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The Routing Problem

Problem

input: a network G

output: a routing scheme for G

Routing Scheme: protocol that directs the traffic in a network

Any source must be able to route a message to any
destination, given the destination’s ID.

name-based: IDs are chosen by the designer of the scheme
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Complexity Measures

Stretch

Multiplicative stretch: ratio between the length of the
computed route and the distance.
|route(x , y)| ≤ mult-stretch · d(x , y).

Additive stretch: difference between the length of the
computed route and the distance.
|route(x , y)| ≤ add-stretch + d(x , y).

Routing tables’ size

Space necessary to store local routing table (per node)

Time complexity

Distributed protocol to setup data structures
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Example: Interval Routing [Santoro & Khatib, 82]

Nodes labeled using integers

Outgoing arc labeled with an interval of the name range

Message sent through the arc containing the destination

mult-stretch:
route(1,5)

d(1,5)
= 4

add-stretch:
route(1, 5)-d(1, 5)= 3

space per node:
O(∆ log n)
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Related Works: name-based

Labels are of polylogarithmic size

network mult-stretch table

arbitrary 1 n log n folklore
(k ≥ 2) 4k − 5 O(n1/k) Thorup & Zwick
tree 1 O(1) TZ/Fraigniaud & Gavoille
doubling-α 1 + ε log ∆ Talwar/Slivkins
dimension O(1) Chan et al./Abraham et al.
planar 1 + ε O(1) Thorup
H-minor free 1 + ε O(1) Abraham & Gavoille

Table: Routing schemes
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Related Work: k-chordal Graphs

k-chordal graph: any cycle with length ≥ k contains a chord.
chordal graph ⇔ 3-chordal graph (a.k.a. triangulated graph)

network stretch table computation

+2 O( log3 n
log log n

) O(m + n log2 n) Dourisboure

chordal Gavoille, 02

k + 1 O(log2 n) poly(n) Dourisboure
k-chordal 04

Table: Routing schemes for k-chordal graphs
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Our results: k-chordal Graphs

k-chordal graph: any cycle with length ≥ k contains a chord.
chordal graph ⇔ 3-chordal graph (a.k.a. triangulated graph)

network stretch table computation

+2 O( log3 n
log log n

) O(m + n log2 n) Dourisboure

chordal Gavoille, 02
+1 O(∆ log n) O(n) this work

k + 1 O(log2 n) poly(n) Dourisboure
k-chordal 04

k − 1 O(∆ log n) O(D) this work

Table: Routing schemes for k-chordal graphs
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Routing scheme RS(G ,T )

G a network and T a routed spanning tree of G
x a source node and y a destination node

If x = y , stop.
If there is w ∈ NG (x), an ancestor of y in T ,

choose w minimizing dT (w , y);
Otherwise, choose the parent of x in T .

root

x

y
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Routing scheme RS(G ,T )

G a network and T a routed spanning tree of G
x a source node and y a destination node

If x = y , stop.
If there is w ∈ NG (x), an ancestor of y in T ,

choose w minimizing dT (w , y);
Otherwise, choose the parent of x in T .

Once T has been chosen
Space: labeling of nodes: any rooted subtree ⇔ interval
routing table: each node knows the interval of its neighbors
O(∆ log n) bits per node
Time: easy in time O(D) in synchronous distributed way
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Performances

Lemma 1

If T is any BFS-tree of G k-chordal graph, then
Add-stretch of RS(G ,T ) = k − 1

Lemma 2

If T is any MaxBFS-tree of G chordal graph, then
Add-stretch of RS(G ,T ) = 1

Lemma 3: in synchronous distributed way,

a BFS-tree can be computed in time O(D);
a MaxBFS-tree can be computed in time O(n).
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BFS orderings and BFS-trees

Let r be an arbitrary node: the root.
BFS-tree: parent = greatest neighbor

Breadth First Search
Labeled r with n,
While ∃ unlabeled vertices
Label a neighbor of greatest v
with unlabeled neighbors

r
8 = n
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BFS orderings and BFS-trees

Let r be an arbitrary node: the root.
BFS-tree: parent = greatest neighbor

Breadth First Search
Labeled r with n,
While ∃ unlabeled vertices
Label a neighbor of greatest v
with unlabeled neighbors

r
8 = n
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BFS orderings and BFS-trees

Let r be an arbitrary node: the root.
BFS-tree: parent = greatest neighbor

Maximum NeighborhoodBFS
Labeled r with n,
While ∃ unlabeled vertices
Label a neighbor of greatest v
with unlabeled neighbors that
has maximum labeled neighbors

r
8 = n
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3
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BFS orderings and BFS-trees

Let r be an arbitrary node: the root.
BFS-tree: parent = greatest neighbor

Maximum NeighborhoodBFS
Labeled r with n,
While ∃ unlabeled vertices
Label a neighbor of greatest v
with unlabeled neighbors that
has maximum labeled neighbors

r
8 = n

7 656

1 234

5
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BFS orderings and BFS-trees

Let r be an arbitrary node: the root.
BFS-tree: parent = greatest neighbor

Maximum NeighborhoodBFS
Labeled r with n,
While ∃ unlabeled vertices
Label a neighbor of greatest v
with unlabeled neighbors that
has maximum labeled neighbors

r
8 = n

7 65

43

2
1

6 5

2134
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Lemma 2: Sketch of proof

If T is any MaxBFS-tree of G chordal graph, then
Add-stretch of RS(G ,T ) = 1

Main tools

T is a BFS-tree

G chordal ⇔ any minimal separator is a clique [Dirac]

MaxBFS-ordering and G chordal ⇒ (v > w > z and
{z ,w}, {z , v} ∈ E ⇒ {v ,w} ∈ E ) [BKS 05]

Remainder: Routing Scheme: follows T but if one neighbor
is an ancestor of the destination.

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes



11/12

MaxBFS-tree + chordal graph ⇒ add-stretch=1

Source x ancestor/descendant of destination y
⇒ add-stretch=0 because T BFS-tree

x

y
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MaxBFS-tree + chordal graph ⇒ add-stretch=1

r0 closest commun ancestor of x and y
P a shortest path between x and y

Let us prove that
|Route(x , y)| ≤ |P |+ 1

r
0

P

yx

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes



11/12

MaxBFS-tree + chordal graph ⇒ add-stretch=1

r0 closest commun ancestor of x and y
P a shortest path between x and y

Let us prove that
|Route(x , y)| ≤ |P |+ 1

0
r

P

x y

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes



11/12

MaxBFS-tree + chordal graph ⇒ add-stretch=1

Case r0 /∈ N(P). ∃S minimal r0,P-separator in N(P).
u, v ∈ S s.t. d(u, x) + d(v , y) minimum

Let us prove that
|Route(x , y)| ≤ |P |+ 1

S

0

u
v

r

P

x y
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MaxBFS-tree + chordal graph ⇒ add-stretch=1

G chordal ⇒ S clique, thus {u, v} ∈ E (G )
d(x , u) + 1 + d(v , y) upper bound on |Route(x , y)|

Let us prove that
|Route(x , y)| ≤ |P |+ 1
d(x , u) + d(v , y) ≤ |P |

S

0

u
v

r

P

x y
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MaxBFS-tree + chordal graph ⇒ add-stretch=1

{u, v} ∈ E (G ) and u, v ∈ N(P)
G chordal ⇒ u, v have a commun neighbor z in P

Let us prove that
|Route(x , y)| ≤ |P |+ 1
d(x , u) + d(v , y) ≤ |P |

S

z

0

u
v

r

P

x y
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MaxBFS-tree + chordal graph ⇒ add-stretch=1

T BFS-tree
d(u, x) ≤ d(x , z) + 1 and d(v , y) ≤ d(z , y) + 1

Let us prove that
|Route(x , y)| ≤ |P |+ 1
d(x , u) + d(v , y) ≤ |P |
We know
d(u, x) ≤ d(x , z) + 1
d(v , y) ≤ d(z , y) + 1

S

z

0

u
v

r

P

x y
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MaxBFS-tree + chordal graph ⇒ add-stretch=1

W.l.o.g., u > v . Recall d(v , y) ≤ d(z , y) + 1
d(v , y) ≤ d(z , y), otherwise Pz→y would belong to T

Let us prove that
|Route(x , y)| ≤ |P |+ 1
d(x , u) + d(v , y) ≤ |P |
We know
d(u, x) ≤ d(x , z) + 1
d(v , y) ≤ d(z , y)

S

z
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MaxBFS-tree + chordal graph ⇒ add-stretch=1

Assume d(u, x) = d(x , z) + 1. T BFS-tree ⇒ v > w > z .
G chordal ⇒ {w , z} ∈ E (G )

Let us prove that
|Route(x , y)| ≤ |P |+ 1
d(x , u) + d(v , y) ≤ |P |
We know
d(u, x) ≤ d(x , z) + 1
d(v , y) ≤ d(z , y)
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MaxBFS-tree + chordal graph ⇒ add-stretch=1

v > w > z and {z , v}, {w , z} ∈ E (G )⇒ {w , v} ∈ E (G )
|Route(x , y)| ≤ d(x ,w) + 1 + d(v , y) ≤ |P |+ 1

Let us prove that
|Route(x , y)| ≤ |P |+ 1
d(x , u) + d(v , y) ≤ |P |
We know
d(u, x) ≤ d(x , z) + 1
d(v , y) ≤ d(z , y)
If d(u, x) = d(x , z) + 1
then {w , v} ∈ E (G )

S

z

0
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v

w
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P
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Current/Further works

Can we improve the size of routing tables?

Other graph classes?

Other BFS-ordering?

Case of k-chordal graphs: can we improve the stretch?
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