
1/12

Distributed computing of efficient routing

schemes

Nicolas Nisse1 Iván Rapaport2 Karol Suchan3

1 MASCOTTE, INRIA, I3S, CNRS, UNS, Sophia Antipolis, France
2 DIM, Universidad de Chile, Santiago, Chile
3 Universidad Adolfo Ibáñez, Santiago, Chile

Working group June 15th 2009,
Alcatel Lucent Belgique/MASCOTTE/LaBRI

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

2/12

The Routing Problem

Problem

input: a network G

output: a routing scheme for G

Routing Scheme: protocol that directs the traffic in a network

Any source must be able to route a message to any
destination, given the destination’s ID.

name-based: IDs are chosen by the designer of the scheme

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

3/12

Complexity Measures

Stretch

Multiplicative stretch: ratio between the length of the
computed route and the distance.
|route(x , y)| ≤ mult-stretch · d(x , y).

Additive stretch: difference between the length of the
computed route and the distance.
|route(x , y)| ≤ add-stretch + d(x , y).

Routing tables’ size

Space necessary to store local routing table (per node)

Time complexity

Distributed protocol to setup data structures

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

4/12

Example: Interval Routing [Santoro & Khatib, 82]

Nodes labeled using integers

Outgoing arc labeled with an interval of the name range

Message sent through the arc containing the destination

mult-stretch:
route(1,5)

d(1,5)
= 4

add-stretch:
route(1, 5)-d(1, 5)= 3

space per node:
O(∆ log n)

2

3

15

4
6

[1]

[1,2]

[1,3]

[5]

[2,6]

[3,6]

[4,6][6][1,5]

[6,4]

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

5/12

Related Works: name-based

Labels are of polylogarithmic size

network mult-stretch table

arbitrary 1 n log n folklore
(k ≥ 2) 4k − 5 O(n1/k) Thorup & Zwick
tree 1 O(1) TZ/Fraigniaud & Gavoille
doubling-α 1 + ε log ∆ Talwar/Slivkins
dimension O(1) Chan et al./Abraham et al.
planar 1 + ε O(1) Thorup
H-minor free 1 + ε O(1) Abraham & Gavoille

Table: Routing schemes

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

6/12

Related Work: k-chordal Graphs

k-chordal graph: any cycle with length ≥ k contains a chord.
chordal graph ⇔ 3-chordal graph (a.k.a. triangulated graph)

network stretch table computation

+2 O(log3 n
log log n

) O(m + n log2 n) Dourisboure

chordal Gavoille, 02

k + 1 O(log2 n) poly(n) Dourisboure
k-chordal 04

Table: Routing schemes for k-chordal graphs

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

6/12

Our results: k-chordal Graphs

k-chordal graph: any cycle with length ≥ k contains a chord.
chordal graph ⇔ 3-chordal graph (a.k.a. triangulated graph)

network stretch table computation

+2 O(log3 n
log log n

) O(m + n log2 n) Dourisboure

chordal Gavoille, 02
+1 O(∆ log n) O(n) this work

k + 1 O(log2 n) poly(n) Dourisboure
k-chordal 04

k − 1 O(∆ log n) O(D) this work

Table: Routing schemes for k-chordal graphs

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

7/12

Routing scheme RS(G ,T)

G a network and T a routed spanning tree of G
x a source node and y a destination node

If x = y , stop.
If there is w ∈ NG (x), an ancestor of y in T ,

choose w minimizing dT (w , y);
Otherwise, choose the parent of x in T .

root

x

y

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

7/12

Routing scheme RS(G ,T)

G a network and T a routed spanning tree of G
x a source node and y a destination node

If x = y , stop.
If there is w ∈ NG (x), an ancestor of y in T ,

choose w minimizing dT (w , y);
Otherwise, choose the parent of x in T .

root

x

y

w

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

7/12

Routing scheme RS(G ,T)

G a network and T a routed spanning tree of G
x a source node and y a destination node

If x = y , stop.
If there is w ∈ NG (x), an ancestor of y in T ,

choose w minimizing dT (w , y);
Otherwise, choose the parent of x in T .

root

x

y

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

7/12

Routing scheme RS(G ,T)

G a network and T a routed spanning tree of G
x a source node and y a destination node

If x = y , stop.
If there is w ∈ NG (x), an ancestor of y in T ,

choose w minimizing dT (w , y);
Otherwise, choose the parent of x in T .

root

x

y

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

7/12

Routing scheme RS(G ,T)

G a network and T a routed spanning tree of G
x a source node and y a destination node

If x = y , stop.
If there is w ∈ NG (x), an ancestor of y in T ,

choose w minimizing dT (w , y);
Otherwise, choose the parent of x in T .

root

x

y

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

7/12

Routing scheme RS(G ,T)

G a network and T a routed spanning tree of G
x a source node and y a destination node

If x = y , stop.
If there is w ∈ NG (x), an ancestor of y in T ,

choose w minimizing dT (w , y);
Otherwise, choose the parent of x in T .

Once T has been chosen
Space: labeling of nodes: any rooted subtree ⇔ interval
routing table: each node knows the interval of its neighbors
O(∆ log n) bits per node
Time: easy in time O(D) in synchronous distributed way

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

8/12

Performances

Lemma 1

If T is any BFS-tree of G k-chordal graph, then
Add-stretch of RS(G ,T) = k − 1

Lemma 2

If T is any MaxBFS-tree of G chordal graph, then
Add-stretch of RS(G ,T) = 1

Lemma 3: in synchronous distributed way,

a BFS-tree can be computed in time O(D);
a MaxBFS-tree can be computed in time O(n).

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

9/12

BFS orderings and BFS-trees

Let r be an arbitrary node: the root.
BFS-tree: parent = greatest neighbor

Breadth First Search
Labeled r with n,
While ∃ unlabeled vertices
Label a neighbor of greatest v
with unlabeled neighbors

r
8 = n

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

9/12

BFS orderings and BFS-trees

Let r be an arbitrary node: the root.
BFS-tree: parent = greatest neighbor

Breadth First Search
Labeled r with n,
While ∃ unlabeled vertices
Label a neighbor of greatest v
with unlabeled neighbors

r
8 = n

7 56

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

9/12

BFS orderings and BFS-trees

Let r be an arbitrary node: the root.
BFS-tree: parent = greatest neighbor

Breadth First Search
Labeled r with n,
While ∃ unlabeled vertices
Label a neighbor of greatest v
with unlabeled neighbors

r
8 = n

7 56

4 3

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

9/12

BFS orderings and BFS-trees

Let r be an arbitrary node: the root.
BFS-tree: parent = greatest neighbor

Breadth First Search
Labeled r with n,
While ∃ unlabeled vertices
Label a neighbor of greatest v
with unlabeled neighbors

r
8 = n

7 56

4 3 2

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

9/12

BFS orderings and BFS-trees

Let r be an arbitrary node: the root.
BFS-tree: parent = greatest neighbor

Breadth First Search
Labeled r with n,
While ∃ unlabeled vertices
Label a neighbor of greatest v
with unlabeled neighbors

r
8 = n

7 56

4 3 1 2

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

9/12

BFS orderings and BFS-trees

Let r be an arbitrary node: the root.
BFS-tree: parent = greatest neighbor

Maximum NeighborhoodBFS
Labeled r with n,
While ∃ unlabeled vertices
Label a neighbor of greatest v
with unlabeled neighbors that
has maximum labeled neighbors

r
8 = n

7

3

6

1 2

5

4

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

9/12

BFS orderings and BFS-trees

Let r be an arbitrary node: the root.
BFS-tree: parent = greatest neighbor

Maximum NeighborhoodBFS
Labeled r with n,
While ∃ unlabeled vertices
Label a neighbor of greatest v
with unlabeled neighbors that
has maximum labeled neighbors

r
8 = n

7 656

1 234

5

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

9/12

BFS orderings and BFS-trees

Let r be an arbitrary node: the root.
BFS-tree: parent = greatest neighbor

Maximum NeighborhoodBFS
Labeled r with n,
While ∃ unlabeled vertices
Label a neighbor of greatest v
with unlabeled neighbors that
has maximum labeled neighbors

r
8 = n

7 65

43

2
1

6 5

2134

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

10/12

Lemma 2: Sketch of proof

If T is any MaxBFS-tree of G chordal graph, then
Add-stretch of RS(G ,T) = 1

Main tools

T is a BFS-tree

G chordal ⇔ any minimal separator is a clique [Dirac]

MaxBFS-ordering and G chordal ⇒ (v > w > z and
{z ,w}, {z , v} ∈ E ⇒ {v ,w} ∈ E) [BKS 05]

Remainder: Routing Scheme: follows T but if one neighbor
is an ancestor of the destination.

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

11/12

MaxBFS-tree + chordal graph ⇒ add-stretch=1

Source x ancestor/descendant of destination y
⇒ add-stretch=0 because T BFS-tree

x

y

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

11/12

MaxBFS-tree + chordal graph ⇒ add-stretch=1

r0 closest commun ancestor of x and y
P a shortest path between x and y

Let us prove that
|Route(x , y)| ≤ |P |+ 1

r
0

P

yx

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

11/12

MaxBFS-tree + chordal graph ⇒ add-stretch=1

r0 closest commun ancestor of x and y
P a shortest path between x and y

Let us prove that
|Route(x , y)| ≤ |P |+ 1

0
r

P

x y

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

11/12

MaxBFS-tree + chordal graph ⇒ add-stretch=1

Case r0 /∈ N(P). ∃S minimal r0,P-separator in N(P).
u, v ∈ S s.t. d(u, x) + d(v , y) minimum

Let us prove that
|Route(x , y)| ≤ |P |+ 1

S

0

u
v

r

P

x y

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

11/12

MaxBFS-tree + chordal graph ⇒ add-stretch=1

G chordal ⇒ S clique, thus {u, v} ∈ E (G)
d(x , u) + 1 + d(v , y) upper bound on |Route(x , y)|

Let us prove that
|Route(x , y)| ≤ |P |+ 1
d(x , u) + d(v , y) ≤ |P |

S

0

u
v

r

P

x y

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

11/12

MaxBFS-tree + chordal graph ⇒ add-stretch=1

{u, v} ∈ E (G) and u, v ∈ N(P)
G chordal ⇒ u, v have a commun neighbor z in P

Let us prove that
|Route(x , y)| ≤ |P |+ 1
d(x , u) + d(v , y) ≤ |P |

S

z

0

u
v

r

P

x y

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

11/12

MaxBFS-tree + chordal graph ⇒ add-stretch=1

T BFS-tree
d(u, x) ≤ d(x , z) + 1 and d(v , y) ≤ d(z , y) + 1

Let us prove that
|Route(x , y)| ≤ |P |+ 1
d(x , u) + d(v , y) ≤ |P |
We know
d(u, x) ≤ d(x , z) + 1
d(v , y) ≤ d(z , y) + 1

S

z

0

u
v

r

P

x y

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

11/12

MaxBFS-tree + chordal graph ⇒ add-stretch=1

W.l.o.g., u > v . Recall d(v , y) ≤ d(z , y) + 1
d(v , y) ≤ d(z , y), otherwise Pz→y would belong to T

Let us prove that
|Route(x , y)| ≤ |P |+ 1
d(x , u) + d(v , y) ≤ |P |
We know
d(u, x) ≤ d(x , z) + 1
d(v , y) ≤ d(z , y)

S

z

0

u
v

r

P

x y

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

11/12

MaxBFS-tree + chordal graph ⇒ add-stretch=1

Assume d(u, x) = d(x , z) + 1. T BFS-tree ⇒ v > w > z .
G chordal ⇒ {w , z} ∈ E (G)

Let us prove that
|Route(x , y)| ≤ |P |+ 1
d(x , u) + d(v , y) ≤ |P |
We know
d(u, x) ≤ d(x , z) + 1
d(v , y) ≤ d(z , y)

S

z

0

u
v

w

r

P

x y

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

11/12

MaxBFS-tree + chordal graph ⇒ add-stretch=1

v > w > z and {z , v}, {w , z} ∈ E (G)⇒ {w , v} ∈ E (G)
|Route(x , y)| ≤ d(x ,w) + 1 + d(v , y) ≤ |P |+ 1

Let us prove that
|Route(x , y)| ≤ |P |+ 1
d(x , u) + d(v , y) ≤ |P |
We know
d(u, x) ≤ d(x , z) + 1
d(v , y) ≤ d(z , y)
If d(u, x) = d(x , z) + 1
then {w , v} ∈ E (G)

S

z

0

u
v

w

r

P

x y

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

12/12

Current/Further works

Can we improve the size of routing tables?

Other graph classes?

Other BFS-ordering?

Case of k-chordal graphs: can we improve the stretch?

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

