Fractional Combinatorial Games

F. Giroire1 \quad N. Nisse1 \quad S. Pérennes1 \quad R. P. Soares1,2

1 COATI, Inria, I3S, CNRS, UNS, Sophia Antipolis, France
2 ParGO Research Group, UFC, Fortaleza, Brazil

EURO 2013, stream Graph Searching

Roma, July 4th, 2013
Cops & robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:
1. C places the cops;
2. R places the robber.

Step-by-step:
- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:
A cop at same node as robber.

Goal:
Cop-number = minimum number of cops
Cops & robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:
1. \(\mathcal{C} \) places the cops;
2. \(\mathcal{R} \) places the robber.

Step-by-step:
- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:
A cop at same node as robber.

Goal:
Cop-number=minimum number of cops
Cops & robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:
1. C places the cops;
2. R places the robber.

Step-by-step:
- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:
A cop at same node as robber.

Goal:
Cop-number = minimum number of cops
Cops & robber games [Nowakowski and Winkler; Quilliot, 83]

 Initialization:
1. \(\mathcal{C} \) places the cops;
2. \(\mathcal{R} \) places the robber.

 Step-by-step:
- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

 Robber captured:
A cop at same node as robber.

 Goal:
Cop-number=minimum number of cops
Cops & robber games \cite{Nowakowski:83,Quilliot:83}

Initialization:

1. \mathcal{C} places the cops;
2. \mathcal{R} places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:
A cop at same node as robber.

Goal:
Cop-number = minimum number of cops
Initialization:
1. C places the cops;
2. R places the robber.

Step-by-step:
- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:
A cop at same node as robber.

Goal:
Cop-number = minimum number of cops
Cops & robber games [Nowakowski and Winkler; Quilliot, 83]

Initialization:

1. C places the cops;
2. R places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:
A cop at same node as robber.

Goal:
Cop-number=minimum number of cops
Initialization:

1. \mathcal{C} places the cops;
2. \mathcal{R} places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:
A cop at same node as robber.

Goal:
Cop-number = minimum number of cops
An Observer must ensure that a Surfer never reaches a dangerous node
An Observer must ensure that a Surfer never reaches a dangerous node
Surveillance game

Turn by turn: Observer marks $k = 2$ nodes
Turn by turn: Observer marks $k = 2$ nodes

then Surfer may move on a adjacent node
Turn by turn: Observer marks $k = 2$ nodes

then Surfer may move on an adjacent node
Turn by turn: Observer marks $k = 2$ nodes

then Surfer may move on a adjacent node
Surveillance game

Turn by turn: Observer marks $k = 2$ nodes

then Surfer may move on a adjacent node
Turn by turn: Observer marks $k = 2$ nodes

then Surfer may move on a adjacent node
Surveillance game

Turn by turn: Observer marks $k = 2$ nodes

then Surfer may move on a adjacent node
Surveillance game

Turn by turn: Observer marks $k = 2$ nodes

then Surfer may move on a adjacent node
Turn by turn: Observer marks $k = 2$ nodes

then Surfer may move on a adjacent node
Turn by turn: Observer marks $k = 2$ nodes

then Surfer may move on a adjacent node
Turn by turn: Observer marks $k = 2$ nodes

then Surfer may move on a adjacent node
In this example, all nodes are marked

Victory of the Observer using 2 marks per turn
Model: another Two players game

- a *Surfer* starts from safe homebase v_0
- in G, a dangerous graph

- a *Guard* with some amount k of bullets

Turn by turn:

1. the guard secures $\leq k$ nodes;
2. then, the Surfer may move to an adjacent node.

Defeat: Surfer in unsafe node
Victory: G safe

Minimize amount of bullets to win for any Surfer’s trajectory

 Surveillance number of G (connected) from v_0: $sn(G, v_0)$
Two players play a game on a graph.

Game is played turn-by-turn.

Players play by moving and/or adding tokens on vertices of the graph.

Optimization problem: minimizing number of tokens to achieve some goal.
All these games are hard

- Cops and Robber: k cops are enough?
 - PSPACE-complete in general graphs [Mamino, 2012].
- Surveillance Game: k marks per turn are enough?
 - $k = 2$ NP-complete for Chordal/Bipartite Graphs [Fomin et al, 2012].
 - $k = 4$ PSPACE-complete for DAGS [Fomin et al, 2012].
- Angels and Devils: Does an Angel of power k wins?
 - 1-Angel loses in (infinite) grids [Conway, 1982].
 - 2-Angel wins in (infinite) grids [Máthé, 2007].
- Eternal Dominating set.
- Eternal Vertex Cover.
 - NP-hard [Fomin et al, 2010].
New tools/approaches are required

Several questions remain open

- Meyniel conjecture: \(cn(G) = O(\sqrt{n}) \) in any \(n \)-node graphs?
- Polynomial-time Approximation algorithms?

less difficult but still intriguing

- number of cops to capture fast robber in grids?
- cost of connectivity in surveillance game?
- etc.

Here, we present preliminary results of our new approach
Fractional Combinatorial Game

- Fractional games:
 both players can use “fractions” of tokens.

- Semi-Fractional games:
 only one player (Player C) can use fractions of tokens.

- Integral games: classical games, token are unsplittable
Example: Fractional Cops and Robber

integral game:
cop-number = 2
Example: Fractional Cops and Robber

Integral game:
cop-number = 2

Semi fractional:
cop-number ≤ 3/2
Example: Fractional Cops and Robber

integral game:
cop-number = 2

semi fractional:
cop-number ≤ 3/2
Example: Fractional Cops and Robber

integral game:
cop-number $= 2$

semi fractional:
cop-number $\leq 3/2$
Example: Fractional Cops and Robber

integral game:
cop-number = 2

semi fractional:
cop-number ≤ 3/2
Example: Fractional Cops and Robber

integral game:
cop-number = 2

semi fractional:
cop-number \leq 3/2
Example: Fractional Cops and Robber

integral game:
cop-number = 2

semi fractional:
cop-number ≤ 3/2
Example: Fractional Cops and Robber

integral game:
cop-number = 2

semi fractional:
cop-number \leq 3/2
Example: Fractional Cops and Robber

integral game:
cop-number = 2

semi fractional:
cop-number ≤ 3/2

Remark:
by definition:
semi-fractional ≤ integral
gap?
relationship with fractional?
Preliminary results

Fractional games

general framework: fractional relaxation of turn-by-turn games

important property: “convexity” of winning states

Semi-fractional = fractional (properties of robber’s moves)

solutions of fractional games provides lower bounds for integral games

Algorithm \mathcal{A} to decide which player wins

tools: linear programming techniques.

Bad news: one step of \mathcal{A} is exponential (exponent: length of the game)

Hope: use specificities of games to reduce time-complexity

Integrality gap

Bad news: fractional cop-number $\leq 1 + \epsilon$ for any graph and any $\epsilon > 0$

Hope: surveillance game: fractional game gives a probabilistic $\log n$-approximation
States of the Game

In n-node graph

- $c \in \mathbb{R}_+^n$ represents the tokens of Player C.
- $r \in \mathbb{R}_+^n$ represents the tokens of Player R.
- $(c, r) \in \mathbb{R}_{2n}^+$ represents the state of the game.

$c = (0.7, 0.2, 0.1)$ and $r = (0, 0.5, 0.5)$;

set of states = polytope

Examples:

- cops and robber: $\sum_{i \leq n} r_i = 1$ and $\sum_{i \leq n} c_i = k$ (# of cops)
- surveillance game: $\sum_{i \leq n} r_i = 1$
Winning states and moves

Winning states = convex subset of states

cops and robber: \(\{ (c, r) \mid c_i \geq r_i, i = 1 \cdots n \} \)
surveillance game: \(\{ (c, r) \mid c_i \geq 1, i = 1 \cdots n \} \)

Moves

Slide tokens along edges = multiplication by stochastic matrix in

\[
\begin{cases}
[\alpha_{i,j}]_{1\leq i,j\leq n} & \forall 1 \leq i, j \leq n, \alpha_{i,j} \geq 0, \text{ and } \\
\forall j \leq n, \sum_{1\leq i\leq n} \alpha_{i,j} = 1, \text{ and } \\
\text{if } \{i, j\} \notin E(G) \text{ then } \alpha_{i,j} = 0
\end{cases}
\]

if \(ij \in E \), an amount \(\alpha_{i,j} \) of the token in \(v_j \) goes to \(v_i \)

Mark nodes = add to \(c \) a vector in

\[\{(m_1, \cdots, m_n) \mid \sum_{i \leq n} m_i \leq k\}\]
\mathcal{R}_{i-1}: states from which Player C always wins in at most $i - 1$ rounds, when Player R is the first to play.

$C_i = \{ (c, r) \mid \exists \text{move}, (\text{move}(c), r) \in \mathcal{R}_{i-1} \}$
Main Idea of Algorithm 1/2

\mathcal{R}_{i-1}: states from which Player C always wins in at most $i - 1$ rounds, when Player R is the first to play.

$\mathcal{C}_i = \{(c, r) \mid \exists \text{move}, (\text{move}(c), r) \in \mathcal{R}_{i-1}\}$

\mathcal{C}_i: states from which Player C always wins in at most i rounds when playing first

\mathcal{C}_i is a polytope, computable from \mathcal{R}_{i-1}, polynomial-size but in higher dimension

Problem: projection
C_i: states from which Player C always wins in at most i rounds when playing first.

$R_i = \{(c, r) \mid \forall \text{move}, (c, \text{move}(r)) \in C_i\}$
Main Idea of Algorithm 2/2

C_i: states from which Player C always wins in at most i rounds when playing first

$R_i = \{(c, r) \mid \forall \text{move}, (c, \text{move}(r)) \in C_i\}$

R_i: states from which Player C always wins in at most i rounds, when Player R is the first to play.

$R_i = \text{polytope, computable from } C_i$, polynomial-size.

Trick: “just” have to reenforce each constraint
Bad news and Good news

Fractional cop-number is one :(

Strategy: place $f_1 = 1/n$ cop per node
At step i,

1. $h_i = \sum_{j \leq i} f_j$ cop “follows” the robber.
 $1 - h_i$ cop remains
2. place $f_{i+1} = \frac{1 - h_i}{n}$ cop per node.

$h_i \rightarrow i \rightarrow \infty \ 1$

Meyniel conjecture seems safe...

approximation for surveillance number? :)

Surveillance game: inequality defining the polytopes are similar to set cover
Proof based on approximation of set cover
for the moment: only probabilistic strategy
Conclusion and Future Work

Promising framework (we hope)

Lot of work remains:
- polynomial algorithm? (it is if length of game is bounded)
- approximation?
- fast robber?
- careful analysis of polytopes in each game
- etc.
Thank you