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Motivation: Practical Applications

Genese

A speleologist is lost in a caves’network. What is the smallest
number of persons that is required to save him? How to
compute a rescue strategy? [Breish 67, Parson 78]

Auto-coordination of mobile agents

Surveillance of building,

Localisation of a mobile target,

Clearing of a contaminated pipeline’s network,

Clearing of a contaminated internet network, etc.
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Motivations: Fundamental Approachs

VLSI design

Embedding of circuit layout.

Pebble games

Model for the allocation of registers in a processor.

Number of pebbles = space complexity

Number of moves = time complexity

Graph Minors Theory, Robertson and Seymour

Wagner’s conjecture: any minor-closed class of graphs admits
a finite obstruction set (e.g., Kuratowski’s theorem);
Tree-like decompositions of graphs excluding a minor.
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General problem

Context

A fugitive is running in a graph.
A team of searchers is aiming at capturing the fugitive.

Goal(Alternative goal)

To design a strategy that capture any fugitive (clear the
contaminated graph) using the fewest searchers as possible.
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Variants of graph searching games

fugitive/searchers’ visibility: visible or invisible;
(Case fugitive and searchers invisble: random walk,
graph’s exploration)

playing rules: turn by turn, or simultaneous moves;

way to capture the fugitive: same location,
domination;

fugitive/searchers’moves: move along edges or/and
jump from a vertex to another one;

fugitive/searchers’ velocity: bounded speed or
arbitrary fast.
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Taxonomy of graph searching games

fugitive’s caracteristics
bounded speed arbitrary fast

visible invisible visible invisible

turn by turn Cops and robber Clarke
game Quilliot 83, and ? ?

Nowakowski Nowakowski
and Winkler 83 00

simultaneous Seymour Graph
moves ? Fomin 98 and searching

Thomas Breish 67,
93 Parson 78

Table: Classification of the graph searching games
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Search Strategy, Parson. [GTC,1978]

Variant of Kirousis and Papadimitriou. [TCS,86]

Sequence of two basic operations,. . .

1 Place a searcher at a vertex of the graph;

2 Remove a searcher from a vertex of the graph.

. . . that must result in catching the fugitive

The fugitive moves from one vertex to another by following
the paths of the graph.
It is caugth when it meets a searcher at a vertex.

The node-search number

Let s(G ) be the smallest number of searchers needed to catch
an invisible fugitive in a graph G .
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Simple example: a ternary tree
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Simple example: a ternary tree

s(T) ≤ 3
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Visibility of the fugitive

Visible fugitive

The fugitive is visible if, at every step, searchers know its
position.
Let vs(G ) be the visible search number of the graph G .

Obviously, for any graph G , vs(G ) ≤ s(G ).

In trees

For any n-nodes tree T , s(T ) ≤ 1 + log3(n − 1) (tight)
Megiddo et. al. [JACM 88]

For any tree T (with at least 2 vertices), vs(T ) = 2.
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Visible graph searching in a tree
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Visible graph searching in a tree

TWO SEARCHERS ARE SUFFICIENT
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NP-hardness

The following problems are NP-hard

Input: a graph G , an integer k > 0, Megiddo et. al.,
Output: s(G ) ≤ k? [JACM 88]

Input: a graph G , an integer k > 0, Seymour and Thomas
Output: vs(G ) ≤ k? [JCTB 93]

Remark: linear in the class of trees, Skodinis [JAlg 03]
Do these problems belong to NP? Certificate?
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Monotonicity and NP-completness

A vertex v is recontaminated if the fugitive can move to v
after v has been occupied by a searcher.

Monotonicity

A search strategy is monotone if no recontamination ever
occurs. That is, a vertex is occupied by a searcher only once.

Recontamination does not help

Threre always exists an optimal monotone search strategy.

invisible fugitive: LaPaugh, Bienstock and Seymour
[JACM 93] [JAlg 91]

visible fugitive: Seymour and Thomas [JCTB 93]

Corollary: The above problems belong to NP.
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Search numbers and graphs’decompositions

Thanks to the monotonicity, we get:

Search number and Pathwidth (pw)

For any graph G , s(G ) = pw(G ) + 1
Kinnersley [IPL 92],
Ellis, Sudborough, and Turner [Inf.Comp.94]

Visible search number and Treewidth (tw)

For any graph G , vs(G ) = tw(G ) + 1
Seymour and Thomas [JCTB 93]
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Non-deterministic Graph Searching

Invisible fugitive
An Oracle permanently knows the position of the fugitive

One extra operation is allowed

Searchers can perform a query to the oracle: “What is the
current position of the fugitive?”

Sequence of three basic operations

1 Place a searcher at a vertex of the graph;

2 Remove a searcher from a vertex of the graph;

3 Perform a query to the Oracle.

Tradeoff number of searchers / number of queries

q-limited (non-deterministic) search number, sq(G )
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Example with q=2:

s0(T)=3
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Example with q=2:
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QUERY
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Example with q=2:

no query left

QUERY
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Example with q=2:

s2(T)=2
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Controlled Amount of Nondeterminism

number of searchers

number of queries

pw(G ) + 1

tw(G ) + 1

π(G ) τ(G )
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Results

In collaboration with F. Mazoit

For any q ≥ 0, recontamination does not help to catch a
fugitive in G performing at most q queries.

Constructive proof;

Generalize the existing proofs (q = 0 and q = ∞).

In collaboration with F.V. Fomin and P. Fraigniaud

Equivalence between non-deterministic graph searching
and branched tree-decomposition;

Exponential exact algorithm computing sq(G ) in time
O∗(2n);

sq(G ) ≤ 2 sq+1(G ) (almost tight).
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Connected Graph Searching

Limits of the Parson’s model

Searchers cannot move at will in a real network;

It would be better to let searchers be grouped.

Connected Search Strategy, Barrière et. al., [SPAA 02]

At any step, the cleared part of the graph must induced a
connected subgraph.
Let cs(G ) be the connected search number of the graph G .

Two main questions

What is the cost of connectivity? ratio cs/s?
Monotonicity property of connected graph searching?
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The cost of connectedness

In terms of number of searchers

For any tree T , s(T ) ≤ cs(T ) ≤ 2 s(T )− 2. (tight)
Barrière, Flocchini, Fraigniaud, and Thilikos [WG 03]

For any connected graph G , cs(G ) ≤ s(G ) (2 + log |E (G )|).
Fomin, Fraigniaud, and Thilikos 04

About monotonicity

Recontamination does not help in trees.
Barrière, Flocchini, Fraigniaud, and Santoro [SPAA 02]

Recontamination helps in general.
Alspach, Dyer, and Yang [ISAAC 04]
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Results: Case of a invisible fugitive

In collaboration with P. Fraigniaud

For any n-nodes connected graph G , cs(G )/s(G ) ≤ log n.

Graphs with bounded chordality k

(T , X ) an optimal tree-decomposition of G
cs(G ) ≤ (tw(G )bk/2c+ 1)cs(T ).

⇒ cs(G )/s(G ) ≤ 2 (tw(G ) + 1) if G chordal
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Results: Case of a visible fugitive

In collaboration with P. Fraigniaud

For any n-nodes graph G , cvs(G )/vs(G ) ≤ log n
(tight for monotone strategies).

In visible connected graph searching, recontamination helps

For any k ≥ 4, there exists a graph G such that
cvs(G ) = 4k + 1 and any monotone connected visible
search strategy uses at least 4k + 2 searchers.
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Non-monotonicity

Recontamination helps in visible connected graph searching

Let G be the graph below: mcvs(G ) > cvs(G ) = 4.

symmetry axis
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Graph searching in a distributed way

Distributed search problem

To design a distributed protocol that enables the minimum
number of searchers to clear the network.
The searchers must compute themselves a strategy.

In this part, we consider connected search strategies.

mcs refers to the smallest number of searchers required to
catch an invisible fugitive in a monotone connected way.
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Distributed graph searching: Environment

undirected connected graph;

local orientation of the edges;

whiteboards on vertices;

synchronous/asynchronous environment.

1
4

3

2

2
3

4

1

2
1

3
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Distributed graph searching: the searchers

autonomous mobile computing entities with distinct IDs;

automata with O(log n) bits of memory.

Decision is computed locally and depends on:

its current state;

the states of the other searchers present at the vertex;

the content of the local whiteboard;

if appropriate the incoming port number.

A searcher can decide to:

leave a vertex via a specific port number;

switch its state.

write/erase content of the local whiteboard.
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Distributed graph searching, related work

The searchers have a prior knowledge of the topology.

Protocols to clear specific topologies

Tree. Barrière et. al., [SPAA 02]

Mesh. Flocchini, Luccio, and Song. [CIC 05]

Hypercube. Flocchini, Huang, and Luccio. [IPDPS 05]

Tori. Flocchini, Luccio, and Song. [IPDPS 06]

Siperski’s graph. Luccio. [FUN 07]

A monotone connected and optimal strategy is performed.

Remark:

Compared with the synchronous case, an additional searcher
may be necessary and is sufficient in an asynchronous network
to clear a graph in a monotone connected way [CIC 05].
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Distributed graph searching, related work

The searchers have a prior knowledge of the topology.

Protocols to clear specific topologies

Tree. Barrière et. al., [SPAA 02]

Mesh. Flocchini, Luccio, and Song. [CIC 05]

Hypercube. Flocchini, Huang, and Luccio. [IPDPS 05]

Tori. Flocchini, Luccio, and Song. [IPDPS 06]

Siperski’s graph. Luccio. [FUN 07]

A monotone connected and optimal strategy is performed.

Remark:

Compared with the synchronous case, an additional searcher
may be necessary and is sufficient in an asynchronous network
to clear a graph in a monotone connected way [CIC 05].
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Results

In collaboration with L. Blin, P. Fraigniaud and S. Vial

Distributed protocol that enable mcs(G ) searchers to clear an
unknown graph G in a connected way

(Automaton: O(log n) bits of memory, whiteboards’size:
O(m log n) bits).

Problems: the strategy is not monotone and may be
performed in expentional time.

In collaboration with D. Soguet

No distributed protocol enables mcs(G ) searchers to clear an
unknown graph G in a monotone connected way.
Θ(n log n) bits of information must be provided to the
searchers
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Advice, size of advice [Fraigniaud et al. 06]

A distributed problem P
Instance of P (for example a graph G )
Advice: information that can be used to solve P efficiently

Information is modelized by

An oracle O that assigns at any instance G a string of
bits O(G ) that is distributed on the vertices of G .

size of advice |O(G )|

Examples

wake-up (linear number of messages): Θ(n log n) bits;

broadcast (linear number of messages): O(n) bits;

tree exploration, MST, graph coloring ...

Nicolas Nisse Jeux des gendarmes et du voleur



32/40

Intro NonDeterministic Connectivity Distributed Conclusion Model Knowledge

Advice, size of advice [Fraigniaud et al. 06]

A distributed problem P
Instance of P (for example a graph G )
Advice: information that can be used to solve P efficiently

Information is modelized by

An oracle O that assigns at any instance G a string of
bits O(G ) that is distributed on the vertices of G .

size of advice |O(G )|

Examples

wake-up (linear number of messages): Θ(n log n) bits;

broadcast (linear number of messages): O(n) bits;

tree exploration, MST, graph coloring ...

Nicolas Nisse Jeux des gendarmes et du voleur



33/40

Intro NonDeterministic Connectivity Distributed Conclusion Model Knowledge

Idea of the upper bound: O(n log n)

Let G be a graph, and v0 ∈ V (G )

Let S be a monotone connected and optimal strategy for G .
Our oracle “encodes” S on the vertices of G .

S → a vertex-ordering {v0, v1, · · · , vn−1},
and n trees T0 ⊂ · · · ⊂ Tn−1 such that Ti spans {v0, · · · , vi}.
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Let G be a graph, and v0 ∈ V (G )

Let S be a monotone connected and optimal strategy for G .
Our oracle “encodes” S on the vertices of G .

S → a vertex-ordering {v0, v1, · · · , vn−1},
and n trees T0 ⊂ · · · ⊂ Tn−1 such that Ti spans {v0, · · · , vi}.
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Idea of the upper bound: the Oracle

Our protocol is divided in n+1 phases.
Any vertex vi , 3 types of edges:

1 the edges of the spanning tree Tn

2 the edge by which the searcher will leave vi ;

3 the others.

Moreover the oracle provides 2 phase numbers: The phase
when the edges of type 3 can be cleared and the phase when
vi can be left.

Size of advice: coding a spanning tree + 2 phase numbers
for any vertex = O(n log n) bits of advice.
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Idea of the upper bound: the Protocol

Phase i of the protocol (0 ≤ i ≤ n):
At the beginning of the phase i :

Ti + some edges between the vertices {v0, · · · , vi} are
cleared.

Any vertex of {v0, · · · , vi} is guarded by a searcher if it is
incident to a contaminated edge.

Idea of the protocol:

1 Any free searcher performs a DFS of Ti .

2 If it meets a vertex such that the phase to clear the edges
of type 3 is i , then it clears these edges.

3 At the end of the phase, the edge that enables to move
on vi+1 is discovered and cleared.
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The lower bound: Ω(n log n)

...

n−2

2 n+7

n

0

21v v

v

v

K

K

Class of graphs (Gn)n∈N (The figure corresponds to G5).
All the monotone connected and optimal strategies in this
class are strongly constrained.
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Outline

1 Introduction

2 Non-deterministic Graph Searching

3 Connected Graph Searching

4 Distributed Graph Searching

5 Conclusion and Further Works
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Summary of the results

Non-deterministic graph searching

A unified approach of visible and invisible graph searching
Unified proof of monotonicity.

Connected graph searching

Upper bounds for the ratio cs/s
Case of a visible fugitive

Distributed graph searching

Distributed protocol to clear an unknown graph
Amount of information required for monotonicity
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Open Problems

Non-deterministic graph searching

FPT Algorithm?
Polynomial-time algorithm in trees?

Connected graph searching

cs/s ? FPT Algorithm?
NP-membership?

Distributed graph searching

Tradeoff between amount of information and number of
searchers?
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Ad’

IMAGINE: First International workshop on Mobility,
Algorithms and Graph theory In dynamic NEtworks.

Collocated with DISC 2007 in Cyprus (the day after)

http://www.lifl.fr/IMAGINE2007
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