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Models of distributed computing

Goal: Monitoring properties in large-scale distributed networks

Property testing

A central entity:

1 queries some nodes (typically o(n))

2 extracts some local information from each query (typically O(log n) bits)
ex: “What is your i th neighbor?”

3 decides some (global) property about the graph or about node labeling
(Is it planar? connected? what is its diameter? Is the coloring proper?...)

this talk is not about Property testing...

Distributed decision

Each node

1 gathers some (local) information by exchanging messages with its neighborhood

2 decides some (global) property about the graph or about node labeling
Node’s Output ∈ {0, 1} If YES instance: all nodes must answer 1

otherwise, at least one node must answer 0

this talk is not about Distributed decision either... but ...

Becker et al. What Can(not) Be Computed in One Round?
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LOCAL model [Peleg 2000]

G = (V ,E ) be a n-node graph, with a labeling on nodes
message-passing system

nodes have distinct IDs

t rounds (possibly a function of n)

synchronous

no faults

at each round, nodes exchange messages with their neighbors

messages have arbitrary size

nodes have arbitrary computational power

If t ≥ diameter(G ), any (decidable) property can be decided.
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LOCAL model in O(1) rounds

Some trivial examples in 1 round

Deciding if a coloring is proper, Deciding a MIS,...

Proper coloring: c : V → N s.t. any two adjacent vertices have 6= colors
Maximal Independent Set (MIS): S ⊆ V s.t. no adjacent vertices in S .

Seminal(?) work Cole,Vishkin 86 + Linial 92

Computing a 3-coloring in rings requires Θ(log∗ n) rounds

What cannot be computed Kuhn,Moscibroda,Wattenhoffer 04

Minimum Vertex Cover (or Max Matching)

in k rounds: Ω(nc/k
2

/k)-approx.

O(1)-approx requires Ω(
√

log n/ log log n) rounds

Minimum Dominating Set (or Max Indep. Set)
in k rounds: Ω(∆1/k/k)-approx.

O(1)-approx requires Ω(log ∆/ log log ∆) rounds

Becker et al. What Can(not) Be Computed in One Round?
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LOCAL model in O(1) rounds

Locally Checkable Labeling (LCL) Naor, Stockmeyer 95

in graph with bounded degree

non-decidable in general

randomization does not help

does not depend on ID, but on local ordering

Decision Problem Fraigniaud,Korman,Peleg 2013

randomization helps

non-determinism helps

randomization + non-determinism = All

Becker et al. What Can(not) Be Computed in One Round?
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CONGEST model

G = (V ,E ) be a n-node graph, with a labeling on nodes
message-passing system

nodes have distinct IDs

t rounds (possibly a function of n)

synchronous

no faults

at each round, nodes exchange messages with their neighbors

messages have size O(log n)

nodes have arbitrary computational power

If t ≥ diameter(G ), any (decidable) property can be decided.
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CONGEST model: What cannot be computed...

... in diameter number of rounds

B upper bound on the size of messages
D: diameter of graph

Frischknecht,Holzer,Wattenhofer, 2012

Any distributed randomized ε-error algorithm requires:

Diameter Ω(n/B) rounds to decide if D ≤ 4 (even for D ≤ 5)
Ω(
√
n/B + D) rounds to c-approx of diameter, c < 3/2

Girth Ω(
√
n/B + D) rounds to c-approx of girth, c < 2

proofs rely on Two-Party Communication Complexity:

Alice: a ∈ {0, 1}k and Bob: b ∈ {0, 1}k
need to compute f : {0, 1}k × {0, 1}k → {0, 1}
what number of bits (as a function of k) do they need to exchange?

Disjointness problem: any algorithm using public randomness requires Ω(k)

f (a, b) = 0 iff ∃i ≤ k such that a[i ] = b[i ] = 1

idea: V (G) = A ∪ B: A represents a, B represents b, Required info
|cut(A,B)|∗|messages| ≤ #Rounds

Becker et al. What Can(not) Be Computed in One Round?
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Distributed testing

So far

property testing: central entity gather structured local info from some nodes

distributed decision: all nodes gather information and answer 0 or 1

LOCAL: (unbounded size) message passing
CONGEST: O(log n) bits message passing
# of rounds: O(1) or function of n

distributed testing:
all nodes gather information and send some structured info (“message”) to a
central entity

in distributed testing setting, LOCAL model and O(1) rounds:
testing Cycle-Freeness requires messages of size Ω(log d) per node with degree d

[Arfaoui,Fraigniaud,Ilcinkas,Mathieu, 2014]

our model: all nodes send some “message” to a central entity

Becker et al. What Can(not) Be Computed in One Round?
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Our model

node i

neighbor b

neighbor a

neighbor c

Local vision of Node i

Graph with n nodes. Nodes have distinct identifiers in {1, · · · , n}.

A node knows: its ID and the IDs of its neighbors

Becker et al. What Can(not) Be Computed in One Round?
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Our model

node i

neighbor b

neighbor a

neighbor c

%+/%+/

%+/

brief description of local 
knowledge

A node has arbitrary computation power.

Goal: encode its local knowledge in a small message (typically O(log n) bits)

Becker et al. What Can(not) Be Computed in One Round?
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Our model

WhiteBoard

node i

neighbor b

neighbor a

neighbor c

central
entity

Local Vision of Node i 

small message
function of i and the 
Ids of its neighbors

message from J
message from K

message from b

Each node sends its (unique) message to a central entity

Remark: If |message| = n bits, then node gives its whole neighboorhood

Becker et al. What Can(not) Be Computed in One Round?
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Our model

central
entity

message from J
message from K
message from b
message from a
message from c
message from w
message from y
message from u
message from p
message from z
message from t

WhiteBoard

%+/%+/

%+/

The referee has arbitrary computation power and use the n messages to...
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Our model

central
entity

message from J
message from K
message from b
message from a
message from c
message from w
message from y
message from u
message from p
message from z
message from t

Graph has 
property PPP

WhiteBoard

... answer a question about the graph (typically: ”does G has some property?”)

Related with Number-in-hand model with simultaneous messages f (x1, · · · , xk)
[Babai,Kimmel,Lokam 2004]

Becker et al. What Can(not) Be Computed in One Round?
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To sum up: Model of distributed computing

Principle

Does G belongs to P?

each node encodes its local knowledge

message : ID of v × IDs of N(v)→ message(v), and

|message(v)| = O(log n) bits

the referee decodes the n messages to answer

answer : (message(vi ))i≤n → {0, 1}∗

Hypothesis

arbitrary computational power: message and answer are arbitrary functions

IDs are distinct in {1, · · · , n}

Remark: if bounded maximum degree: each node may send its full adjacency list.

Problem

in total: O(n log n) bits of local information
What kind of question can be answered?

Becker et al. What Can(not) Be Computed in One Round?
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Example: Does G is a tree? If yes, compute its adjacency matrix.

1

4
3

6

5

2

Becker et al. What Can(not) Be Computed in One Round?
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Example: Does G is a tree? If yes, compute its adjacency matrix.

central
entity

1

4
3

6

5

2

�

v

degree(v) = 2(n − 1)?
 

degree(v)

Problem if not 
connected

No adjacency 
matrix
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Example: Does G is a tree? If yes, compute its adjacency matrix.

WhiteBoard

central
entity

1

4
3

6

5

2

ID(v);
degree(v);�
w∈N(v) Id(w)

(v1 ; 2 ; 7)
(v2 ; 1 ; 6)
(v3 ; 1; 1)

(v4 ; 3 ; 12)
(v5 ; 1 ; 4)
(v6 ; 2 ; 6)

Each node sends its ID, its degree and the sum of the IDs of its neighbors

Becker et al. What Can(not) Be Computed in One Round?
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Example: Does G is a tree? If yes, compute its adjacency matrix.

WhiteBoard

central
entity

1

4
3

6

5

2

(v1 ; 2 ; 7)
(v2 ; 1 ; 6)
(v3 ; 1; 1)

(v4 ; 3 ; 12)
(v5 ; 1 ; 4)

(v6 ; 2-1 ; 6-2)

6

2

The referee iteratively “prunes” the one-degree nodes in the whiteboard
In parallel, he re-builds the tree.
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Example: Does G is a tree? If yes, compute its adjacency matrix.

WhiteBoard

central
entity

1

4
3

6

5

2

(v1 ; 2-1 ; 7-3)
(v2 ; 1 ; 6)
(v3 ; 1; 1)

(v4 ; 3 ; 12)
(v5 ; 1 ; 4)
(v6 ; 1 ; 4)

6

2

1

3

The referee iteratively “prunes” the one-degree nodes in the whiteboard
In parallel, he re-builds the tree.
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Example: Does G is a tree? If yes, compute its adjacency matrix.

WhiteBoard

central
entity

1

4
3

6

5

2

(v1 ; 1 ; 4)
(v2 ; 1 ; 6)
(v3 ; 1; 1)

(v4 ; 3-1 ; 12-5)
(v5 ; 1 ; 4)
(v6 ; 1 ; 4)

6

2

1

3

4

5

The referee iteratively “prunes” the one-degree nodes in the whiteboard
In parallel, he re-builds the tree.
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4
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What Can(not) Be Computed in One Round

G degeneracy k: ∃v ∈ V (G) with degree ≤ k and G \ v degeneracy ≤ k.

Possible: BUILD graphs with degeneracy ≤ k, using messages of size O(k · log n)

Decide if a graph has bounded degeneracy (include planar graphs, bounded genus
graphs, bounded treewidth graphs...). If yes, build their adjacency matrix.

proof: generalization of the “pruning process” of trees.

Each node v sends

its ID

its degree∑
w∈N(v) ID(w)∑
w∈N(v) ID

2(w)
...∑

w∈N(v) ID
k (w)

The referee can compute neighborhood of nodes with degree ≤ k
(unique integral solution)

Becker et al. What Can(not) Be Computed in One Round?
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What Can(not) Be Computed in One Round

Not possible using messages of size O(log n)

Decide if the graph contains a triangle, a (induced or not) square.
Decide if the graph has diameter at most 3

Recently: characterization of induced subgraphs whose containment can be decided
[Kari,Matamala,Rapaport,Salo 2015]

proof: Kind of reduction.
If possible ⇒ Possible to build adjacency matrix of bipartite graphs.

2Ω(n2) such graphs ⇒ impossible to distinguish all of them with O(n log n) bits.
⇒ contradiction

Becker et al. What Can(not) Be Computed in One Round?
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What Can(not) Be Computed in One Round

Not possible to decide if G contains a triangle using messages of size O(log n)

i

k

j

G

 

Assume A solves TRIANGLE: use A to BUILD bipartite graphs
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What Can(not) Be Computed in One Round

Not possible to decide if G contains a triangle using messages of size O(log n)

i

k

j

G

i

k

j

G(i,j)

i

k

j

G(i,k)

R R

Assume A solves TRIANGLE: use A to BUILD bipartite graphs

{i , j} ∈ E(G)⇔ G(i , j) contains a triangle

Becker et al. What Can(not) Be Computed in One Round?



13/20

What Can(not) Be Computed in One Round

Not possible to decide if G contains a triangle using messages of size O(log n)

i

k

j

G

i

k

j

G(i,j)

i

k

j

G(i,k)

R R

Each node j sends 2 messages:

A1(j) encodes NG (j) (same as NG(i,k)(v) for any i , k ∈ V \ {j})
A2(j) encodes NG(j,i)(j) = NG (j) ∪ {R} (the same for any w ∈ V \ {j})
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What Can(not) Be Computed in One Round

Not possible to decide if G contains a triangle using messages of size O(log n)

i

k

j

G

i

k

j

G(i,j)

i

k

j

G(i,k)

R R

Combining the 2n messages, the referee simulates A in each G(i , j), i , j ∈ V
⇒ able to decide if {i , j} ∈ E(G) for any i , j ∈ V

Becker et al. What Can(not) Be Computed in One Round?
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What Can(not) Be Computed in One Round

Randomized version: private/public coins

Not possible [Becker, Montealegre, Rapaport, Todinca, 2014]

For any ε < 1/2, any public coins randomized protocol for TRIANGLE (resp.,
Diameter≤ 3) with ε two-sided errors requires messages of size Ω(n) bits.

Proof: Reduction to INDEX function:
Alice: m-bits vector x , Bob: integer q ≤ m INDEX(x , q) = xq , the qth bit of x .

Requires Ω(m) bits in randomized protocol
[Kermer, Nisan, Ron, 1999]

Encoding of x of size m = n2 as a bipartite graph with n vertices.
protocol for TRIANGLE with g(n) bits/message

⇒ protocol for INDEX using O(g(n) · n) bits.

Hierarchy of randomized protocol [Becker, Montealegre, Rapaport, Todinca, 2014]

Public coins ≺ Private coins ≺ Deterministic

Becker et al. What Can(not) Be Computed in One Round?
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Hierarchy of randomized protocol [Becker, Montealegre, Rapaport, Todinca, 2014]

Public coins ≺ Private coins ≺ Deterministic
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What Can(not) Be Computed in One Round

Randomized version: private/public coins

Not possible [Becker, Montealegre, Rapaport, Todinca, 2014]

For any ε < 1/2, any public coins randomized protocol for TRIANGLE (resp.,
Diameter≤ 3) with ε two-sided errors requires messages of size Ω(n) bits.

Proof: Reduction to INDEX function:
Alice: m-bits vector x , Bob: integer q ≤ m INDEX(x , q) = xq , the qth bit of x .

Requires Ω(m) bits in randomized protocol
[Kermer, Nisan, Ron, 1999]

Encoding of x of size m = n2 as a bipartite graph with n vertices.
protocol for TRIANGLE with g(n) bits/message

⇒ protocol for INDEX using O(g(n) · n) bits.

Hierarchy of randomized protocol [Becker, Montealegre, Rapaport, Todinca, 2014]

Public coins ≺ Private coins ≺ Deterministic
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Open Problem: Connectivity

Possible Randomized, using small messages

CONNECTIVITY can be decided by a randomized protocol using public coins and
messages of size O(log2 n) bits [Ahn,Guha,McGregor, 2012]

What about a deterministic protocol using messages of o(n) bits??

Even in simpler case:

G , n − 1-regular with 2n nodes G connected or 2 disjoint cliques.

Becker et al. What Can(not) Be Computed in One Round?
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Generalization

Until now:

All nodes write simultaneously on the whiteboard
Don’t take advantage of what is written by other nodes.

Now:

Nodes can also read the whiteboard.
Can use previous messages to compute their own message

WhiteBoard

node i

neighbor b

neighbor a

neighbor c

central
entity

small message
function of i and the Ids of its neighbors

and
of the current content of the whiteboard

message from J
message from K

message from b
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4 Models

SimAsync model above

All nodes write simultaneously on the whiteboard

SimSync

Nodes write sequentially.
Worst ordering: order chosen by an adversary

Async

Nodes rise hand to speak.
If several nodes rise hand, all write simultaneously.

Sync

Nodes rise hand to speak.
If several nodes rise hand, they write sequentially in worst odering.
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Hierarchy of models

SimAsync(log n) ≺ SimSync(log n)

Maximal Independent Set (MIS) containing v1.

MIS /∈ SimAsync(log n) (Simultaneous)

MIS ∈ SimSync(log n) (Sequencial, adversarial ordering)

trivial algo.
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Hierarchy of models

SimSync(log n) ≺ Async(log n)

BFS-tree in Bipartite graphs /∈ SimSync(log n)

3

5

7

4

6

2

1

9 811 1013 12

G = (V ,E ) Bipartite graph V = {v2, · · · , vn} (blue and green nodes)
Matching between V and W = {vn+1, · · · , v2n−2} (red nodes)

Gi : Blue edge from 1 to n + i ∈W (ex: n = 6 and i = 5: G5)
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Hierarchy of models

SimSync(log n) ≺ Async(log n)

BFS-tree in Bipartite graphs /∈ SimSync(log n)

3

5

7

4

6

2

1

9 811 1013 12

NG (vi ) =”level 3” of BFS-tree in Gi

SimSync: Adversarial ordering: first nodes of V

Solving BFS ⇒ BUILD Bipartite, impossible if O(log n) bits/message
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Hierarchy of models

SimSync(log n) ≺ Async(log n)

BFS-tree in Bipartite graphs ∈ Async(log n)

central
entity

degree(root)

1

Initially, only the root (v1) speaks
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Hierarchy of models

SimSync(log n) ≺ Async(log n)

BFS-tree in Bipartite graphs ∈ Async(log n)

central
entity

up(v)=degree "toward" the root

1

Then, all nodes adjacent to the root speak

down(v)=degree(v)-up(v)

5 8 3 4 7

5: up=1,down=2
8: up=1, down=1
3: up=1, down=1
4: up=1, down=1
7: up=1, down=2

Level 1

Key point: bipartiteness allows that nodes know when all nodes of
previous level have sent their message.
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Hierarchy of models

SimSync(log n) ≺ Async(log n)

BFS-tree in Bipartite graphs ∈ Async(log n)

central
entity

up(v)=degree "toward" the root

1

Then, all nodes down to Level 1 speak

down(v)=degree(v)-up(v)

5 8 3 4 7

5: up=1,down=2
8: up=1, down=1
3: up=1, down=1
4: up=1, down=1
7: up=1, down=2

Level 1

9 2

Level 2
9: up=4,down=1
8: up=3, down=1

Key point: bipartiteness allows that nodes know when all nodes of
previous level have sent their message.
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Hierarchy of models

SimSync(log n) ≺ Async(log n)

BFS-tree in Bipartite graphs ∈ Async(log n)

central
entity

up(v)=degree "toward" the root

1

Then, all nodes down to Level 2 speak

down(v)=degree(v)-up(v)

5 8 3 4 7

5: up=1,down=2
8: up=1, down=1
3: up=1, down=1
4: up=1, down=1
7: up=1, down=2

Level 1

9 2

Level 2
9: up=4,down=1
8: up=3, down=1

6

Level 3
6: up=2,down=0

Key point: bipartiteness allows that nodes know when all nodes of
previous level have sent their message.
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Hierarchy of models

SimSync(log n) ≺ Async(log n)

BFS-tree in Bipartite graphs ∈ Async(log n)

central
entity

up(v)=degree "toward" the root

1

Then, all nodes down to Level 2 speak

down(v)=degree(v)-up(v)

5 8 3 4 7

5: up=1,down=2
8: up=1, down=1
3: up=1, down=1
4: up=1, down=1
7: up=1, down=2

Level 1

9 2

Level 2
9: up=4,down=1
8: up=3, down=1

6

Level 3
6: up=2,down=0

Similar protocol works in model Sync in general graphs.
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Results

SimAsync(log n) ≺ SimSync(log n) ≺ Async(log n) � Sync(log n)

message: O(log n) bits SimAsync SimSync Async Sync
BUILD k-degenerate yes yes yes yes

rooted MIS no yes yes yes
Square no no ? ?

Bipartite-BFS no no yes yes
BFS ? ? ? yes

Connectivity ? ? ? yes

Orthogonal criteria
Let f (n) = o(n) and g(n) = o(f (n)).

There exist problems solvable in SimAsync(f(n)) and not in Sync(g(n)).
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Further works

Probabilistic algorithms?

What if graph partially known? (Distributed testing)

Connectivity?

What is a realistic (useful) model?

...
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