Allowing each node to communicate only once in a distributed system

F. Becker1 A. Kosowski2 M. Matamala3 N. Nisse4
I. Rapaport3 K. Suchan5 I. Todonca1

1 LIFO, Univ. Orléans, France
2 Inria, LIAFA, Paris, France
3 DIM, Universidad de Chile, Santiago, Chile
4 COATI, Inria, I3S, CNRS, UNS, Sophia Antipolis, France
5 Universidad Adolfo Ibáñez, Santiago, Chile

ANR DISPLEXITY
Bordeaux, Sept. 3rd 2015

Adding a Referee to an Interconnection Network: What Can(not) Be Computed in One Round. IPDPS 2011
Allowing each node to communicate only once in a distributed system: shared whiteboard models SPAA 2012
Models of distributed computing

Goal: Monitoring properties in large-scale distributed networks

Property testing

A central entity:

1. queries some nodes (typically $o(n)$)
2. extracts some local information from each query (typically $O(\log n)$ bits)

 ex: “What is your i^{th} neighbor?”
3. decides some (global) property about the graph or about node labeling

 (Is it planar? connected? what is its diameter? Is the coloring proper?...)

 this talk is not about Property testing...

Distributed decision

Each node

1. gathers some (local) information by exchanging messages with its neighborhood
2. decides some (global) property about the graph or about node labeling

 Node’s Output $\in \{0, 1\}$

 If YES instance: all nodes must answer 1

 otherwise, at least one node must answer 0

 this talk is not about Distributed decision either... but ...

Becker et al. What Can(not) Be Computed in One Round?
Models of distributed computing

Goal: Monitoring properties in large-scale distributed networks

Property testing

A *central entity*:

1. queries some nodes (typically $o(n)$)
2. extracts some local information from each query (typically $O(\log n)$ bits)

 ex: “What is your i^{th} neighbor?”
3. decides some (global) property about the graph or about node labeling

 (Is it planar? connected? what is its diameter? Is the coloring proper?...)

This talk is not about Property testing...

Distributed decision

Each node

1. gathers some (local) information by exchanging messages with its neighborhood
2. decides some (global) property about the graph or about node labeling

Node’s Output $\in \{0,1\}$

If YES instance: all nodes must answer 1

otherwise, at least one node must answer 0

This talk is not about Distributed decision either... but ...

Becker et al.

What Can(not) Be Computed in One Round?
Models of distributed computing

Goal: Monitoring properties in large-scale distributed networks

Property testing

A central entity:

1. queries some nodes (typically $o(n)$)
2. extracts some local information from each query (typically $O(\log n)$ bits)

 ex: “What is your i^{th} neighbor?”
3. decides some (global) property about the graph or about node labeling
 (Is it planar? connected? what is its diameter? Is the coloring proper?...)

this talk is not about Property testing...

Distributed decision

Each node

1. gathers some (local) information by exchanging messages with its neighborhood
2. decides some (global) property about the graph or about node labeling
 Node’s Output $\in \{0, 1\}$

 If YES instance: all nodes must answer 1
 otherwise, at least one node must answer 0

this talk is not about Distributed decision either... but...

Becker *et al.* What Can(not) Be Computed in One Round?
Models of distributed computing

Goal: Monitoring properties in large-scale distributed networks

Property testing

A central entity:
1. queries some nodes (typically $o(n)$)
2. extracts some local information from each query (typically $O(\log n)$ bits)
 - ex: “What is your i^{th} neighbor?”
3. decides some (global) property about the graph or about node labeling
 - (Is it planar? connected? what is its diameter? Is the coloring proper?...)

this talk is not about Property testing...

Distributed decision

Each node
1. gathers some (local) information by exchanging messages with its neighborhood
2. decides some (global) property about the graph or about node labeling
 - Node’s Output $\in \{0, 1\}$
 - If YES instance: all nodes must answer 1
 - otherwise, at least one node must answer 0

this talk is not about Distributed decision either... but...

Becker et al. What Can(not) Be Computed in One Round?
Models of distributed computing

Goal: Monitoring properties in large-scale distributed networks

Property testing

A *central entity*:

1. queries some nodes (typically \(o(n) \))
2. extracts some local information from each query (typically \(O(\log n) \) bits)

 ex: “What is your \(i^{th} \) neighbor?”
3. decides some (global) property about the graph or about node labeling

 (Is it planar? connected? what is its diameter? Is the coloring proper?...)

Distributed decision

Each node

1. gathers some (local) information by exchanging messages with its neighborhood
2. decides some (global) property about the graph or about node labeling

 Node’s Output \(\in \{0, 1\} \)

 If YES instance: all nodes must answer 1
 otherwise, at least one node must answer 0

this talk is not about Property testing...

this talk is not about Distributed decision either... but ...

Becker *et al.* What Can(not) Be Computed in One Round?
Let $G = (V, E)$ be an n-node graph, with a labeling on nodes. This defines a message-passing system where:

- Nodes have distinct IDs.
- There are t rounds (possibly a function of n).
- The system is synchronous.
- There are no faults.
- At each round, nodes exchange messages with their neighbors.
- Messages have arbitrary size.
- Nodes have arbitrary computational power.

If $t \geq \text{diameter}(G)$, any (decidable) property can be decided.
$G = (V, E)$ be a n-node graph, with a labeling on nodes
message-passing system

- nodes have distinct IDs
- t rounds (possibly a function of n)
- synchronous
- no faults
- at each round, nodes exchange messages with their neighbors
- messages have arbitrary size
- nodes have arbitrary computational power

If $t \geq \text{diameter}(G)$, any (decidable) property can be decided.
LOCAL model in $O(1)$ rounds

Some trivial examples in 1 round

Deciding if a coloring is proper, Deciding a MIS,...

Proper coloring: $c : V \rightarrow \mathbb{N}$ s.t. any two adjacent vertices have \neq colors

Maximal Independent Set (MIS): $S \subseteq V$ s.t. no adjacent vertices in S.

Seminal(?) work Cole,Vishkin 86 + Linial 92

Computing a 3-coloring in rings requires $\Theta(\log^* n)$ rounds

What cannot be computed Kuhn,Moscibroda,Wattenhoffer 04

Minimum Vertex Cover (or Max Matching)
in k rounds: $\Omega(n^\varepsilon/k^2/k)$-approx.
LOCAL model in $O(1)$ rounds

Some trivial examples in 1 round
Deciding if a coloring is proper, Deciding a MIS,

Seminal(?) work
Cole, Vishkin 86 + Linial 92
Computing a 3-coloring in rings requires $\Theta(\log^* n)$ rounds

What cannot be computed
Kuhn, Moscibroda, Wattenhoffer 04

Minimum Vertex Cover (or Max Matching)
in k rounds: $\Omega(n^{c/k^2}/k)$-approx.
$O(1)$-approx requires $\Omega(\sqrt{\log n / \log \log n})$ rounds

Minimum Dominating Set (or Max Indep. Set)
in k rounds: $\Omega(\Delta^{1/k}/k)$-approx.
$O(1)$-approx requires $\Omega(\log \Delta / \log \log \Delta)$ rounds
LOCAL model in $O(1)$ rounds

Some trivial examples in 1 round

- Deciding if a coloring is proper, Deciding a MIS, ...

Seminal (?) work

- Cole, Vishkin 86 + Linial 92
- Computing a 3-coloring in rings requires $\Theta(\log^* n)$ rounds

What cannot be computed

- Kuhn, Moscibroda, Wattenhoffer 04

Minimum Vertex Cover (or Max Matching)

- in k rounds: $\Omega(n^{c/k^2/k})$-approx.

 - $O(1)$-approx requires $\Omega(\sqrt{\log n / \log \log n})$ rounds

Minimum Dominating Set (or Max Indep. Set)

- in k rounds: $\Omega(\Delta^{1/k} / k)$-approx.

 - $O(1)$-approx requires $\Omega(\log \Delta / \log \log \Delta)$ rounds
LOCAL model in $O(1)$ rounds

Locally Checkable Labeling (LCL)
Naor, Stockmeyer 95

- in graph with bounded degree
- non-decidable in general
- randomization does not help
- does not depend on ID, but on local ordering

Decision Problem
Fraigniaud, Korman, Peleg 2013

- randomization helps
- non-determinism helps
- randomization + non-determinism = All
LOCAL model in $O(1)$ rounds

<table>
<thead>
<tr>
<th>Locally Checkable Labeling (LCL)</th>
<th>Naor, Stockmeyer 95</th>
</tr>
</thead>
<tbody>
<tr>
<td>in graph with bounded degree</td>
<td></td>
</tr>
<tr>
<td>• non-decidable in general</td>
<td></td>
</tr>
<tr>
<td>• randomization does not help</td>
<td></td>
</tr>
<tr>
<td>• does not depend on ID, but on local ordering</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decision Problem</th>
<th>Fraigniaud,Korman,Peleg 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>• randomization helps</td>
<td></td>
</tr>
<tr>
<td>• non-determinism helps</td>
<td></td>
</tr>
<tr>
<td>• randomization + non-determinism = All</td>
<td></td>
</tr>
</tbody>
</table>
CONGEST model

Let $G = (V, E)$ be a n-node graph, with a labeling on nodes. Consider a message-passing system where:

- nodes have distinct IDs
- t rounds (possibly a function of n)
- synchronous
- no faults
- at each round, nodes exchange messages with their neighbors
- messages have size $O(\log n)$
- nodes have arbitrary computational power

If $t \geq \text{diameter}(G)$, any (decidable) property can be decided.
CONGEST model

\(G = (V, E) \) be a \(n \)-node graph, with a labeling on nodes message-passing system

- nodes have distinct IDs
- \(t \) rounds (possibly a function of \(n \))
- synchronous
- no faults
- at each round, nodes exchange messages with their neighbors
- messages have size \(O(\log n) \)
- nodes have arbitrary computational power

If \(t \geq \text{diameter}(G) \), any (decidable) property can be decided.
CONGEST model: What cannot be computed...

... in diameter number of rounds

B upper bound on the size of messages
D: diameter of graph

Frischknecht, Holzer, Wattenhofer, 2012

Any distributed randomized ϵ-error algorithm requires:

- **Diameter**:
 - $\Omega(n/B)$ rounds to decide if $D \leq 4$ (even for $D \leq 5$)
 - $\Omega(\sqrt{n}/B + D)$ rounds to c-approx of diameter, $c < 3/2$

- **Girth**: $\Omega(\sqrt{n}/B + D)$ rounds to c-approx of girth, $c < 2$

proofs rely on Two-Party Communication Complexity:

Alice: $a \in \{0, 1\}^k$ and Bob: $b \in \{0, 1\}^k$
need to compute $f: \{0, 1\}^k \times \{0, 1\}^k \to \{0, 1\}$
what number of bits (as a function of k) do they need to exchange?

Disjointness problem: any algorithm using public randomness requires $\Omega(k)$

$f(a, b) = 0$ iff $\exists i \leq k$ such that $a[i] = b[i] = 1$

idea: $\forall(v(G) = A \cup B$: A represents a, B represents b, Required info \leq$ #Rounds
CONGEST model: What cannot be computed...

... in diameter number of rounds

B upper bound on the size of messages
D: diameter of graph

Any distributed randomized ϵ-error algorithm requires:

- Diameter: $\Omega(n/B)$ rounds to decide if $D \leq 4$ (even for $D \leq 5$)
- Diameter: $\Omega(\sqrt{n}/B + D)$ rounds to c-approx of diameter, $c < 3/2$

- Girth: $\Omega(\sqrt{n}/B + D)$ rounds to c-approx of girth, $c < 2$

proofs rely on Two-Party Communication Complexity:

Alice: $a \in \{0, 1\}^k$ and Bob: $b \in \{0, 1\}^k$

need to compute $f : \{0, 1\}^k \times \{0, 1\}^k \rightarrow \{0, 1\}$

what number of bits (as a function of k) do they need to exchange?

Disjointness problem: any algorithm using public randomness requires $\Omega(k)$

$f(a, b) = 0$ iff $\exists i \leq k$ such that $a[i] = b[i] = 1$

idea: $V(G) = A \cup B$: A represents a, B represents b, $|\text{cut}(A, B)\text{ in messages}| < \#\text{Rounds}$
CONGEST model: What cannot be computed...

... in diameter number of rounds

B upper bound on the size of messages
D: diameter of graph

Frischknecht, Holzer, Wattenhofer, 2012

Any distributed randomized ϵ-error algorithm requires:

- Diameter: $\Omega(n/B)$ rounds to decide if $D \leq 4$ (even for $D \leq 5$)
 $\Omega(\sqrt{n}/B + D)$ rounds to c-approx of diameter, $c < 3/2$

- Girth: $\Omega(\sqrt{n}/B + D)$ rounds to c-approx of girth, $c < 2$

proofs rely on Two-Party Communication Complexity:

Alice: $a \in \{0,1\}^k$ and Bob: $b \in \{0,1\}^k$
need to compute $f : \{0,1\}^k \times \{0,1\}^k \rightarrow \{0,1\}$
what number of bits (as a function of k) do they need to exchange?

Disjointness problem: any algorithm using public randomness requires $\Omega(k)$

$f(a, b) = 0$ iff $\exists i \leq k$ such that $a[i] = b[i] = 1$

idea: $V(G) = A \cup B$: A represents a, B represents b, $\frac{\text{Required info}}{\text{cut}(A,B) \times \text{messages}} \leq \#\text{Rounds}$
Distributed testing

So far

- **property testing**: central entity gather structured local info from some nodes

- **distributed decision**: all nodes gather information and answer 0 or 1
 - LOCAL: (unbounded size) message passing
 - CONGEST: $O(\log n)$ bits message passing
 - # of rounds: $O(1)$ or function of n
Distributed testing

So far

- **property testing**: *central entity* gather structured local info from *some* nodes

- **distributed decision**: *all nodes* gather information and answer 0 or 1
 - LOCAL: (unbounded size) message passing
 - CONGEST: $O(\log n)$ bits message passing
 - # of rounds: $O(1)$ or function of n

- **distributed testing**:
 all nodes gather information and send some structured info ("message") to a *central entity*
Distributed testing

So far

- **property testing**: central entity gather structured local info from some nodes
- **distributed decision**: all nodes gather information and answer 0 or 1
 - LOCAL: (unbounded size) message passing
 - CONGEST: $O(\log n)$ bits message passing
 - # of rounds: $O(1)$ or function of n
- **distributed testing**:
 all nodes gather information and send some structured info ("message") to a central entity

In distributed testing setting, LOCAL model and $O(1)$ rounds:

testing Cycle-Freeness requires messages of size $\Omega(\log d)$ per node with degree d

[Arfaoui,Fraigniaud,Ilcinkas,Mathieu, 2014]
So far

- **property testing**: central entity gather structured local info from some nodes

- **distributed decision**: all nodes gather information and answer 0 or 1
 - LOCAL: (unbounded size) message passing
 - CONGEST: $O(\log n)$ bits message passing
 - # of rounds: $O(1)$ or function of n

- **distributed testing**:
 - all nodes gather information and send some structured info ("message") to a central entity

In distributed testing setting, LOCAL model and $O(1)$ rounds:
Testing Cycle-Freeness requires messages of size $\Omega(\log d)$ per node with degree d
[Arfaoui,Fraigniaud,Ilcinkas,Mathieu, 2014]

- **our model**: all nodes send some "message" to a central entity
Graph with n nodes.

A node knows: its ID and the IDs of its neighbors.

Nodes have distinct identifiers in $\{1, \cdots, n\}$.

Our model
Our model

A node has arbitrary computation power.

Goal: encode its local knowledge in a small message (typically $O(\log n)$ bits)
Each node sends its (unique) message to a central entity.

Remark: If $|message| = n$ bits, then node gives its whole neighborhood.
The referee has arbitrary computation power and uses the n messages to...
Our model

... answer a question about the graph (typically: "does G has some property?")
Our model

... answer a question about the graph (typically: "does \(G \) has some property?")

Related with *Number-in-hand model* with simultaneous messages

\[f(x_1, \cdots, x_k) \]

[Babai, Kimmel, Lokam 2004]
To sum up: Model of distributed computing

Principle

Does G belong to \mathcal{P}?

- each node encodes its local knowledge

 \[
 \text{message} : \text{ID of } v \times \text{IDs of } N(v) \to \text{message}(v), \text{ and} \\
 |\text{message}(v)| = O(\log n) \text{ bits}
 \]

- the referee decodes the n messages to answer

 \[
 \text{answer} : (\text{message}(v_i))_{i \leq n} \to \{0, 1\}^*
 \]

Hypothesis

- arbitrary computational power: \text{message} and \text{answer} are arbitrary functions
- IDs are distinct in \{1, \cdots, n\}

Remark: if bounded maximum degree: each node may send its full adjacency list.

Problem

in total: $O(n \log n)$ bits of local information

What kind of question can be answered?

Becker et al. What Can(not) Be Computed in One Round?
Example: Does G is a tree? If yes, compute its adjacency matrix.
Example: Does G is a tree? If yes, compute its adjacency matrix.

\[\sum_{v} \text{degree}(v) = 2(n - 1)? \]

Problem if not connected
No adjacency matrix

Becker et al.
What Can(not) Be Computed in One Round?
Example: Does G is a tree? If yes, compute its adjacency matrix.

Each node sends its ID, its degree and the sum of the IDs of its neighbors.
Example: Does G is a tree? If yes, compute its adjacency matrix.

The referee iteratively “prunes” the one-degree nodes in the whiteboard.
In parallel, he re-builds the tree.
Example: Does G is a tree? If yes, compute its adjacency matrix.

The referee iteratively “prunes” the one-degree nodes in the whiteboard. In parallel, he re-builds the tree.
Example: Does G is a tree? If yes, compute its adjacency matrix.

The referee iteratively “prunes” the one-degree nodes in the whiteboard.
In parallel, he re-builds the tree.
Example: Does G is a tree? If yes, compute its adjacency matrix.

The referee iteratively “prunes” the one-degree nodes in the whiteboard. In parallel, he re-builds the tree.
G degeneracy k: $\exists v \in V(G)$ with degree $\leq k$ and $G \setminus v$ degeneracy $\leq k$.

Possible: BUILD graphs with degeneracy $\leq k$, using messages of size $O(k \cdot \log n)$

Decide if a graph has bounded degeneracy (include planar graphs, bounded genus graphs, bounded treewidth graphs...). If yes, build their adjacency matrix.

proof: generalization of the "pruning process" of trees.

Each node v sends

- its ID
- its degree
- $\sum_{w \in N(v)} ID(w)$
- $\sum_{w \in N(v)} ID^2(w)$
- ...
- $\sum_{w \in N(v)} ID^k(w)$

The referee can compute neighborhood of nodes with degree $\leq k$

(unique integral solution)
What Can(not) Be Computed in One Round

<table>
<thead>
<tr>
<th>Not possible</th>
<th>using messages of size $O(\log n)$</th>
</tr>
</thead>
</table>
| Decide if the graph contains a triangle, a (induced or not) square.
Decide if the graph has diameter at most 3 | |

Recently: characterization of induced subgraphs whose containment can be decided
[Kari, Matamala, Rapaport, Salo 2015]

proof: Kind of reduction.
If possible \Rightarrow Possible to build adjacency matrix of bipartite graphs.
$2^{\Omega(n^2)}$ such graphs \Rightarrow impossible to distinguish all of them with $O(n \log n)$ bits.
\Rightarrow contradiction
Not possible to decide if G contains a triangle using messages of size $O(\log n)$.

Assume \mathcal{A} solves TRIANGLE: use \mathcal{A} to BUILD bipartite graphs.
Assume \(A \) solves TRIANGLE:

Assume \(A \) solves TRIANGLE: use \(A \) to BUILD bipartite graphs

\[\{i, j\} \in E(G) \iff G(i, j) \text{ contains a triangle} \]
Not possible to decide if G contains a triangle using messages of size $O(\log n)$.

Each node j sends 2 messages:

- $A_1(j)$ encodes $N_G(j)$ (same as $N_{G(i,k)}(v)$ for any $i, k \in V \setminus \{j\}$)
- $A_2(j)$ encodes $N_{G(j,i)}(j) = N_G(j) \cup \{R\}$ (the same for any $w \in V \setminus \{j\}$)
Not possible to decide if G contains a triangle using messages of size $O(\log n)$.

Combining the $2n$ messages, the referee simulates A in each $G(i,j)$, $i,j \in V$.

\Rightarrow able to decide if $\{i,j\} \in E(G)$ for any $i,j \in V$.

Becker et al.

What Can(not) Be Computed in One Round?
What Can(not) Be Computed in One Round

Randomized version: private/public coins

Not possible [Becker, Montealegre, Rapaport, Todinca, 2014]

For any $\epsilon < 1/2$, any public coins randomized protocol for TRIANGLE (resp., Diameter ≤ 3) with ϵ two-sided errors requires messages of size $\Omega(n)$ bits.

Proof: Reduction to INDEX function:
Alice: m-bits vector x, Bob: integer $q \leq m$
INDEX(x, q) = x_q, the q^{th} bit of x.
Requires $\Omega(m)$ bits in randomized protocol
[Kermer, Nisan, Ron, 1999]

Encoding of x of size $m = n^2$ as a bipartite graph with n vertices.
protocol for TRIANGLE with $g(n)$ bits/message
\[\Rightarrow \] protocol for INDEX using $O(g(n) \cdot n)$ bits.

Hierarchy of randomized protocol [Becker, Montealegre, Rapaport, Todinca, 2014]
Public coins \preceq Private coins \preceq Deterministic
Randomized version: private/public coins

<table>
<thead>
<tr>
<th>Not possible</th>
<th>[Becker, Montealegre, Rapaport, Todinca, 2014]</th>
</tr>
</thead>
<tbody>
<tr>
<td>For any $\epsilon < 1/2$, any public coins randomized protocol for TRIANGLE (resp., Diameter ≤ 3) with ϵ two-sided errors requires messages of size $\Omega(n)$ bits.</td>
<td></td>
</tr>
</tbody>
</table>

Proof: Reduction to INDEX function:
Alice: m-bits vector x, Bob: integer $q \leq m$
INDEX(x, q) = x_q, the q^{th} bit of x.
Requires $\Omega(m)$ bits in randomized protocol
[Kermer, Nisan, Ron, 1999]

Encoding of x of size $m = n^2$ as a bipartite graph with n vertices.
protocol for TRIANGLE with $g(n)$ bits/message
\Rightarrow protocol for INDEX using $O(g(n) \cdot n)$ bits.
Randomized version: private/public coins

Not possible [Becker, Montealegre, Rapaport, Todinca, 2014]

For any $\epsilon < 1/2$, any public coins randomized protocol for TRIANGLE (resp., Diameter ≤ 3) with ϵ two-sided errors requires messages of size $\Omega(n)$ bits.

Proof: Reduction to INDEX function:
Alice: m-bits vector x, Bob: integer $q \leq m$
INDEX(x, q) = x_q, the q^{th} bit of x.
Requires $\Omega(m)$ bits in randomized protocol
[Kermer, Nisan, Ron, 1999]

Encoding of x of size $m = n^2$ as a bipartite graph with n vertices.
protocol for TRIANGLE with $g(n)$ bits/message
\Rightarrow protocol for INDEX using $O(g(n) \cdot n)$ bits.

Hierarchy of randomized protocol [Becker, Montealegre, Rapaport, Todinca, 2014]
Public coins \prec Private coins \prec Deterministic
Open Problem: Connectivity

Possible

CONNECTIVITY can be decided by a randomized protocol using public coins and messages of size $O(\log^2 n)$ bits

[Ahm, Guha, McGregor, 2012]

Randomized, using small messages

What about a deterministic protocol using messages of $o(n)$ bits??

Even in simpler case:

- G, $n - 1$-regular with $2n$ nodes
- G connected or 2 disjoint cliques.
Generalization

Until now:

All nodes write **simultaneously** on the whiteboard
Don't take advantage of what is written by other nodes.

Now:

Nodes can also read the whiteboard.
Can use previous messages to compute their own message

![Diagram showing nodes and whiteboard interactions](Image)
4 Models

SimAsync

All nodes write *simultaneously* on the whiteboard

SimSync

Nodes write *sequentially*.

Worst ordering: order chosen by an adversary

Async

Nodes *rise hand to speak*.

If several nodes rise hand, all write *simultaneously*.

Sync

Nodes *rise hand to speak*.

If several nodes rise hand, they write *sequentially* in worst ordering.
Hierarchy of models

\[\text{SimAsync}(\log n) \prec \text{SimSync}(\log n) \]

Maximal Independent Set (MIS) containing \(v_1 \).

- \(MIS \notin \text{SimAsync}(\log n) \) (Simultaneous)
- \(MIS \in \text{SimSync}(\log n) \) (Sequential, adversarial ordering)

trivial algo.
Hierarchy of models

SimSync(log n) \preceq **Async**(log n)

BFS-tree in Bipartite graphs

\notin **SimSync**(log n)

$G = (V, E)$ Bipartite graph $V = \{v_2, \cdots, v_n\}$ (blue and green nodes)

Matching between V and $W = \{v_{n+1}, \cdots, v_{2n-2}\}$ (red nodes)

G_i: Blue edge from 1 to $n + i \in W$ (ex: $n = 6$ and $i = 5$: G_5)
Hierarchy of models

\[\text{SimSync}(\log n) \prec \text{Async}(\log n) \]

BFS-tree in Bipartite graphs \(\not\in \text{SimSync}(\log n) \)

- \(N_G(v_i) = \) "level 3" of BFS-tree in \(G_i \)
- SimSync: Adversarial ordering: first nodes of \(V \)
- Solving BFS \(\Rightarrow \) BUILD Bipartite, impossible if \(O(\log n) \) bits/message
Hierarchy of models

SimSync($\log n$) \prec **Async**($\log n$)

BFS-tree in Bipartite graphs \in **Async**($\log n$)

Initially, only the root (v1) speaks

Central entity

Degree (root)
Hierarchy of models

$\textbf{SimSync}(\log n) \prec \textbf{Async}(\log n)$

BFS-tree in Bipartite graphs $\in \textbf{Async}(\log n)$

Key point: bipartiteness allows that nodes know when all nodes of previous level have sent their message.
Hierarchy of models

SimSync(log n) ⊊ **Async**(log n)

BFS-tree in Bipartite graphs ∈ **Async**(log n)

Then, all nodes down to **Level 1** speak

- 5: up=1, down=2
- 8: up=1, down=1
- 3: up=1, down=1
- 4: up=1, down=1
- 7: up=1, down=2

Level 2
- 9: up=4, down=1
- 8: up=3, down=1

Key point: bipartiteness allows that nodes know when all nodes of previous level have sent their message.
Hierarchy of models

\[\text{SimSync} (\log n) \prec \text{Async} (\log n) \]

BFS-tree in Bipartite graphs \(\in \text{Async} (\log n) \)

Key point: bipartiteness allows that nodes know when all nodes of previous level have sent their message.

- **Level 1**
 - 5: up=1, down=2
 - 8: up=1, down=1
 - 3: up=1, down=1
 - 4: up=1, down=1
 - 7: up=1, down=2

- **Level 2**
 - 9: up=4, down=1
 - 8: up=3, down=1

- **Level 3**
 - 6: up=2, down=0

For any node \(v \) in the graph:

- \(\text{up}(v) = \text{degree} \) "toward" the root
- \(\text{down}(v) = \text{degree}(v) - \text{up}(v) \)
Hierarchy of models

$\text{SimSync}(\log n) \prec \text{Async}(\log n)$

BFS-tree in Bipartite graphs

Then, all nodes down to Level 2 speak

Level 1
- 5: up=1, down=2
- 8: up=1, down=1
- 3: up=1, down=1
- 4: up=1, down=1
- 7: up=1, down=2

Level 2
- 9: up=4, down=1
- 8: up=3, down=1

Level 3
- 6: up=2, down=0

up(v) = degree "toward" the root

down(v) = degree(v) - up(v)

Similar protocol works in model Sync in general graphs.
SimAsync($\log n$) \prec SimSync($\log n$) \prec Async($\log n$) \preceq Sync($\log n$)

<table>
<thead>
<tr>
<th>message: $O(\log n)$ bits</th>
<th>SimAsync</th>
<th>SimSync</th>
<th>Async</th>
<th>Sync</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUILD k-degenerate</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>rooted MIS</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>SQUARE</td>
<td>no</td>
<td>no</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Bipartite-BFS</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>BFS</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>yes</td>
</tr>
<tr>
<td>Connectivity</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>yes</td>
</tr>
</tbody>
</table>

Orthogonal criteria

Let $f(n) = o(n)$ and $g(n) = o(f(n))$.

There exist problems solvable in SimAsync($f(n)$) and not in Sync($g(n)$).
Further works

Probabilistic algorithms?

What if graph partially known? (Distributed testing)

Connectivity?

What is a realistic (useful) model?

...