
1/22

Tradeoffs for Routing Reconfiguration in

WDM Networks

Nathann Cohen
David Coudert

Dorian Mazauric
Napoleão Nepomuceno

Nicolas Nisse

MASCOTTE, INRIA, I3S, CNRS, UNS, Sophia Antipolis, France

ANR ALADDIN meeting, Bordeaux, November 26-27th 2009

Cohen, Coudert, Mazauric, Nepomuceno, Nisse Routing Reconfiguration



2/22

Routing in WDM Networks

Physical Network, Links provide several wavelengths

multi-graph G = (V ,E )
an edge (u, v) ⇔ one wavelength on the link (u, v)

Routing of a set of requests/connections

set of requests R ⊆ 2V×V

routing: for each request (u, v),
a path from u to v and 1 wavelength.

Problem: due to dynamicity of traffic, failures

how to maintain an efficient routing?
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What happens in ”real” world

Variation of traffic + dynamicity induced by failures
⇒ Online processes to route all requests: e.g., greedy routing

Example of a grid network with directed symmetric links
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Leads to a poor usage of ressources

Sometimes greedy routing is impossible
even if several requests are allowed to be moved
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Sometimes greedy routing is impossible
even if several requests are allowed to be moved

If {5, 8} fails:
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2 questions arise:

1 Compute new routing

2 Switch from initial routing to final one

We focus on 2
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Two ways of switching one request

Make-before-break:

Establish new path before switching the
connection

=⇒ Destination resources must be available

Break-before-make:

Break connection before establishing the new path

=⇒ Traffic stopped = interruption

Cohen, Coudert, Mazauric, Nepomuceno, Nisse Routing Reconfiguration
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The Routing Reconfiguration Problem
How to go from the initial routing (left) to the final one (right)?
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Inputs: Set of connection requests + current & new routing

Output: Scheduling for switching connection requests from
current to new routes

Constraint: A connection is switched only once

ObjectiveS Number of Interruptions (detailled later)
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Dependency digraph
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one vertex per connection with
different routes in I and F
arc from u to v if ressources needed
by u in F are used by v in I
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A game on dependency digraph
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A game on dependency digraph
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From now on: problem on digraphs

Any directed graph is a dependency digraph
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Two possible objectives

Minimize overall number of interrupted requests

Minimum Feedback Vertex Set (MFVS), here N/4

Remarks: MFVS is NP-complete and non APX in digraphs
2-approx in undirected (directed symmetric) graphs

Minimize number of simultaneous interrupted requests

Process Number, pn = smallest number of requests that
have to be simultaneously interrupted.
Here, pn = 1 ⇒ Gap with MFVS up to N/2
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Routing Reconfiguration, Process number

Game with Agents on the Dependency digraph D

Sequence of three basic operations,. . .
1 Place a searcher at a node = interrupt the request;

2 Process a node if all its out-neighbors are either processed or occupied by an
agent = (Re)route a connection when final resources are available;

A processed node is removed from the dependency digraph.

3 Remove an agent from a node, after having processed it.

. . . that must result in processing all nodes

Process number pn(D)= min p | D can be processed with p agents

Remark: In undirected graphs or symmetric digraphs:

Graph Searching game when a fugitive is captured when surrounded

Cohen, Coudert, Mazauric, Nepomuceno, Nisse Routing Reconfiguration
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Example: DAG

Only one operation is used
1 Place a searcher at a node = interrupt the request;

2 Process a node if all its out-neighbors are either processed or occupied by an
agent = (Re)route a connection when final resources are available;

3 Remove an agent from a node, after having processed it.

DAG

Theorem

pn(D) = 0 iff D is a DAG

Cohen, Coudert, Mazauric, Nepomuceno, Nisse Routing Reconfiguration
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Digraphs with process number 1

One agent is used
1 Place a searcher at a node = interrupt the request;

2 Process a node if all its out-neighbors are either processed or occupied by an
agent = (Re)route a connection when final resources are available;

3 Remove an agent from a node, after having processed it.

Theorem

pn(D) = 1 ⇔ ∀SCC , MFVS(SCC ) = 1 O(N + M)

Cohen, Coudert, Mazauric, Nepomuceno, Nisse Routing Reconfiguration
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Process number versus Other Parameters

a parameter of directed (and undirected) graphs

vs, vertex separation

in undirected graph or symetric digraph: vs = pathwidth

vs(G ) = pw(G ) Kinnersley [IPL 92]

Theorem (Coudert & Sereni, 2007)

vs(D) ≤ pn(D) ≤ vs(D) + 1

Complexity: NP-Complete, Not APX

Characterization of digraphs with process number 0, 1, 2
(Coudert & Sereni, 2007)
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State of the Art

distributed O(n log n)-time exact algorithm in trees
(Coudert, Huc, Mazauric [DISC 08])

generalized Model handling priority connections
connections that cannot be interrupted

heuristic using random walk
(Coudert, Huc, Mazauric, Nisse, Sereni [ONDM 09])

heuristic using LP (Solano [Globecom 09])

generalized Model allowing bandwidth sharing
deciding whether reconfiguration may be done without interruption:

NP-complete (Coudert, Mazauric, Nisse [AGT 09])

Cohen, Coudert, Mazauric, Nepomuceno, Nisse Routing Reconfiguration
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Tradeoff: total/ max simultaneous interruptions

#agents

mfvs

mfvs_{pn}

pn_{mfvs}pn mfvs

#occupied vertices
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Complexity

Smallest number of agents such that the number of
occupied vertices is minimum = pnmfvs(D)

µ = pnmfvs(D)
pn(D)

Smallest total number of occupied vertices such that the
number of agents is minimum = mfvspn(D)

λ = mfvspn(D)
mfvs(D)

Theorem

The problems of determining pnmfvs(D), mfvspn(D), µ, and λ
are NP-Complete and not APX.

Cohen, Coudert, Mazauric, Nepomuceno, Nisse Routing Reconfiguration
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# agents for minimizing # occupied vertices

∃ digraphs with arbitrary large ratio: µ = pnmfvs(D)
pn(D)

.

mfvs(D) = n

pn(D) = 2

pnmfvs(D) = n
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# occupied vertices by the minimum # agents

∃ digraphs with arbitrary large ratio: λ = mfvspn(D)
mfvs(D)

.

mfvs(D) = 4

pn(D) = 3

mfvspn(D) = n + 4
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# occupied vertices by the minimum # agents

Directed graphs with BOUNDED Process Number:
λ = occupied vertices / mfvs UNBOUNDED

What if G is undirected ??

Let G be a symmetric directed/undirected graph,

λ = mfvspn(G)
mfvs(G)

≤ pn(G )
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# occupied vertices by the minimum # agents

Consider a MFVS of G. S using pn(G) agents and occupying mfvspn(G) vertices,

such that occupies the minimum number of vertices in MFVS

Independant

vertices

vertices

unoccupied

occupied
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Consider a MFVS of G. S using pn(G) agents and occupying mfvspn(G) vertices,

such that occupies the minimum number of vertices in MFVS

Z

Y X

W

vertices

vertices

unoccupied

occupied

Independant

MFVS V \ MFVS

Independant

λ = mfvspn(G)
mfvs(G)

= Y +X
Y +W
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# occupied vertices by the minimum # agents

Consider a MFVS of G. S using pn(G) agents and occupying mfvspn(G) vertices,

such that occupies the minimum number of vertices in MFVS

X

Y X

W Z

N(W)

unoccupied
Independant

MFVS

Independant

V \ MFVS

occupied

vertices

vertices
d(v)<= pn(G)

λ = mfvspn(G)
mfvs(G)

= |Y |+|X |
|Y |+|W |

|X | = |X ∩ N(W )|+ |R| ≤ |W |.pn(G ) + |R|
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# occupied vertices by the minimum # agents

Consider a MFVS of G. S using pn(G) agents and occupying mfvspn(G) vertices,

such that occupies the minimum number of vertices in MFVS

X

N(W)

W

X

Z

Y

vertices

vertices
unoccupied

occupied

MFVS

Independant

V \ MFVS

Independant

3

RN(R)
4 51 2

λ = mfvspn(G)
mfvs(G)

= |Y |+|X |
|Y |+|W | ≤

|Y |+|W |.pn(G)+|R|
|Y |+|W |

N(R) = {v1, · · · , vr} ⊆ Y : ordering in which agents are removed
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# occupied vertices by the minimum # agents

Consider a MFVS of G. S using pn(G) agents and occupying mfvspn(G) vertices,

such that occupies the minimum number of vertices in MFVS

N(W)

Y X

X

ZW

vertices

vertices
unoccupied

occupied

Independant

MFVS

Independant

V \ MFVS

RN(R)
4 51 2 3

λ = mfvspn(G)
mfvs(G)

= |Y |+|X |
|Y |+|W | ≤

|Y |+|W |.pn(G)+|R|
|Y |+|W |

|N(v1)| ≤ pn(G )− 1
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# occupied vertices by the minimum # agents

Consider a MFVS of G. S using pn(G) agents and occupying mfvspn(G) vertices,

such that occupies the minimum number of vertices in MFVS

N(W)

Y X

X

ZW

vertices

vertices
unoccupied

occupied

Independant

MFVS

Independant

V \ MFVS

2 3

RN(R)
4 51

λ = mfvspn(G)
mfvs(G)

= |Y |+|X |
|Y |+|W | ≤

|Y |+|W |.pn(G)+|R|
|Y |+|W |

|N(v2) \ N(v1)| ≤ pn(G )− 1, |N(vi ) \
⋃

j<i N(vj)| ≤ pn(G )− 1
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# occupied vertices by the minimum # agents

Consider a MFVS of G. S using pn(G) agents and occupying mfvspn(G) vertices,

such that occupies the minimum number of vertices in MFVS

N(W)

Y X

X

ZW

vertices

vertices
unoccupied

occupied

Independant

MFVS

Independant

V \ MFVS

2 3

RN(R)
4 51

λ = mfvspn(G)
mfvs(G)

= |Y |+|X |
|Y |+|W | ≤

|Y |+|W |.pn(G)+|R|
|Y |+|W |

so |R| ≤ |N(R)|(pn(G )− 1) ≤ |Y |(pn(G )− 1)
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# occupied vertices by the minimum # agents

Consider a MFVS of G. S using pn(G) agents and occupying mfvspn(G) vertices,

such that occupies the minimum number of vertices in MFVS

N(W)

Y X

X

ZW

vertices

vertices
unoccupied

occupied

Independant

MFVS

Independant

V \ MFVS

2 3

RN(R)
4 51

λ = mfvspn(G)
mfvs(G)

= |Y |+|X |
|Y |+|W | ≤

|Y |+|W |.pn(G)+|R|
|Y |+|W |

λ ≤ |Y |+|W |.pn(G)+|Y |(pn(G)−1)
|Y |+|W | = pn(G )
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# occupied vertices by the minimum # agents

∀ε, ∃ symmetric digraphs D: λ = mfvspn(D)
mfvs(D)

> 3− ε.
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# occupied vertices by the minimum # agents

∀ε, ∃ symmetric digraphs D: λ = mfvspn(D)
mfvs(D)

> 3− ε.

Kn+1

K2,n K2,n

mfvs(D) = n + 4

pn(D) = n + 1

mfvspn(D) = 3n + 2
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Some open questions

A lot of ”bad” news... No tradeoff ?

Can we restrict the class of dependancy digraphs ?

No... even if the physical network is a directed path...

Conjecture

Let G be a symmetric directed/undirected graph,

λ = mfvspn(G)
mfvs(G)

≤ 3

• Approximation and Heuristic algorithms for these parameters
Link between random walks and separators of graphs ?
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Merci
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