What Can(not) Be Computed in One Round in Interconnection networks?

F. Becker¹ A. Kosowski² M. Matamala³ <u>N. Nisse</u>⁴ I. Rapaport³ K. Suchan⁵ I. Todinca¹

¹ LIFO, Univ. Orléans, France
² Inria, LaBRI, Bordeaux, France
³ DIM, Universidad de Chile, Santiago, Chile
⁴ COATI, Inria, I3S, CNRS, UNS, Sophia Antipolis, France
⁵ Universidad Adolfo Ibáñez, Santiago, Chile

ADR Network Science

Paris, Feb. 28th 2013

Adding a Referee to an Interconnection Network: What Can(not) Be Computed in One Round. IPDPS 2011 Allowing each node to communicate only once in a distributed system: shared whiteboard models SPAA 2012

Distributed computation of network properties

Problem

Huge networks \Rightarrow generic algorithms (even polynomial) are not efficient Need to use structural properties

Becker et al. What Can(not) Be Computed in One Round?

Distributed computation of network properties

Problem

Huge networks \Rightarrow generic algorithms (even polynomial) are not efficient Need to use structural properties

network mult. routing table labelled name-independent stretch arbitrary $O(n \log n)$ [folk] $\Theta(n \log n)$ [Gavoille, Pérennes] (BGP) shortest path $O(n^{1/k})$ $\Theta(n^{1/k})$ (k > 2)O(k)[Thorup.Zwick] [TZ/Abraham et al.] $O(\log n)$ [TZ/Fraigniaud, Gavoille] $\Omega(\sqrt{n})$ trees shortest path [Laing, Rajaraman] $2^{k} - 1$ $\Theta(n^{1/k})$ [Laing/Abraham et al.] $O(\epsilon^{-\alpha} \log n)$ doubling- α $O(1) + \epsilon$ $O(\log \Delta)$ [Talwar/Slivkins] [Abraham et al.] dimension $O(\log n)$ [Abraham et al.] planar $O(\log n)$ $1 + \epsilon$ [Thorup] $O(|H|! \cdot 2^{|H|} \log n)$ [Abraham, Gavoille] H-minor free $1 + \epsilon$

Example of compact routing

BGP is generic \Rightarrow large Routing Tables :(

but easy to compute and update :)

other schemes require structural information (e.g., decompositions) on the graph

2/9

Э

Distributed computation of network properties

Problem

Huge networks \Rightarrow generic algorithms (even polynomial) are not efficient Need to use structural properties

Objectives

- Understand, compute, discover... structural Properties
- Distributed/Local computation
- Use it for algorithmic purposes (not only routing)
- Model/simulate such networks (static/dynamic behavior)

Questions

What hypothesis can we adopt for the computation? What is feasible in a given model?

・ロト ・ 同ト ・ ヨト ・ ヨト

A node has arbitrary computation power.

Goal: encode its local knowledge in a small message (typically $O(\log n)$)

Each node sends its (unique) message to a central entity

Remark: If |message| = n bits, then node gives its whole neighboorhood

(ロ) (問) (E) (E) (E)

The referee has arbitrary computation power and use the n messages to...

< □ > < □ > < □ > < □ > < □ > < □ > = □

... answer a question about the graph (typically: "does G has some property?")

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

To summerize: Model of distributed computing

Principle

Does G belongs to \mathcal{P} ?

each node encodes its local knowledge

message : ID of $v \times IDs$ of $N(v) \rightarrow message(v)$, and

 $|message(v)| = O(\log n)$ bits

the referee decodes the n messages to answer

answer : $(message(v_i))_{i \le n} \rightarrow \{true; false\}$

Hypothesis

- arbitrary computational power: message and answer are arbitrary functions
- IDs are distinct in $\{1, \dots, n\}$

Remark: if bounded maximum degree: each node may send its full adjacency list.

Problem

in total: $O(n \log n)$ bits of local information What kind of question can be answered?

Each node sends its ID, its degree and the sum of the IDs of its neighbors

(ロ) (同) (E) (E) (E)

The referee iteratively "prunes" the one-degree nodes in the whiteboard In parallel, he re-builds the tree.

The referee iteratively "prunes" the one-degree nodes in the whiteboard In parallel, he re-builds the tree.

The referee iteratively "prunes" the one-degree nodes in the whiteboard In parallel, he re-builds the tree.

The referee iteratively "prunes" the one-degree nodes in the whiteboard In parallel, he re-builds the tree.

What Can(not) Be Computed in One Round

Possible

Decide if a graph has bounded degeneracy (include planar graphs, bounded genus graphs, bounded treewidth graphs...). If yes, build their adjacency matrix.

proof: generalization of the "pruning process" of trees.

Not possible

Decide if the graph contains a triangle, a (induced or not) square. Decide if the graph has diameter at most 3

proof: Kind of reduction. If possible \Rightarrow Possible to build adjacency matrix of bipartite graphs. $2^{\Omega(n^2)}$ such graphs \Rightarrow impossible to distinguish all of them with $O(n \log n)$ bits. \Rightarrow contradiction

We don't know????

Decide if the graph is connected.

・ロン ・回 と ・ヨン ・ ヨン

Generalization

Until now:

All nodes write simultaneously on the whiteboard Don't take advantage of what is written by other nodes.

Now:

Nodes can also read the whiteboard.

Can use previous messages to compute their own message

SimAsync

model above

All nodes write simultaneously on the whiteboard

SimSync

Nodes write sequentially. Worst ordering: order chosen by an adversary

ASYNC:

model of asynchronicity

Nodes rise hand to speak. If several nodes rise hand, all write simultaneously.

Sync

model of synchronicity

・ロン ・回 と ・ ヨ と ・ ヨ と

Nodes rise hand to speak.

If several nodes rise hand, they write sequentially in worst odering.

Э

Results

Hierarchy of models

 $\operatorname{SIMASYNC}(\log n) < \operatorname{SIMSYNC}(\log n) < \operatorname{AsyNC}(\log n) \le \operatorname{SYNC}(\log n)$

message: $O(\log n)$ bits	SimAsync	SimSync	Async	Sync
BUILD K-DEGENERATE	yes	yes	yes	yes
ROOTED MIS	no	yes	yes	yes
Square	no	no	?	?
Connectivity	?	?	yes	yes
Spanning tree	?	?	yes	yes
BIPARTITE-BFS	no	no	yes	yes
BFS	?	?	?	yes

Orthogonal criteria

Let f(n) = o(n) and g(n) = o(f(n)).

There exist problems solvable in SIMASYNC(f(n)) and not in SYNC(g(n)).

8/9

Э

・ロン ・四 ・ ・ ヨン ・ ヨン

Several messages per nodes?

Probabilistic algorithms?

What if graph partially known (only few messages)?

Connectivity?

What is a realistic model?

...

・ロト ・回ト ・ヨト ・ヨト

Э