Distributed computing of efficient routing schemes

Nicolas Nisse¹ Iván Rapaport² Karol Suchan³

MASCOTTE, INRIA, I3S, CNRS, UNS, Sophia Antipolis, France
 ² DIM, Universidad de Chile, Santiago, Chile
 ³ Universidad Adolfo Ibáñez, Santiago, Chile

Working group June 15th 2009, Alcatel Lucent Belgique/MASCOTTE/LaBRI

1/12

The Routing Problem

Problem

- input: a network G
- output: a routing scheme for G

Routing Scheme: protocol that directs the traffic in a network

Any source must be able to route a message to any destination, given the destination's ID.

name-based: IDs are chosen by the designer of the scheme

2/12

Complexity Measures

Stretch

- Multiplicative stretch: ratio between the length of the computed route and the distance.
 |route(x, y)| ≤ mult-stretch · d(x, y).
- Additive stretch: difference between the length of the computed route and the distance.
 |route(x, y)| ≤ add-stretch + d(x, y).

Routing tables' size

Space necessary to store local routing table (per node)

Time complexity

Distributed protocol to setup data structures

Nicolas Nisse, Iván Rapaport, Karol Suchan

Distributed computing of efficient routing schemes

Example: Interval Routing [Santoro & Khatib, 82]

- Nodes labeled using integers
- Outgoing arc labeled with an interval of the name range

Message sent through the arc containing the destination

Labels are of polylogarithmic size

network	mult-stretch	table		
arbitrary	1	n log n	folklore	
$(k \ge 2)$	4k - 5	$O(n^{1/k})$	Thorup & Zwick	
tree	1	O(1)	TZ/Fraigniaud & Gavoille	
doubling- α	$1 + \epsilon$	$\log \Delta$	Talwar/Slivkins	
dimension		O(1)	Chan et al./Abraham et al.	
planar	$1 + \epsilon$	O(1)	Thorup	
H-minor free	$1 + \epsilon$	O(1)	Abraham & Gavoille	

Table: Routing schemes

5/12

(ロ) (同) (E) (E) (E)

Related Work: k-chordal Graphs

k-chordal graph: any cycle with length $\geq k$ contains a chord. *chordal graph* \Leftrightarrow 3-chordal graph (a.k.a. triangulated graph)

network	stretch	table	computation	
	+2	$O(\frac{\log^3 n}{\log\log n})$	$O(m + n \log^2 n)$	Dourisboure
chordal		10 10		Gavoille, 02
	k+1	$O(\log^2 n)$	poly(n)	Dourisboure
<i>k</i> -chordal				04

Table: Routing schemes for k-chordal graphs

・ 同 ト ・ ヨ ト ・ ヨ ト

Our results: k-chordal Graphs

k-chordal graph: any cycle with length $\geq k$ contains a chord. *chordal graph* \Leftrightarrow 3-chordal graph (a.k.a. triangulated graph)

network	stretch	table	computation	
	+2	$O(\frac{\log^3 n}{\log \log n})$	$O(m + n \log^2 n)$	Dourisboure
chordal				Gavoille, 02
	+1	$O(\Delta \log n)$	O(n)	this work
	k+1	$O(\log^2 n)$	poly(n)	Dourisboure
<i>k</i> -chordal				04
	k-1	$O(\Delta \log n)$	O(D)	this work

Table: Routing schemes for *k*-chordal graphs

6/12

(1日) (1日) (日)

G a network and T a routed spanning tree of G x a source node and y a destination node

If x = y, stop. If there is $w \in N_G(x)$, an ancestor of y in T, choose w minimizing $d_T(w, y)$; Otherwise, choose the parent of x in T. root

Distributed computing of efficient routing schemes

G a network and T a routed spanning tree of G x a source node and y a destination node

If x = y, stop. If there is $w \in N_G(x)$, an ancestor of y in T, choose w minimizing $d_T(w, y)$; Otherwise, choose the parent of x in T.

Nicolas Nisse, Iván Rapaport, Karol Suchan

Distributed computing of efficient routing schemes

G a network and T a routed spanning tree of G x a source node and y a destination node

If x = y, stop. If there is $w \in N_G(x)$, an ancestor of y in T, choose w minimizing $d_T(w, y)$; Otherwise, choose the parent of x in T.

G a network and T a routed spanning tree of G x a source node and y a destination node

If x = y, stop. If there is $w \in N_G(x)$, an ancestor of y in T, choose w minimizing $d_T(w, y)$; Otherwise, choose the parent of x in T.

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

G a network and T a routed spanning tree of G x a source node and y a destination node

If x = y, stop. If there is $w \in N_G(x)$, an ancestor of y in T, choose w minimizing $d_T(w, y)$; Otherwise, choose the parent of x in T.

Nicolas Nisse, Iván Rapaport, Karol Suchan Distributed computing of efficient routing schemes

G a network and T a routed spanning tree of G x a source node and y a destination node

If x = y, stop. If there is $w \in N_G(x)$, an ancestor of y in T, choose w minimizing $d_T(w, y)$; Otherwise, choose the parent of x in T.

Once T has been chosen

Space: labeling of nodes: any rooted subtree \Leftrightarrow interval routing table: each node knows the interval of its neighbors $O(\Delta \log n)$ bits per node **Time**: easy in time O(D) in synchronous distributed way

7/12

・ロト ・ 同ト ・ ヨト ・ ヨト

Lemma 1

If T is any BFS-tree of G k-chordal graph, then Add-stretch of RS(G, T) = k - 1

Lemma 2

If T is any MaxBFS-tree of G chordal graph, then Add-stretch of RS(G, T) = 1

Lemma 3: in synchronous distributed way,

a BFS-tree can be computed in time O(D); a MaxBFS-tree can be computed in time O(n).

(日) (종) (종) (종) (종)

Breadth First Search

Labeled r with n, **While** \exists unlabeled vertices Label a neighbor of greatest v with unlabeled neighbors

A (1) > A (2) > A (2) >

Breadth First Search

Labeled r with n, **While** \exists unlabeled vertices Label a neighbor of greatest v with unlabeled neighbors

A (1) > A (2) > A (2) >

Breadth First Search

Labeled r with n, **While** \exists unlabeled vertices Label a neighbor of greatest vwith unlabeled neighbors

A (1) > A (2) > A (2) >

Breadth First Search

Labeled r with n, **While** \exists unlabeled vertices Label a neighbor of greatest vwith unlabeled neighbors

A (B) > A (B) > A (B) >

Breadth First Search

Labeled r with n, **While** \exists unlabeled vertices Label a neighbor of greatest v with unlabeled neighbors

A (B) > A (B) > A (B) >

Maximum NeighborhoodBFS Labeled r with n, While \exists unlabeled vertices Label a neighbor of greatest vwith unlabeled neighbors that has maximum labeled neighbors

伺 ト イヨト イヨト

Maximum NeighborhoodBFS Labeled r with n, While \exists unlabeled vertices Label a neighbor of greatest vwith unlabeled neighbors that has maximum labeled neighbors

伺 ト イヨト イヨト

Maximum NeighborhoodBFS Labeled r with n, While \exists unlabeled vertices Label a neighbor of greatest vwith unlabeled neighbors that has maximum labeled neighbors

伺 ト イヨト イヨト

If T is any MaxBFS-tree of G chordal graph, then Add-stretch of RS(G, T) = 1

Main tools

- T is a BFS-tree
- *G* chordal ⇔ any minimal separator is a clique [Dirac]
- MaxBFS-ordering and G chordal \Rightarrow (v > w > z and $\{z, w\}, \{z, v\} \in E \Rightarrow \{v, w\} \in E$) [BKS 05]

Remainder: **Routing Scheme**: follows T but if one neighbor is an ancestor of the destination.

10/12

(日) (종) (종) (종) (종)

Source x ancestor/descendant of destination y \Rightarrow add-stretch=0 because T BFS-tree

 r_0 closest commun ancestor of x and y P a shortest path between x and y

Let us prove that $|Route(x, y)| \le |P| + 1$

 r_0 closest commun ancestor of x and y P a shortest path between x and y

Let us prove that $|Route(x, y)| \le |P| + 1$

Case $r_0 \notin N(P)$. $\exists S$ minimal r_0 , *P*-separator in N(P). $u, v \in S$ s.t. d(u, x) + d(v, y) minimum

G chordal \Rightarrow S clique, thus $\{u, v\} \in E(G)$ d(x, u) + 1 + d(v, y) upper bound on |Route(x, y)|

Let us prove that $|Route(x, y)| \le |P| + 1$ $d(x, u) + d(v, y) \le |P|$

Distributed computing of efficient routing schemes

 $\{u, v\} \in E(G)$ and $u, v \in N(P)$ G chordal $\Rightarrow u, v$ have a commun neighbor z in P

11/12

S

T BFS-tree $d(u,x) \leq d(x,z) + 1$ and $d(v,y) \leq d(z,y) + 1$

W.l.o.g., u > v. Recall $d(v, y) \le d(z, y) + 1$ $d(v, y) \le d(z, y)$, otherwise $P_{z \to y}$ would belong to T

Let us prove that $|Route(x, y)| \le |P| + 1$ $d(x, u) + d(v, y) \le |P|$ We know $d(u, x) \le d(x, z) + 1$ $d(v, y) \le d(z, y)$

Assume d(u, x) = d(x, z) + 1. *T* BFS-tree $\Rightarrow v > w > z$. *G* chordal $\Rightarrow \{w, z\} \in E(G)$

Let us prove that $|Route(x, y)| \le |P| + 1$ $d(x, u) + d(v, y) \le |P|$ We know $d(u, x) \le d(x, z) + 1$ $d(v, y) \le d(z, y)$

$$v > w > z$$
 and $\{z, v\}, \{w, z\} \in E(G) \Rightarrow \{w, v\} \in E(G)$
 $|Route(x, y)| \le d(x, w) + 1 + d(v, y) \le |P| + 1$

Let us prove that $|Route(x, y)| \le |P| + 1$ $d(x, u) + d(v, y) \le |P|$ We know $d(u, x) \le d(x, z) + 1$ $d(v, y) \le d(z, y)$ If d(u, x) = d(x, z) + 1then $\{w, v\} \in E(G)$

Distributed computing of efficient routing schemes

Can we improve the size of routing tables?

Other graph classes?

Other BFS-ordering?

Case of k-chordal graphs: can we improve the stretch?

12/12

・ 同 ト ・ ヨ ト ・ ヨ ト