Fractional Combinatorial Games

F. Giroire¹ N. Nisse¹ S. Pérennes¹ R. P. Soares^{1,2}

¹ COATI, Inria, I3S, CNRS, UNS, Sophia Antipolis, France ² ParGO Research Group, UFC, Fortaleza, Brazil

EURO 2013, stream Graph Searching

Roma, July 4th, 2013

Initialization:

- \bigcirc \mathcal{C} places the cops;
- \bigcirc \mathcal{R} places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop at same node as robber.

Goal:

Initialization:

- \bigcirc \mathcal{C} places the cops;
- \bigcirc \mathcal{R} places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop at same node as robber.

Goal:

Initialization:

- \bigcirc \mathcal{C} places the cops;
- \bigcirc \mathcal{R} places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop at same node as robber.

Goal:

Initialization:

- \bigcirc \mathcal{C} places the cops;
- \bigcirc \mathcal{R} places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop at same node as robber.

Goal:

Initialization:

- \bigcirc \mathcal{C} places the cops;
- \bigcirc \mathcal{R} places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop at same node as robber.

Goal:

Initialization:

- \bigcirc \mathcal{C} places the cops;
- \bigcirc \mathcal{R} places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop at same node as robber.

Goal:

Initialization:

- $oldsymbol{0}$ $\mathcal C$ places the cops;
- \bigcirc \mathcal{R} places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop at same node as robber.

Goal:

Initialization:

- \bigcirc \mathcal{C} places the cops;
- ${f 2}$ ${\cal R}$ places the robber.

Step-by-step:

- each cop traverses at most 1 edge;
- the robber traverses at most 1 edge.

Robber captured:

A cop at same node as robber.

Goal:

An Observer must ensure that a Surfer never reaches a dangerous node

An Observer must ensure that a Surfer never reaches a dangerous node

Turn by turn: Observer marks k = 2 nodes

Giroire et al.

Surveillance game

[Fomin, Giroire, Mazauric, Jean-Marie, Nisse 12]

In this example, all nodes are marked

Victory of the Observer using 2 marks per turn

Model: another Two players game

• a Surfer starts from safe homebase v_0

in G, a dangerous graph $\frac{1}{4}$

• a Guard \checkmark with some amount k of bullets

Turn by turn:

- the guard secures < k nodes;
- 2 then, the Surfer may move to an adjacent node.

Defeat: Surfer in unsafe node

Minimize amount of bullets to win for any Surfer's trajectory

Surveillance number of G (connected) from v_0 : $sn(G, v_0)$

Two Players Combinatorial Games

- Two players play a game on a graph.
- Game is played turn-by-turn.
- Players play by moving and/or adding tokens on vertices of the graph.
- Optimization problem: minimizing number of tokens to achieve some goal

All these games are hard

- Cops and Robber: k cops are enough?
 - PSPACE-complete in general graphs [Mamino, 2012].
- Surveillance Game: k marks per turn are enough?
 - k = 2 NP-complete for Chordal/Bipartite Graphs [Fomin et al, 2012].
 - k = 4 PSPACE-complete for DAGS [Fomin et al, 2012].
- Angels and Devils: Does an Angel of power k wins?
 - 1-Angel loses in (infinite) grids [Conway, 1982].
 - 2-Angel wins in (infinite) grids [Máthé, 2007].
- Eternal Dominating set.
- Eternal Vertex Cover.
 - NP-hard [Fomin et al, 2010].

New tools/approaches are required

Several questions remain open

- Meyniel conjecture: $cn(G) = O(\sqrt{n})$ in any n-node graphs?
- Polynomial-time Approximation algorithms?

less difficult but still intriguing

- number of cops to capture fast robber in grids?
- cost of connectivity in surveillance game?
- etc.

Here, we present preliminary results of our new approach

Fractional Combinatorial Game

Fractional games:

both players can use "fractions" of tokens.

Semi-Fractional games:

only one player (Player C) can use fractions of tokens.

Integral games: classical games, token are unsplittable

integral game: cop-number = 2

integral game: cop-number = 2

semi fractional: cop-number $\leq 3/2$

Remark:

by definition: semi-fractional \leq integral

gap? relationship with fractional?

Preliminary results

Fractional games

general framework: fractional relaxation of turn-by-turn games important property: "convexity" of winning states

Semi-fractional = fractional

(properties of robber's moves)

solutions of fractional games provides lower bounds for integral games

Algorithm A to decide which player wins

tools: linear programming techniques.

Bad news: one step of A is exponential (exponent: length of the game)

Hope: use specifities of games to reduce time-complexity

Integrality gap

Bad news: fractional cop-number $\leq 1 + \epsilon$ for any graph and any $\epsilon > 0$

Hope: surveillance game: fractional game gives a probabilistic

log *n*-approximation

10/17 ∂ ۹ (%

States of the Game

In n-node graph

- $c \in \mathbb{R}^n_+$ represents the tokens of Player C.
- $r \in \mathbb{R}^n_+$ represents the tokens of Player R.
- $(c,r) \in \mathbb{R}^{2n}_+$ represents the state of the game.

set of states = polytope

Examples:

cops and robber: $\sum_{i \le n} r_i = 1$ and $\sum_{i \le n} c_i = k$ (# of cops) surveillance game: $\sum_{i \le n} r_i = 1$

Winning states and moves

winning states = convex subset of states

```
cops and robber: \{(c,r) \mid c_i \geq r_i, i = 1 \cdots, n\} surveillance game: \{(c,r) \mid c_i \geq 1, i = 1 \cdots, n\}
```

moves

slide tokens along edges = multiplication by stochastic matrix in

$$\left\{ [\alpha_{i,j}]_{1 \leq i,j \leq n} \left| \begin{array}{c} \forall 1 \leq i,j \leq n, \alpha_{i,j} \geq 0, \text{ and} \\ \forall j \leq n, \sum_{1 \leq i \leq n} \alpha_{i,j} = 1, \text{ and} \\ \text{if } \{i,j\} \notin \overline{E(G)} \text{ then } \alpha_{i,j} = 0 \end{array} \right. \right\}$$

if $ij \in E$, an amount $\alpha_{i,j}$ of the token in v_j goes to v_i

mark nodes = add to c a vector in

$$\{(m_1,\cdots,m_n)\mid \sum_{i\leq n}m_i\leq k\}$$

12/17

Main Idea of Algorithm 1/2

 \mathcal{R}_{i-1} : states from which Player C always wins in at most i-1 rounds, when Player R is the first to play.

$$C_i = \{(c, r) \mid \exists move, (move(c), r) \in \mathcal{R}_{i-1}\}$$

Main Idea of Algorithm 1/2

 \mathcal{R}_{i-1} : states from which Player C always wins in at most i-1 rounds, when Player R is the first to play.

$$C_i = \{(c, r) \mid \exists move, (move(c), r) \in \mathcal{R}_{i-1}\}$$

 C_i : states from which Player C always wins in at most i rounds when playing first

 C_i = polytope, computable from \mathcal{R}_{i-1} , polynomial-size but in higher dimension **Problem:** projection

Main Idea of Algorithm 2/2

 C_i : states from which Player C always wins in at most i rounds when playing first

$$\mathcal{R}_i = \{(c, r) \mid \forall move, (c, move(r)) \in \mathcal{C}_i\}$$

Main Idea of Algorithm 2/2

 C_i : states from which Player C always wins in at most i rounds when playing first

$$\mathcal{R}_i = \{(c, r) \mid \forall move, (c, move(r)) \in \mathcal{C}_i\}$$

 \mathcal{R}_i : states from which Player C always wins in at most i rounds, when Player R is the first to play.

 \mathcal{R}_i = polytope, computable from \mathcal{C}_i , polynomial-size. **Trick:** "just" have to reenforce each constraint

14/17

Bad news and Good news

Fractional cop-number is one

:(

Strategy: place $f_1 = 1/n$ cop per node At step i,

- $h_i = \sum_{j \le i} f_j$ cop "follows" the robber. $1 - h_i$ cop remains
- 2 place $f_{i+1} = \frac{1-h_i}{n}$ cop per node.

 $h_i \to_{i \to \infty} 1$

Meyniel conjecture seems safe...

approximation for surveillance number?

:)

Surveillance game: inequality defining the polytopes are similar to set cover

Proof based on approximation of set cover

for the moment: only probabilistic strategy

15/17

Conclusion and Future Work

Promising framework (we hope)

Lot of work remains:

- polynomial algorithm? (it is if length of game is bounded)
- approximation?
- fast robber?
- careful analysis of polytopes in each game
- etc.

Thank you