Distributed computing of efficient routing
S

1

Nicolas Nisse! Ivan Rapaport? Karol Suchan®

1 MASCOTTE, INRIA, I13S, CNRS, UNS, Sophia Antipolis, France
2 DIM, Universidad de Chile, Santiago, Chile
3 Universidad Adolfo Ibafiez, Santiago, Chile

Working group June 15th 2009,
Alcatel Lucent Belgique/MASCOTTE/LaBRI

1/12

Nicolas Nisse, lvan Rapaport, Karol Suchan Distributed computing of efficient routing schemes

The Routing Problem

Problem
@ input: a network G

@ output: a routing scheme for G

Routing Scheme: protocol that directs the traffic in a network

Any source must be able to route a message to any
destination, given the destination’s ID.

name-based. IDs are chosen by the designer of the scheme

2/12

Nicolas Nisse, lvan Rapaport, Karol Suchan Distributed computing of efficient routing schemes

Complexity Measures

o Multiplicative stretch: ratio between the length of the
computed route and the distance.
|route(x, y)| < mult-stretch - d(x, y).

o Additive stretch: difference between the length of the
computed route and the distance.
|route(x, y)| < add-stretch + d(x, y).

Routing tables’ size
Space necessary to store local routing table (per node)

Time complexity
Distributed protocol to setup data structures

3/12

Nicolas Nisse, lvan Rapaport, Karol Suchan Distributed computing of efficient routing schemes

Example: Interval Routing [Santoro & Khatib, 82]

@ Nodes labeled using integers

@ Outgoing arc labeled with an interval of the name range

Message sent through the arc containing the destination J

mult-stretch:
route(1,5) 4
d(1,5)

add-stretch:
route(1,5)-d(1,5)= 3
space per node:
O(Alog n)

[6,4]

[5] 4

)

[1,5]

Nicolas Nisse, lvan Rapaport, Karol Suchan

N
[6] [1,3]

4/12

Distributed computing of efficient routing schemes

Related Works: name-based

Labels are of polylogarithmic size

network mult-stretch | table

arbitrary 1 nlogn folklore

(k>2) 4k —5 O(n*/%) Thorup & Zwick

tree 1 O(1) | TZ/Fraigniaud & Gavoille
doubling-a 1+e€ log A Talwar/Slivkins
dimension O(1) | Chan et al./Abraham et al.
planar 1+e Oo(1) Thorup

H-minor free 1+e€ Oo(1) Abraham & Gavoille

Nicolas Nisse, lvan Rapaport, Karol Suchan

Table: Routing schemes

5/12

Distributed computing of efficient routing schemes

Related Work: k-chordal Graphs

k-chordal graph: any cycle with length > k contains a chord.
chordal graph < 3-chordal graph (a.k.a. triangulated graph)

network | stretch table computation
+2 O(IcingZgnn) O(m + nlog? n) | Dourisboure
chordal Gavoille, 02
k+1 | O(log® n) poly(n) Dourisboure
k-chordal 04

Table: Routing schemes for k-chordal graphs

6/12

Nicolas Nisse, lvan Rapaport, Karol Suchan Distributed computing of efficient routing schemes

Our results: k-chordal Graphs

k-chordal graph: any cycle with length > k contains a chord.
chordal graph < 3-chordal graph (a.k.a. triangulated graph)

network | stretch table computation
+2 O(lo':ig”n) O(m + nlog® n) | Dourisboure
chordal Gavoille, 02
+1 | O(Alogn) O(n) this work
k+1 | O(log®n) poly(n) Dourisboure
k-chordal 04
k—1| O(Alogn) O(D) this work

Table: Routing schemes for k-chordal graphs

Nicolas Nisse, lvan Rapaport, Karol Suchan

6/12

Distributed computing of efficient routing schemes

Routing scheme RS(G, T)

G a network and T a routed spanning tree of G
x a source node and y a destination node

If x =y, stop.

If there is w € Ng(x), an ancestor of y in T,
choose w minimizing dr(w, y);

Otherwise, choose the parent of x in T.

7/12

Nicolas Nisse, lvan Rapaport, Karol Suchan Distributed computing of efficient routing schemes

Routing scheme RS(G, T)

G a network and T a routed spanning tree of G
x a source node and y a destination node

If x =y, stop.

If there is w € Ng(x), an ancestor of y in T,
choose w minimizing dr(w, y);

Otherwise, choose the parent of x in T.

7/12

Nicolas Nisse, lvan Rapaport, Karol Suchan Distributed computing of efficient routing schemes

Routing scheme RS(G, T)

G a network and T a routed spanning tree of G
x a source node and y a destination node

If x =y, stop.

If there is w € Ng(x), an ancestor of y in T,
choose w minimizing dr(w, y);

Otherwise, choose the parent of x in T.

7/12

Nicolas Nisse, lvan Rapaport, Karol Suchan Distributed computing of efficient routing schemes

Routing scheme RS(G, T)

G a network and T a routed spanning tree of G
x a source node and y a destination node

If x =y, stop.

If there is w € Ng(x), an ancestor of y in T,
choose w minimizing dr(w, y);

Otherwise, choose the parent of x in T.

7/12

Nicolas Nisse, lvan Rapaport, Karol Suchan Distributed computing of efficient routing schemes

Routing scheme RS(G, T)

G a network and T a routed spanning tree of G
x a source node and y a destination node

If x =y, stop.

If there is w € Ng(x), an ancestor of y in T,
choose w minimizing dr(w, y);

Otherwise, choose the parent of x in T.

7/12

Nicolas Nisse, lvan Rapaport, Karol Suchan Distributed computing of efficient routing schemes

Routing scheme RS(G, T)

G a network and T a routed spanning tree of G
X a source node and y a destination node

If x =y, stop.

If there is w € Ng(x), an ancestor of y in T,
choose w minimizing dr(w,y);

Otherwise, choose the parent of x in T.

Once T has been chosen
Space: labeling of nodes: any rooted subtree < interval
routing table: each node knows the interval of its neighbors
O(A log n) bits per node
Time: easy in time O(D) in synchronous distributed way
7/12

Nicolas Nisse, lvan Rapaport, Karol Suchan Distributed computing of efficient routing schemes

Performances

Lemma 1

If T is any BFS-tree of G k-chordal graph, then
Add-stretch of RS(G, T) = k — 1

Lemma 2

If T is any MaxBFS-tree of G chordal graph, then
Add-stretch of RS(G, T) =1

Lemma 3: in synchronous distributed way,

a BFS-tree can be computed in time O(D);
a MaxBFS-tree can be computed in time O(n).

Nicolas Nisse, lvan Rapaport, Karol Suchan Distributed computing of efficient routing schemes

8/12

BFS orderings and BFS-trees

Let r be an arbitrary node: the root.
BFS-tree: parent = greatest neighbor

Breadth First Search
Labeled r with n,
While 3 unlabeled vertices
Label a neighbor of greatest v
with unlabeled neighbors

9/12

Distributed computing of efficient routing schemes

Nicolas Nisse, lvan Rapaport, Karol Suchan

BFS orderings and BFS-trees

Let r be an arbitrary node: the root.
BFS-tree: parent = greatest neighbor

Breadth First Search
Labeled r with n,
While 3 unlabeled vertices
Label a neighbor of greatest v
with unlabeled neighbors

9/12

Distributed computing of efficient routing schemes

Nicolas Nisse, lvan Rapaport, Karol Suchan

BFS orderings and BFS-trees

Let r be an arbitrary node: the root.
BFS-tree: parent = greatest neighbor

Breadth First Search
Labeled r with n,
While 3 unlabeled vertices
Label a neighbor of greatest v
with unlabeled neighbors

9/12

Distributed computing of efficient routing schemes

Nicolas Nisse, lvan Rapaport, Karol Suchan

BFS orderings and BFS-trees

Let r be an arbitrary node: the root.
BFS-tree: parent = greatest neighbor

Breadth First Search
Labeled r with n,
While 3 unlabeled vertices
Label a neighbor of greatest v
with unlabeled neighbors

Distributed computing of efficient routing schemes

Nicolas Nisse, lvan Rapaport, Karol Suchan

BFS orderings and BFS-trees

Let r be an arbitrary node: the root.
BFS-tree: parent = greatest neighbor

Breadth First Search
Labeled r with n,
While 3 unlabeled vertices
Label a neighbor of greatest v
with unlabeled neighbors

9/12

Distributed computing of efficient routing schemes

Nicolas Nisse, lvan Rapaport, Karol Suchan

BFS orderings and BFS-trees

Let r be an arbitrary node: the root.
BFS-tree: parent = greatest neighbor

Maximum NeighborhoodBFS
Labeled r with n,

While 3 unlabeled vertices
Label a neighbor of greatest v
with unlabeled neighbors that
has maximum labeled neighbors

9/12

Distributed computing of efficient routing schemes

Nicolas Nisse, lvan Rapaport, Karol Suchan

BFS orderings and BFS-trees

Let r be an arbitrary node: the root.
BFS-tree: parent = greatest neighbor

Maximum NeighborhoodBFS
Labeled r with n,

While 3 unlabeled vertices
Label a neighbor of greatest v
with unlabeled neighbors that
has maximum labeled neighbors

9/12

Distributed computing of efficient routing schemes

Nicolas Nisse, lvan Rapaport, Karol Suchan

BFS orderings and BFS-trees

Let r be an arbitrary node: the root.
BFS-tree: parent = greatest neighbor

Maximum NeighborhoodBFS
Labeled r with n,

While 3 unlabeled vertices
Label a neighbor of greatest v
with unlabeled neighbors that
has maximum labeled neighbors

9/12

Distributed computing of efficient routing schemes

Nicolas Nisse, lvan Rapaport, Karol Suchan

Lemma 2: Sketch of proof

If T is any MaxBFS-tree of G chordal graph, then
Add-stretch of RS(G, T) =1

Main tools
@ T is a BFS-tree
@ G chordal < any minimal separator is a clique [Dirac]

| A\

o MaxBFS-ordering and G chordal = (v > w > z and
{z,w},{z,v} € E = {v,w} € E) [BKS 05]

Remainder: Routing Scheme: follows T but if one neighbor
is an ancestor of the destination.

10/12

Nicolas Nisse, lvan Rapaport, Karol Suchan Distributed computing of efficient routing schemes

MaxBFS-tree + chordal graph = add-stretch=1

Source x ancestor/descendant of destination y
= add-stretch=0 because T BFS-tree

11/12

Nicolas Nisse, lvan Rapaport, Karol Suchan Distributed computing of efficient routing schemes

MaxBFS-tree + chordal graph = add-stretch=1

ro closest commun ancestor of x and y
P a shortest path between x and y

Let us prove that
|Route(x, y)| < |P|+1

11/12

Nicolas Nisse, lvan Rapaport, Karol Suchan Distributed computing of efficient routing schemes

MaxBFS-tree + chordal graph = add-stretch=1

ro closest commun ancestor of x and y
P a shortest path between x and y

Let us prove that
|Route(x, y)| < |P|+1

11/12

Nicolas Nisse, lvan Rapaport, Karol Suchan Distributed computing of efficient routing schemes

MaxBFS-tree + chordal graph = add-stretch=1

Case rp ¢ N(P). 3S minimal ry, P-separator in N(P).
u,veS st d(u,x)+d(v,y) minimum

Let us prove that
|Route(x, y)| < |P|+1

11/12

Nicolas Nisse, lvan Rapaport, Karol Suchan Distributed computing of efficient routing schemes

MaxBFS-tree + chordal graph = add-stretch=1

G chordal = S clique, thus {u, v} € E(G)
d(x,u) + 1+ d(v,y) upper bound on |Route(x, y)|

Let us prove that
|Route(x, y)| < |P|+1
d(x,u)+d(v,y) < |P|

11/12

Distributed computing of efficient routing schemes

Nicolas Nisse, lvan Rapaport, Karol Suchan

MaxBFS-tree + chordal graph = add-stretch=1

{u,v} € E(G) and u,v € N(P)
G chordal = u, v have a commun neighbor z in P

Let us prove that
|Route(x, y)| < |P|+1
d(x,u)+d(v,y) < |P|

11/12

Distributed computing of efficient routing schemes

Nicolas Nisse, lvan Rapaport, Karol Suchan

MaxBFS-tree + chordal graph = add-stretch=1

T BFS-tree
d(u,x) <d(x,z)+1and d(v,y) < d(z,y) +1

Let us prove that
|Route(x,y)| < |P|+1
d(x, u)+d(v.y) < |P
We know

d(u,x) < d(x,z)+1
d(v,y) < d(z,y) +1

11/12

Nicolas Nisse, lvan Rapaport, Karol Suchan Distributed computing of efficient routing schemes

MaxBFS-tree + chordal graph = add-stretch=1

W.lo.g., u>v. Recall d(v,y) < d(z,y)+1
d(v,y) < d(z,y), otherwise P,_., would belong to T

Let us prove that
|Route(x,y)| < |P|+1
d(x, u)+d(v.y) < |P
We know

d(u,x) < d(x,z)+1
d(v,y) < d(z,y)

11/12

Nicolas Nisse, lvan Rapaport, Karol Suchan Distributed computing of efficient routing schemes

MaxBFS-tree + chordal graph = add-stretch=1

Assume d(u,x) = d(x,z)+ 1. T BFS-tree = v > w > z.
G chordal = {w, z} € E(G)

Let us prove that
|Route(x,y)| < |P|+1
d(x, u)+d(v.y) < |P
We know

d(u,x) < d(x,z)+1
d(v,y) < d(z,y)

11/12

Nicolas Nisse, lvan Rapaport, Karol Suchan Distributed computing of efficient routing schemes

MaxBFS-tree + chordal graph = add-stretch=1

v>w>zand {z,v},{w,z} € E(G) = {w, v} € E(G)
|Route(x,)| < d(x,w) + 1+ d(v,y) < |P| +1

Let us prove that
|Route(x,y)| < |P|+1
d(x, u) + d(v,) < |P|
We know

d(u,x) <d(x,z)+1
d(v,y) < d(z,y)

If d(u,x) =d(x,z)+1
then {w, v} € E(G)

11/12

Nicolas Nisse, lvan Rapaport, Karol Suchan Distributed computing of efficient routing schemes

Current/Further works

Can we improve the size of routing tables?
Other graph classes?
Other BFS-ordering?

Case of k-chordal graphs: can we improve the stretch?

12/12

Nicolas Nisse, lvan Rapaport, Karol Suchan Distributed computing of efficient routing schemes

