [CIC 05].
Results

In collaboration with L. Blin, P. Fraigniaud and S. Vial

Distributed protocol that enable mcs(G) searchers to clear an unknown graph G in a connected way (Automaton: $O(\log n)$ bits of memory, whiteboards'size: $O(m \log n)$ bits).

Problems: the strategy is not monotone and may be performed in expentional time.

In collaboration with D. Soguet

No distributed protocol enables mcs(G) searchers to clear an **unknown** graph G in a **monotone** connected way. $\Theta(n \log n)$ bits of information must be provided to the searchers

・ロト ・(部)・ ・ヨト ・ ヨトー

Results

In collaboration with L. Blin, P. Fraigniaud and S. Vial

Distributed protocol that enable mcs(G) searchers to clear an unknown graph G in a connected way (Automaton: $O(\log n)$ bits of memory, whiteboards'size: $O(m \log n)$ bits).

Problems: the strategy is not monotone and may be performed in expentional time.

In collaboration with D. Soguet

No distributed protocol enables mcs(G) searchers to clear an **unknown** graph G in a **monotone** connected way. $\Theta(n \log n)$ bits of information must be provided to the searchers

・ロト ・(部)・ ・ヨト ・ ヨトー

Results

In collaboration with L. Blin, P. Fraigniaud and S. Vial

Distributed protocol that enable mcs(G) searchers to clear an unknown graph G in a connected way (Automaton: $O(\log n)$ bits of memory, whiteboards'size: $O(m \log n)$ bits).

Problems: the strategy is not monotone and may be performed in expentional time.

In collaboration with D. Soguet

No distributed protocol enables mcs(G) searchers to clear an **unknown** graph *G* in a **monotone** connected way. $\Theta(n \log n)$ bits of information must be provided to the searchers

(日) (四) (日) (日) (日)

31/40

Advice, size of advice [Fraigniaud et al. 06]

A distributed problem \mathcal{P} Instance of \mathcal{P} (for example a graph G) Advice: information that can be used to solve \mathcal{P} efficiently

Information is modelized by

- An oracle O that assigns at any instance G a string of bits O(G) that is distributed on the vertices of G.
- size of advice |O(G)|

Examples

- wake-up (linear number of messages): $\Theta(n \log n)$ bits;
- broadcast (linear number of messages): O(n) bits;
- tree exploration, MST, graph coloring ..

・ロン ・回 と ・ ヨン ・ ヨン

Advice, size of advice [Fraigniaud et al. 06]

A distributed problem \mathcal{P} Instance of \mathcal{P} (for example a graph G) Advice: information that can be used to solve \mathcal{P} efficiently

Information is modelized by

- An oracle O that assigns at any instance G a string of bits O(G) that is distributed on the vertices of G.
- size of advice |O(G)|

Examples

- wake-up (linear number of messages): $\Theta(n \log n)$ bits;
- broadcast (linear number of messages): O(n) bits;
- tree exploration, MST, graph coloring ...

・ロン ・回 と ・ ヨ と ・ ヨ と

Let G be a graph, and $v_0 \in V(G)$

Let S be a monotone connected and optimal strategy for G. Our oracle "encodes" S on the vertices of G.

 $S \rightarrow$ a vertex-ordering $\{v_0, v_1, \cdots, v_{n-1}\}$, and *n* trees $T_0 \subset \cdots \subset T_{n-1}$ such that T_i spans $\{v_0, \cdots, v_i\}$.

(□) (圖) (E) (E)

33/40

Model Knowledge

Idea of the upper bound: $O(n \log n)$

Let G be a graph, and $v_0 \in V(G)$

Let S be a monotone connected and optimal strategy for G. Our oracle "encodes" S on the vertices of G.

 $S \rightarrow \text{a vertex-ordering } \{v_0, v_1, \cdots, v_{n-1}\},\$ and *n* trees $T_0 \subset \cdots \subset T_{n-1}$ such that T_i spans $\{v_0, \cdots, v_i\}.$

・ロ・ ・回・ ・ヨ・ ・ ヨ・

33/40

Let G be a graph, and $v_0 \in V(G)$

Let S be a monotone connected and optimal strategy for G. Our oracle "encodes" S on the vertices of G.

Let G be a graph, and $v_0 \in V(G)$

Let S be a monotone connected and optimal strategy for G. Our oracle "encodes" S on the vertices of G.

Let G be a graph, and $v_0 \in V(G)$

Let S be a monotone connected and optimal strategy for G. Our oracle "encodes" S on the vertices of G.

Let G be a graph, and $v_0 \in V(G)$

Let S be a monotone connected and optimal strategy for G. Our oracle "encodes" S on the vertices of G.

Let G be a graph, and $v_0 \in V(G)$

Let S be a monotone connected and optimal strategy for G. Our oracle "encodes" S on the vertices of G.

Let G be a graph, and $v_0 \in V(G)$

Let S be a monotone connected and optimal strategy for G. Our oracle "encodes" S on the vertices of G.

Model Knowledge

Idea of the upper bound: $O(n \log n)$

Let G be a graph, and $v_0 \in V(G)$

Let S be a monotone connected and optimal strategy for G. Our oracle "encodes" S on the vertices of G.

Let G be a graph, and $v_0 \in V(G)$

Let S be a monotone connected and optimal strategy for G. Our oracle "encodes" S on the vertices of G.

Model Knowledge

Idea of the upper bound: $O(n \log n)$

Let G be a graph, and $v_0 \in V(G)$

Let S be a monotone connected and optimal strategy for G. Our oracle "encodes" S on the vertices of G.

Idea of the upper bound: the Oracle

Our protocol is divided in n+1 phases. Any vertex v_i , 3 types of edges:

- the edges of the spanning tree T_n
- 2 the edge by which the searcher will leave v_i ;
- the others.

Moreover the oracle provides 2 phase numbers: The phase when the edges of type 3 can be cleared and the phase when v_i can be left.

Size of advice: coding a spanning tree + 2 phase numbers for any vertex = $O(n \log n)$ bits of advice.

Idea of the upper bound: the Protocol

Phase i of the protocol $(0 \le i \le n)$: At the beginning of the phase *i*:

- T_i + some edges between the vertices $\{v_0, \dots, v_i\}$ are cleared.
- Any vertex of $\{v_0, \cdots, v_i\}$ is guarded by a searcher if it is incident to a contaminated edge.

Idea of the protocol:

- Any free searcher performs a DFS of T_i .
- If it meets a vertex such that the phase to clear the edges of type 3 is *i*, then it clears these edges.
- At the end of the phase, the edge that enables to move on v_{i+1} is discovered and cleared.

(日) (同) (E) (E) (E)

Model Knowledge

The lower bound: $\Omega(n \log n)$

Class of graphs $(G_n)_{n \in N}$ (The figure corresponds to G_5). All the monotone connected and optimal strategies in this class are **strongly constrained**.

Outline

- 2 Non-deterministic Graph Searching
- 3 Connected Graph Searching
- Distributed Graph Searching
- 5 Conclusion and Further Works

37/40

(4回) (日) (日)

Summary of the results

Non-deterministic graph searching

A unified approach of visible and invisible graph searching Unified proof of monotonicity.

Connected graph searching

Upper bounds for the ratio cs/sCase of a visible fugitive

Distributed graph searching

Distributed protocol to clear an unknown graph Amount of information required for monotonicity

・ロ・ ・ 日・ ・ ヨ・

Open Problems

Non-deterministic graph searching

FPT Algorithm? Polynomial-time algorithm in trees?

Connected graph searching

cs/*s* ? FPT Algorithm? NP-membership?

Distributed graph searching

Tradeoff between amount of information and number of searchers?

・ロッ ・回 ・ ・ ヨ ・ ・ ヨ ・

IMAGINE: First International workshop on Mobility, Algorithms and Graph theory In dynamic NEtworks.

Collocated with DISC 2007 in Cyprus (the day after)

http://www.lifl.fr/IMAGINE2007

・ロン ・回 と ・ ヨ と ・ ヨ と …

40/40