
Distributed computing of efficient routing schemes

in generalized chordal graphs ∗

Nicolas Nisse1, Ivan Rapaport2 and Karol Suchan3,4

1MASCOTTE, INRIA, I3S, CNRS, UNS, Sophia Antipolis, France.
2DIM, CMM (UMI 2807 CNRS), Universidad de Chile, Santiago, Chile.

3Facultad de Ingenieŕıa y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile.
4Faculty of Applied Mathematics, AGH - University of Science and Technology, Cracow, Poland.

Abstract

Efficient algorithms for computing routing tables should take advantage of the particular
properties arising in large scale networks. There are in fact at least two properties that any
routing scheme must consider: low (logarithmic) diameter and high clustering coefficient.

High clustering coefficient implies the existence of few large induced cycles. Therefore,
we propose a routing scheme that computes short routes in the class of k-chordal graphs,
i.e., graphs with no chordless cycles of length more than k. We study the tradeoff between
the length of routes and the time complexity for computing them. In the class of k-chordal
graphs, our routing scheme achieves an additive stretch of at most k − 1, i.e., for all pairs
of nodes, the length of the route never exceeds their distance plus k − 1.

In order to compute the routing tables of any n-node graph with diameter D we propose
a distributed algorithm which uses O(log n)-bit messages and takes O(D) time. We then
propose a slightly modified version of the algorithm for computing routing tables in time
O(min{∆D, n}), where ∆ is the the maximum degree of the graph. Using these tables, our
routing scheme achieves a better additive stretch of 1 in chordal graphs (notice that chordal
graphs are 3-chordal graphs). The routing scheme uses addresses of size log n bits and local
memory of size 2(d − 1) log n bits in a node of degree d.

Keywords: Routing scheme, stretch, chordal graph, distributed algorithm.

1 Introduction

In any distributed communication network it is important to deliver messages between pairs of
processors. Routing schemes are employed for this purpose. A routing scheme is a distributed
algorithm that directs traffic in a network. More precisely, any source node must be able to route
messages to any destination node, given the destination’s network identifier. When investigating
routing schemes, several complexity measures arise. On one hand, it is desirable to use as short
paths as possible for routing messages. The efficiency of a routing scheme is measured in terms
of its multiplicative stretch factor (resp., additive stretch factor), i.e., the maximum ratio (resp.,
difference) between the length of a route computed by the scheme and that of a shortest path
connecting the same pair of nodes. On the other hand, as the amount of storage at each
processor is limited, the routing information stored in the processors’ local memory, the routing
tables, must not require too much space with respect to the size of the network. Last but not

∗Partially supported by programs Fondap and Basal-CMM (I.R. and K.S.), Fondecyt 1090156 (I.R.) and the
European project IST FET AEOLUS (N.N.).

1

least, because of the dynamic character of networks, it is important to be able to compute the
routing information in an efficient distributed way. While many works propose good tradeoffs
between the stretch and the size of routing tables, the algorithms that compute those tables are
often impracticable because they are centralized algorithms or because of their time-complexity.
Indeed, in the context of large scale networks like social networks or Internet, even polynomial
time algorithms are inefficient. In this paper, we focus on the tradeoff between the length of
the computed routes and the time complexity of the computation of routing tables.

One way to design efficient algorithms in large scale networks consists in taking advantage of
their specific properties. In particular, they are known to have low (logarithmic) diameter and
to have high clustering coefficient. Therefore, their chordality (the length of the longest induced
cycle) is somehow limited (e.g., see [Fra05]). That is why, in this paper, we focus on the class
of k-chordal graphs. A graph G is called k-chordal if it does not contain induced cycles longer
than k. A 3-chordal graph is simply called chordal. This class of graphs received particular
interest in the context of compact routing. Dourisboure and Gavoille proposed routing tables of
at most log3 n/ log log n bits per node, computable in time O(m + n log2 n), that give a routing
scheme with additive stretch 2⌊k/2⌋ in the class of k-chordal graphs [DG02]. Also, Dourisboure
proposed routing tables computable in polynomial time, of at most log2(n) bits, but that give an
additive stretch k+1 [Dou05]. Using a Lexicographic Breadth-First Search (Lex-BFS) ordering
(resp., BFS ordering) of the vertices, Dragan designed a O(n2)-time algorithm to approximate
the distance up to an additive constant of 1 (resp., up to k − 1) between all pairs of nodes of
any n-node chordal graph (resp., k-chordal graph) [Dra05]. All these time results consider the
centralized model of computation.

In this paper we propose a simpler routing scheme which, in particular, can be quickly
computed in a distributed way and achieves good additive stretch for k-chordal graphs. However,
the simplicity comes at a price of O(log n) bits per port needed to store the routing tables.

Distributed Model. An interconnection network is modeled by a simple undirected connected
n-node graph G = (V,E). In the following, D denotes the diameter of G and ∆ denotes its
maximum degree. The processors (nodes) are autonomous computing entities with distinct
identifiers of size log n bits. We consider an all-port, full-duplex, O(log n) bounded message
size, synchronous communication model. That is, any processor is able to send (resp., receive)
different messages of size O(log n) to (resp., from) each of its neighbors in one communication
step; links (edges) are bidirectional.

Our results. We present a simple routing scheme using a relabeling of the vertices based on
a particular BFS-tree. Using a Strong BFS-tree, our algorithm achieves an additive stretch
k − 1 in the class of k-chordal graphs, and using a Maximum Neighborhood BFS-tree (Max-
BFS-tree), it achieves an additive stretch 1 in the class of chordal graphs. It uses addresses of
size log n bits and local memory of size 2(d− 1) log n bits per node of degree d. More precisely,
each node must store an interval (2 log n bits) per port, except for one port.

The stretches we achieve equal the best ones obtained in previous works. But our algorithm
is a (simple) distributed one. It uses messages of size O(log n) bits. It computes a relabeling of
the vertices and the routing tables in time O(D) when a Strong BFS-tree is used, and in time
O(min{∆D,n}) when a Max-BFS-tree is used.

In the class of chordal graphs, our results simplify those of Dragan since a Lex-BFS ordering
is more constrained than a Max-BFS ordering. In particular, the design of a distributed algo-
rithm that computes a Lex-BFS ordering of the vertices of any n-node graph G in time o(n) is
an open problem even if G has small diameter and maximum degree.

Related work. Two kinds of routing schemes have been studied. In the name-independent
model, the designer of the routing scheme has no control over the node names (see, e.g.,

2

[PU89, GP96, GG01]). Here we focus on labeled routing, where the designer of the routing
scheme is free to name the nodes with labels containing some information about the topology
of the network, the location of the nodes in the network, etc. In this context, a routing scheme
with multiplicative stretch 4k − 5, k ≥ 2, and using Õ(n1/k) bits per node1 in arbitrary graphs
is designed in [TZ01]. In the case of trees, optimal labeled routing schemes using Õ(1) bits
per node have been proposed in [FG01, TZ01]. In [FG01], it is shown that any optimal rout-
ing scheme using addresses of log n bits requires Ω(

√
n) bits of local memory-space. Several

network classes have been studied, like planar graphs [Tho04], graphs with bounded doubling
dimension [AGGM06], graphs excluding a minor [AG06], etc.

A particular labeled routing scheme is interval routing. Defined in [SK85], interval routing
has received particular interest [Gav00]. In such a scheme, the nodes of the network are labeled
using integers, and outgoing arcs in a node are labeled with a set of intervals. The set of all
the intervals associated to all the outgoing edges of a node forms a partition of the name range.
The routing scheme consists in sending the message through the unique outgoing arc labeled
by an interval containing the destination’s label. The complexity measure is the maximum
number of intervals used in the label of an outgoing arc. An asymptotically tight complexity of
n/4 intervals per arc in an n-node network is given in [GP99]. Moreover, almost all networks
support an optimal interval routing scheme using at most 2 intervals per outgoing link [GP01].
Specific graph classes have been studied in this context (e.g., k-trees [NN98]).

2 Generalities on BFS-orderings and BFS-trees

In the following, G = (V,E) denotes a connected n-node graph. Let H = (V (H), E(H)) be a
subgraph of G, i.e., V (H) ⊆ V and E(H) ⊆ {{u, v} ∈ E | u, v ∈ V (H)}. dH(x, y) denotes the
distance in H between x, y ∈ V (H). NH(x) denotes the neighborhood of x ∈ V (H) in H. The
length |P | of a path P is its number of edges. A vertex v ∈ V is simplicial if its neighborhood
induces a clique. An ordering {v1, · · · , vn} on the vertices of G is called a perfect elimination
ordering (PEO) if, for any 1 ≤ i ≤ n, vi is simplicial in Gi, where Gi is the graph induced by
{vi, · · · , vn}. In the context of a vertex ordering, we denote w < v if w has a smaller index in
this ordering. Note that in a PEO, if z < w < v, {z,w} ∈ E and {z, v} ∈ E, then {w, v} ∈ E.

Theorem 1 [FG65] A graph is chordal iff it admits a PEO.

Let r ∈ V . A Breadth-First Search (BFS) ordering of G rooted at r is an ordering of its
vertices such that r is the greatest vertex and, for any u, v ∈ V (G) \ {r}, v < u implies that
the greatest neighbor of u is greater than or equal to the greatest neighbor of v. A Maximal
Neighborhood Breadth-First Search (MaxBFS) ordering of G rooted at r is a BFS ordering of
its vertices with the following additional constraint: for any u, v ∈ V (G) \ {r} with the same
greatest neighbor, v < u implies that the number of neighbors of u greater than u is at least
the number of neighbors of v greater than u. The following theorem will be widely used.

Theorem 2 [BKS05, CK] A graph G is chordal if and only if any MaxBFS ordering is a PEO.

Given an ordering O of the vertices of G, the spanning tree defined by O is the spanning
tree obtained by choosing for each vertex, but the root, its greatest neighbor as the parent.
Such a tree defined by a BFS ordering (resp., by a MaxBFS ordering) will be called a Strong
BFS-tree2 (resp., MaxBFS-tree). Such a tree is rooted at the greatest vertex in the ordering.

1The notation Õ() indicates complexity similar to O() up to polylogarithmic factors.
2The name BFS-tree is often used in distributed computing literature to denote any shortest paths tree. To

emphasize the particular properties of BFS-trees that are used in this work, the authors decided to add ”Strong”
in the name, even though the BFS-trees found in many textbooks are Strong BFS-trees in this sense.

3

3 Routing Scheme using Strong BFS and MaxBFS

This section is devoted to presenting a simple routing scheme based on Strong BFS-trees. We
prove that this scheme achieves a good additive stretch in k-chordal graphs, and an improvement
of this routing scheme is provided for chordal graphs.

First, let us present some notation. Let T be a spanning tree of a graph G. Given x, y ∈ V ,
Tx→y denotes the path in T between x and y. When T is defined by some BFS ordering, for any
v,w ∈ V , v > w denotes that v has a bigger index than w in this ordering. When T is rooted
at r ∈ V (T), its vertices are partitioned into layers: the layer ℓ(v) of a vertex v corresponds to
dG(v, r). Note that {u, v} ∈ E ⇒ |ℓ(u)−ℓ(v)| ≤ 1. In this paper we consider rooted trees, so we
may say that two vertices are in the same branch if their least common ancestor is equal to one
of them. Finally, given a routing scheme R on G, Str(R, xy) denotes the difference between
the length of the path computed by R and the distance in G between x and y. The (additive)
stretch Str(R) of R in G corresponds to maxx,y∈V Str(R, xy).

3.1 General Routing Scheme

Let G be a graph and T be any Strong BFS-tree of G. Roughly, the routing scheme we propose
proceeds as follows to send a message from any source x ∈ V (G) to any destination y ∈ V (G).
The message follows the path from x to y in T , but if at some step the message can go through
an edge e ∈ E(G) \ E(T) that leads to the branch of T containing y, then it will use this
shortcut. More formally, our routing scheme R(G,T) is defined as follows.

If x = y, stop.
If there exists w ∈ NG(x) ancestor of y in T , choose such a vertex w minimizing dT (w, y);
Otherwise, choose the parent of x in T .

For instance, Figure 1 represents 3 graphs where the spanning trees are depicted with bold
edges. In Figure 1(a), a message from 1 to 2 will follow the path {1, 4, 6, 7, 5, 2}. In Figure 1(c),
the same message will follow {1, 4, 5, 2}. Let us make some simple remarks.

1. The routing scheme R(G,T) is well defined. Indeed, the message will eventually reach
its destination since its distance to y in T is strictly decreasing at each step. Note that
even if T is an arbitrary rooted spanning tree of G, the distance from y in T may increase
at most once, if the message is passed from a descendant of y to an ancestor at a larger
distance from y.

2. Once a spanning tree T rooted at an r ∈ V (G) has been defined, this scheme can be
efficiently implemented. It is sufficient to label the vertices such that any rooted subtree
of T corresponds to a single interval. For any u ∈ V (G) and any neighbor v of u but
its parent, u stores the interval corresponding to the subtree of T rooted at v. Then,
the routing function chooses the port corresponding to the inclusion-minimal interval
containing the destination’s address, and it chooses the parent of the current location if
no such interval exists. Note that this is not a standard interval routing scheme as defined
in [SK85] because some intervals may be contained in others.

3. Since we assume that T is a BFS-tree, it is easy to see that the route computed by the
routing scheme R(G,T) between two arbitrary nodes contains at most one edge that is
not an edge of T . Indeed, after having taken such a shortcut, the message reaches y by
following the path in T , which is a shortest path in G since T is a BFS-tree.

4

2 1

4

6

3
5

7
8

(a) 4-chordal graph
and Strong BFS-tree.

3p+5

3p+4

3p+3

3p+2 8

3

5

4

1

2

7

63p

3p+1

(b) 2p + 2-chordal graph and MaxBFS-tree.

5

1

4
32

(c) Chordal graph and
MaxBFS-tree.

Figure 1: Lemmata 3 and 4 give optimal bounds.

This section is devoted to proving the following theorem.

Theorem 3 Let k ≥ 3 and let G be a k-chordal graph.

• Let T be any Strong BFS-tree of G. Then Str(R(G,T)) ≤ k − 1.

• Let k = 3 and let T be any MaxBFS-tree of G. Then Str(R(G,T)) ≤ 1.

• Both bounds are tight.

3.2 Stretch in k-Chordal Graphs

Let k ≥ 3 and let G be a k-chordal graph and T be a (rooted) Strong BFS-tree of G. Let
x, y ∈ V be an arbitrary source and destination, respectively. The proof is a case by case
analysis to bound Str(R(G,T), xy). Let Rxy be the route from x to y computed by R(G,T).
In the following, we compare the length of Rxy with the length of some shortest path between x
and y in G. Several parts of the following discussion are depicted in Figure 2, where bold lines
represent edges, thin lines represent paths belonging to T and dotted lines represent paths with
edges not necessarily belonging to T .

Restriction w.l.o.g. In this subsection, we prove that it is sufficient to consider x and y with
a smallest common ancestor r0 such that there is a shortest path P between x and y in G with
no internal vertices of P in V (Tr0→y) ∪ V (Tx→r0

).
If x is an ancestor or a descendant of y, Rxy is the path between x and y in T . Since T is a

BFS-tree, this is a shortest path. From now on, we assume that x and y have a least common
ancestor r0 ∈ V (G) distinct from x and y. By definition of R(G,T), Rxy either passes through
r0, or it uses an edge {e, f} ∈ E(G) \ E(T) with e ∈ V (Tx→r0

) \ {r0} and f ∈ V (Tr0→y) \ {r0}.
I.e., the route Rxy from x to y is either Tx→e ∪ {e, f} ∪ Tf→y, or Tx→r0

∪ Tr0→y.
First, we need a technical lemma that shows that the roles of x and y are somehow symmetric.

Lemma 1 Str(R(G,T), xy) = Str(R(G,T), yx).

Proof. Let Ryx be the route computed by R(G,T) from y to x. If Rxy passes through r0,
then Ryx does so, and Rxy = Ryx. If Rxy 6= Ryx, then Ryx must contain an edge {e′, f ′} ∈
E(G)\E(T) other than {e, f} (see Fig. 2(a)), and e′ ∈ V (Te→r0

)\{e} and f ′ ∈ V (Tr0→f)\{f}.
Because T is a Strong BFS-tree, e′ is the parent of e and f is the parent of f ′. Indeed,
dG(r0, f) < dG(r0, f

′) ≤ dG(r0, e
′) + 1 ≤ dG(r0, e) ≤ dG(r0, f) + 1. To conclude, if Rxy 6= Ryx,

Rxy = Tx→e ∪ {e, f} ∪ {f, f ′} ∪ Tf ′→y, and Ryx = Ty→f ′ ∪ {f ′, e′} ∪ {e′, e} ∪ Te→x.

5

r
0

yx

e f
e’

f ’

(a) Lemma 1

r
0

e

f
x’

x y

y’

a
b

P

(b) Lemma 2

S

z

x y

0

u
v

w

r

P

(c) r0 /∈ N(P)

r
0

x y

f

e

u

v
2P

P1 3P
u’ v’

(d) Lem.3 r0 /∈ N(P)

x y

r
0

z

P

u v

(e) Lem.3 r0 ∈ N(P)

Figure 2: Illustrations of the bounds of Str(R(G,T), xy).

Let P0 be any shortest path in G between x and y. Let y′ be the first vertex of P0 in
V (Tr0→y), and x′ be the last vertex of P0, before y′, in V (Tx→r0

). Let P ′ be the subpath of P0

between x′ and y′. Because T is a Strong BFS-tree, P = Tx→x′ ∪ P ′ ∪ Ty′→y is a shortest path
between x and y in G. The following technical lemma restricts our investigation to the case
when P has no internal vertices in V (Tr0→y) ∪ V (Tx→r0

).

Lemma 2 Either Str(R(G,T), xy) = 0, or Str(R(G,T), xy) = Str(R(G,T), x′y′).

Proof. If x′ = y′ = r0, then it is easy to see that |P | = |Rxy|. By definition, x′ and y′ must be
both equal to or different from r0. Therefore, let us assume both are different from r0. Recall
that Rxy = Tx→e∪{e, f}∪Tf→y, or Rxy = Tx→r0

∪Tr0→y. In the second case, we set e = f = r0.
The proof is a case analysis according to the relative positions of x′ and e in Tx→r0

, and of y′

and f in Tr0→y.
If Tx→e ⊆ Tx→x′ and Tf→y ⊆ Ty′→y, then Str(R(G,T), xy) = 0 because |P ′| ≥ 1.
Let us assume that Tx→x′ ⊂ Tx→e and Tf→y ⊂ Ty′→y. This case is illustrated in Figure 2(b).

Note that in this case e 6= f , therefore {e, f} ∈ E(G). Let a = |Tx→e|− |Tx→x′ | > 0, and let b =
|Ty′→y| − |Tf→y| > 0. We study the layers of x, x′, y and y′ to prove that Str(R(G,T), xy) = 0.
Let L = ℓ(e) be the layer of e. Then, ℓ(x′) = L + a. Because {e, f} ∈ E(G) and T is a Strong
BFS-tree, L−1 ≤ ℓ(f) ≤ L+1. Therefore, L−1− b ≤ ℓ(y′) ≤ L+1− b. However, because T is
a Strong BFS-tree and P ′ is a shortest path between x′ and y′, we must have ℓ(x′) ≤ ℓ(y′)+ |P ′|.
Thus, ℓ(x′) ≤ L + 1− b + |P ′|. Finally, we get that a + b− 1 ≤ |P ′|. Since b > 0, then a ≤ |P ′|.
To conclude, let us observe that |Rxy| = |Tx→x′ |+a+1+ |Ty′→y|−b = |P |−|P ′|+a+1−b ≤ |P |.
Hence, Str(R(G,T), xy) = 0.

If Ty→y′ ⊂ Tf→y and Te→x ⊂ Tx′→x, we prove in a similar way that Str(R(G,T), yx) = 0.
By Lemma 1, we get that Str(R(G,T), xy) = 0.

Finally, if Tx→x′ ⊆ Tx→e and Ty′→y ⊆ Tf→y, the route computed by R(G,T) from x′ to y′

is clearly Tx′→e ∪{e, f}∪Tf→y′ . Moreover, Str(R(G,T), xy) = |Tx′→e ∪{e, f}∪Tf→y′ |− |P ′| =
Str(R(G,T), x′y′).

Whenever route and shortest path are vertex disjoint It remains to consider the case
when x and y have a smallest common ancestor r0 such that there is an xy-shortest path P in
G with no internal vertices of P in V (Tr0→y)∪V (Tx→r0

) (cf. Figures 2(c), 2(d) 2(e)). Basically,
the proof proceeds by considering the distances in the cycle Tx→r0

∪ Ty→r0
∪ P and finding

convenient chords in it.

Claim 1 If r0 /∈ NG(P), there exist u in Tx→r0
, and v in Ty→r0

, such that u, v ∈ NG(P).
Moreover, if G is chordal, u and v may be chosen adjacent: {u, v} ∈ E(G) \ E(T).

6

Proof. Since r0 /∈ NG(P), let C be the connected component of G \ NG(P) that contains r0.
Let N = NG(C). Clearly, N ⊆ NG(P) and there exists an inclusion-minimal separator S ⊆ N
separating r0 from x and y. Let u (resp., v) be a vertex of S in the path between x (resp., y) and
r0 in T (see Fig. 2(c)). If G is chordal, S induces a clique since S is a minimal separator [Gol04],
therefore {u, v} ∈ E(G). Finally, {u, v} /∈ E(T) because the opposite would imply that u or v
is the smallest common ancestor of x and y, i.e., r0 ∈ {u, v}, a contradiction since u, v ∈ S.

Lemma 3 Let k ≥ 3. Let G be a k-chordal graph and let T be a spanning tree defined by any
BFS ordering. Then, for any x, y ∈ V (G), Str(R(G,T), xy) ≤ k − 1.

Proof. By the previous subsection, it remains to prove the following case: r0 is the smallest
common ancestor of x and y, and some shortest path P between x and y has no internal vertex
in Tx→r0

∪Tr0→y. Recall that, if the route Rxy computed by R(G,T) takes a shortcut, this edge
is denoted {e, f}. There are two cases to be considered.

We first assume that r0 is not in the neighborhood of P , NG(P) (cf., Figure 2(d)).
Let us choose u and v as defined in Claim 1 and such that dG(r0, u)+dG(v, r0) is minimum.

Let u′ ∈ NG(u)∩P and v′ ∈ NG(v)∩P such that dG(u′, v′) is minimum. Let P = P1 ∪P2 ∪P3,
where P1 is the subpath of P between x and u′, P2 is the subpath of P between u′ and v′, and
P3 is the subpath of P between v′ and y. In the following we assume that u′ is between v′ and
x in P . Otherwise, the proof is similar by setting P1 is the subpath of P between x and v′, P2

is the subpath of P between v′ and u′, and P3 is the subpath of P between u′ and y.
Because T is a Strong BFS-tree, |Tx→u| ≤ 1 + |P1| and |Tv→y| ≤ 1 + |P3|.

• First, let us assume that e ∈ Tr0→u and f ∈ Tv→r0
(possibly e = f = r0).

In particular, this means that there are no edges between a vertex in Te→u and Tv→f but
{e, f}. Therefore, by the choice of u, u′, v, v′, the cycle C = {u, u′}∪P2 ∪{v′, v} ∪Tv→f ∪
{e, f} ∪ Te→u has no chord. Thus, |C| = 3 + |P2| + |Tv→f | + |Te→u| ≤ k.

It follows that |Rxy| = |Tx→u| + |Tu→e| + 1 + |Tf→v| + |Tv→y| ≤ k − |P2| + |P1| + |P3|.
If |P2| > 0, |Rxy| − |P | = Str(R(G,T), xy) ≤ k − 1.

Therefore, let us consider the case when |P2| = 0, i.e., u′ = v′. We first consider the case
when u > v (in the BFS ordering defining T). We aim at proving that |Tv→y| ≤ |P3|. For
purpose of contradiction, let us assume that |Tv→y| = |P3| + 1. Let w1 be the child of v
in Tv→y. For any 1 ≤ i ≤ |P3| + 1 and let ui be the ith vertex on the path P3 (u′ = u1),
and let wi be the ith vertex on the path Tw1→y. Note that, because |Tw1→y| = |P3|,
u|P3|+1 = w|P3|+1 = y. Because u′ is adjacent to u and u > v, it follows that u′ > w1. By
a trivial induction on i ≤ |P3|, we get that, for any 1 ≤ i ≤ |P3|, ui > wi. Moreover, w|P3|

and u|P3| are in the same layer, they are both adjacent to y and u|P3| > w|P3|. Hence,
{w|P3|, y} cannot belong to T , a contradiction.

Therefore, |Tv→y| ≤ |P3|. Hence, |Rxy| = |Tx→u| + |Tu→e| + 1 + |Tf→v| + |Tv→y | ≤
k − |P2| + |P1| + |P3| − 1 = k + |P1| + |P3| − 1 ≤ |P | + k − 1.

Now, let us consider the case when u < v. We prove that Ryx (the computed route from
y to x) has length at most |P | + k − 1. By Lemma 1, it proves that |Rxy| ≤ |P | + k − 1.
If Ryx = Rxy, the proof is similar to the previous one (by symmetry). Therefore, let us
assume that Ryx 6= Rxy. By Lemma 1, Ryx uses a shortcut {e′, f ′} ∈ E(G) \ E(T) such
that e′ is the parent of e and f ′ is a child of f . If e′ ∈ Tr0→u and f ′ ∈ Tv→r0

, again,
the proof is similar to the previous one by symmetry. Hence, the only remaining case is
e′ ∈ Tr0→u\{u}, f ′ is the child of v = f (because of the relative positions of e, e′, f, f ′, u, v).
This case is similar (by symmetry) to the case treated in the third item of this proof.

7

• Second, let us assume that e ∈ Tx→u \ {u} and f ∈ Tv→y In this case, |Rxy| = |Tx→e| +
1 + |Tf→y| ≤ |Tx→u| + |Tv→y| ≤ 2 + |P1| + |P3| ≤ |P | + k − 1 (because k ≥ 3).

The case e ∈ Tx→u and f ∈ Tv→y \{v} is symmetric. Indeed, in this case, consider {e′, f ′}
the shortcut used by Ryx. By Lemma 1, f ′ ∈ Ty→v \ {v} and e ∈ Tx→u. Hence, applying
the same proof to Ryx, |Rxy| = |Ryx| ≤ |P | + k − 1.

• Finally, let us assume that e ∈ Tx→u \ {u} and f ∈ Tv→r0
\ {v} (cf., Figure 2(d)). In this

case, let us study the layers of e, f and y.

First, ℓ(e) = ℓ(u) + |Tu→x| − |Te→x|. Because {e, f} ∈ E(G) and T is a Strong BFS-tree,
ℓ(e) − 1 ≤ ℓ(f) ≤ ℓ(e) + 1. Besides, ℓ(y) = ℓ(f) + |Tf→v| + |Tv→y|, and, because P2 ∪ P3

is a shortest path, ℓ(y) ≤ ℓ(u′) + |P2| + |P3| ≤ ℓ(u) + 1 + |P2| + |P3|.
Therefore, ℓ(u) + 1 + |P2| + |P3| ≥ ℓ(u) + |Tu→x| − |Te→x| − 1 + |Tf→v| + |Tv→y|. Hence,
2 + |P2| + |P3| ≥ |Tu→x| − |Te→x| + |Tf→v| + |Tv→y|.
Now, |Rxy| = |Te→x| + 1 + |Tf→v| + |Tv→y| ≤ |P2| + |P3| − |Tu→x| + 2|Te→x| + 3 =
|P2| + |P3| + |Tu→x| − 2(|Tu→x| − |Te→x|) + 3 ≤ |P1| + |P2| + |P3| + 2 ≤ |P | + k − 1.

Again, the case e ∈ Tu→r0
\ {u} and f ∈ Tv→y \ {v} is symmetric.

To conclude, let us assume that r0 ∈ NG(P) (cf., Figure 2(e)). Let z ∈ NP (r0). Let
P = P1∪P2 where P1 is the subpath of P between x and z, and P2 is the subpath of P between
z and y. Because T is a Strong BFS-tree, |Tx→r0

| ≤ 1 + |P1| and |Tr0→y| ≤ 1 + |P2|. Therefore,
|Rxy| ≤ |Tx→r0

| + |Tr0→y| ≤ |P1| + |P2| + 2 ≤ |P | + k − 1 (because k ≥ 3).

It is important to note that the previous result is valid whatever Strong BFS-tree is used.
However, it is easy to observe that the inequality given by Lemma 3 is optimal. Indeed,
Figure 1(b) represents a k-chordal graph with k = 2p + 2 (p ≥ 1) and a Strong BFS-tree
T (that actually is a MaxBFS-tree) such that Str(R(G,T))) = 2p + 1 = k − 1: a message from
1 to 2 will pass through the edge {3p + 3, 3p + 4}.

Lemma 3 gives that, for any chordal graph G and for any Strong BFS-tree T , Str(R(G,T)) ≤
2. The following lemma proves that we can improve a bit the stretch in case of a chordal graph
by using a “better” BFS-tree, i.e., a MaxBFS-tree.

Lemma 4 Let G be a chordal graph and let T be a spanning tree defined by any MaxBFS
ordering. Then, for any x, y ∈ V (G), Str(R(G,T), xy) ≤ 1.

Sketch of the Proof. Due to lack of space, the proof is sketched and the full proof can be
found in [NSR]. Again, it only remains to consider the case when r0 is the smallest common
ancestor of x and y, and some x-y-shortest path P in G has no internal vertex in Tx→r0

∪Tr0→y.
If r0 /∈ NG(P) (cf., Figure 2(c)), let u and v be defined as in Claim 1. {u, v} ∈ E(G) because

G is chordal. Hence, we prove that u and v have a common neighbor z in P . If z ∈ {x, y},
we prove that either |Tv→y| ≤ |P | or x is adjacent to the child of v in Tv→y, and in both cases
Str(R(G,T), xy) ≤ 1. Otherwise, let P1 be the subpath of P between x and z, and let P2

be the subpath of P between z and y. By symmetry, w.l.o.g., assume u > v (otherwise, the
same proof holds for Ryx). Because u > v, we have |Tv→y | ≤ |P2|. Finally, we prove that
either |Tx→u| ≤ |P1|, or |Tx→u| = |P1| + 1 and v is adjacent to the child w of u in Tu→x.
Indeed, if |Tx→u| = |P1| + 1, we prove that {w, z} ∈ E(G) (by chordality) and u > v > w > z.
{v,w} ∈ E(G) follows because we consider a MaxBFS ordering and by Theorem 2. It is then
easy to conclude because |Rxy| ≤ |Tx→u| + 1 + |Tv→y|.

If r0 ∈ NG(P), the proof shows that either |Tx→r0
| < |P1| + 1 or |Tr0→y| < |P2| + 1.

It is easy to observe that the inequality given by Lemma 4 is optimal. Indeed, consider
Figure 1(c) and the route between 1 and 2. The above discussion and lemmata prove Theorem 3.

8

4 Distributed algorithm

In this section, we present a simple distributed algorithm that computes the routing tables
sufficient for the execution of the routing scheme described in the previous section. For space
restrictions, let us give just an informal description. The algorithm consist of three phases.
The first two of them aim at building a Strong BFS-tree T . Then, during the third phase each
vertex x is assigned an integral label P (x) that corresponds to its position in a DFS postorder
traversal of T . It is easy to check that it gives a Strong BFS-ordering of G. Moreover, x learns
I(x), the interval corresponding to the labels of its descendants in T (including x). P (x) is used
as the identifier of x in the routing scheme. At each vertex y, for every neighbor x of y (except
for the parent of y), the edge yx is labeled with I(x). Let us describe the algorithm in detail.

1st Phase. The first phase chooses an arbitrary vertex r ∈ V (G) as the root and gives to each
vertex its layer, i.e. its distance from r. Moreover, each vertex informs its neighbors of its own
layer. This trivially takes at most D + 1 steps by broadcasting a counter initially set to 1 by
the root. Now, if each vertex chooses an arbitrary neighbor in the lower layer as the parent,
the obtained graph is a BFS-tree. However, as soon as Strong BFS-trees or MaxBFS-tree are
concerned, not any neighbor in the lower layer can be chosen as the parent.

2nd Phase. The second phase aims at determining an appropriate parent for each vertex. For
this purpose, we assign an ordering on the vertices based on the following labeling: the root
receives an empty label and any vertex v ∈ V (G) in the layer i ≥ 1 will eventually have a
full label label(v), where label(v) is a sequence of i integers that consists of the full label of its
parent u concatenated with the integer p that indicates that v is the pth child of u. The labels
will be constructed gradually, in a way that each vertex will be aware of the current (partial)
labels of its neighbors. Notice that the lexicographic ordering of full labels gives the inverse
of the Strong BFS-ordering (or MaxBFS-ordering) under construction. Transforming it into
integer numbers ranging from n down to 1 can be easily computed once we have fixed T and
ordered the children of each node (see the third phase).

To see how the algorithm assigns full labels, let us assume that, at some step, each vertex in
layers up to i − 1 has received his full label as defined previously. Moreover, assume that each
vertex in layer i knows the full labels of its neighbors in layer i − 1 and the partial labels of
its neighbors in layer i. In particular, each vertex v in layer i knows its neighbor in layer i − 1
with the smallest label in the lexicographical ordering. So v can choose this node as its parent
and inform all its neighbors of its choice. Once each vertex in layer i has chosen a parent, the
vertices in layer i − 1 establish an ordering on their children: any vertex u in layer i − 1 sends
an integer pv to its child v so that v knows it is the pth

v child of u (see below). This implies that
the induction condition holds for layers i and i + 1. Notice that at layers 0 and 1 the condition
trivially holds, since layer 0 contains a single vertex, the root r, with an empty label.

Spreading of labels. Let us describe how to spread the labels of the vertices efficiently. For
any i ≥ 1, each vertex v in the layer i maintains a subset PP (v) (for potential parent) of its
neighbors in layer i − 1 that initially contains all these neighbors. Once a vertex v in layer
i has received a label with integer pv (that corresponds to its position among its siblings), it
transmits the pair (i, pv) to all its neighbors. Once a vertex v in the layer j > i has received
such a message (i, p) from all of its neighbors u in PP (v), it keeps in PP (v) the vertices that
have the smallest p. Then, v transmits the corresponding pair to all its neighbors. Moreover,
receiving such a message from any neighbor u′, v adds p to the locally stored (partial) label of
u′. Proceeding in this way, once any vertex v in layer i has received a label, any vertex in layer
i + 1 knows its potential parents, i.e., its neighbors in PP (v), and the corresponding label.

Ordering of children in Strong BFS-tree. Once each vertex in layer i has chosen a parent,

9

the vertices in layer i− 1 establish an ordering on their children. If we want to obtain a Strong
BFS-tree without additional properties, any ordering is valid. Therefore, each vertex in the
layer i − 1 arbitrarily orders its children and sends them their position in this ordering. Then,
each vertex in layer i has a full label. This takes one step per layer, i.e., this takes time O(D)
in total.

Ordering of children in MaxBFS-tree. In this case, each vertex in layer i− 1 will order its
children according to the number of neighbors with smaller labels they have. In other words,
each vertex in layer i − 1 orders its children according to the number of their neighbors that
will have larger numbers in the final ordering. Notice that as soon as the vertices of layer i have
chosen their parent and broadcasted them to their neighbors, a vertex v in layer i only needs to
learn its position in the ordering relatively to its siblings in T . Therefore, children of different
vertices from layer i − 1 can be ordered in parallel.

A vertex u in layer i− 1 orders its children as follows. Let us assume u has already ordered
its first p neighbors (p ≥ 0). These neighbors of u have full label while remaining neighbors of u
only have partial label. Vertex u chooses its p + 1th child v as the one with the greatest number
of neighbors that either have a parent greater than u or that are siblings of v with a full label.
v receives p + 1 from u and completes its label (that becomes full). Then, v informs its siblings
that it has received a full label, and each child of u updates the number of its neighbors that
already have full label. In this way, u orders its d(u) children in O(d(u)) time. So, in total,
this step is executed in O(∆) time per layer. Therefore, in at most O(min{∆D,n}) steps, any
vertex has chosen a unique vertex as its parent and the tree T rooted in r is well defined.

3rd Phase. The third phase consists in assigning to each vertex v his position in the ordering
and the interval of positions of vertices that belong to Tv, the subtree of T rooted in v. It is
easy to do so by two stages, the first one consisting in propagation of messages from the leaves
toward the root and the second one from the root toward the leaves. During the first stage,
the leaves of T send 1 to their parents, and any vertex u with children v1, · · · , vr receives from
vi (1 ≤ i ≤ r) the number ℓi of vertices belonging to the subtree of T rooted in vi and sends
to its parent 1 +

∑
i≤r ℓi. During the second stage, the root is assigned the position n and the

interval [1, . . . , |V (G)|]; each vertex v takes the last position in the interval it has received and
partitions the rest into subintervals corresponding to each of its children. It is easy to check
that the resulting ordering corresponds to a DFS postorder traversal of T . This phase takes at
most 2D steps. The discussion of this section can be summarized with the following theorem.

Theorem 4 In any n-node network G with diameter D and maximum degree ∆, the distributed
protocol described above computes routing tables of O(∆ log n) bits per node, for the execution of
the routing scheme R(G,T). Our protocol is executed in time O(D) with O(logn)-bit messages
if the desired tree T is an arbitrary Strong BFS-tree, and in time O(min{∆D,n}) if T is a
MaxBFS-tree.

5 Open Problems

Many questions remain open in this study. In particular, is it possible to design a routing scheme
achieving same stretch and time-complexity but using smaller routing tables? Which stretch
can we achieve when few large cycles are allowed? Routing schemes in dynamic networks, i.e.,
when nodes are free to leave or to arrive in the network at any time, are needed. Fault-tolerant
and self stabilizing algorithms to compute routing tables would be appreciated.

10

References

[AG06] I. Abraham and C. Gavoille. Object location using path separators. In Proceedings of the 25th
Annual ACM Symposium on Principles of Distributed Computing (PODC), pages 188–197, 2006.

[AGGM06] I. Abraham, C. Gavoille, A. V. Goldberg, and D. Malkhi. Routing in networks with low doubling
dimension. In Proceedings of the 26th IEEE International Conference on Distributed Computing
Systems (ICDCS), page 75, 2006.

[BKS05] A. Berry, R. Krueger, and G. Simonet. Ultimate generalizations of lexbfs and lex m. In Proceedings
of the 31st International Workshop on Graph-Theoretic Concepts in Computer Science (WG), pages
199–213, 2005.

[CK] D. G. Corneil and R. Krueger. A unified view of graph searching. to appear in SIAM J. Comput.

[DG02] Y. Dourisboure and C. Gavoille. Improved compact routing scheme for chordal graphs. In Proceedings
of the 16th International Conference on Distributed Computing (DISC), pages 252–264, 2002.

[Dou05] Y. Dourisboure. Compact routing schemes for generalised chordal graphs. Journal of Graph Algo-
rithms and Applications, 9(2):277–297, 2005.

[Dra05] F. F. Dragan. Estimating all pairs shortest paths in restricted graph families: a unified approach. J.
Algorithms, 57(1):1–21, 2005.

[FG65] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific J. Math, 15:835–855,
1965.

[FG01] P. Fraigniaud and C. Gavoille. Routing in trees. In Proceedings of the 28th Int. Col. on Automata,
Languages and Prog. (ICALP), pages 757–772, 2001.

[Fra05] P. Fraigniaud. Greedy routing in tree-decomposed graphs. In Proceedings of the 13th Annual Europ.
Symp. on Algorithms (ESA), pages 791–802, 2005.

[Gav00] C. Gavoille. A survey on interval routing. Theor. Comput. Sci., 245(2):217–253, 2000.

[GG01] C. Gavoille and M. Gengler. Space-efficiency for routing schemes of stretch factor three. J. Parallel
Distrib. Comput., 61(5):679–687, 2001.

[Gol04] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. 2004.

[GP96] C. Gavoille and S. Perennes. Memory requirements for routing in distributed networks (extended
abstract). In PODC, pages 125–133, 1996.

[GP99] C. Gavoille and D. Peleg. The compactness of interval routing. SIAM J. Discrete Math., 12(4):459–
473, 1999.

[GP01] C. Gavoille and D. Peleg. The compactness of interval routing for almost all graphs. SIAM J.
Comput., 31(3):706–721, 2001.

[NN98] L. Narayanan and N. Nishimura. Interval routing on k-trees. J. Algorithms, 26(2):325–369, 1998.

[NSR] N. Nisse, K. Suchan, and I. Rapaport. Distributed computing of ef-
ficient routing schemes in generalized chordal graphs. http://www-
sop.inria.fr/members/Nicolas.Nisse/publications/distribRouting.pdf.

[PU89] D. Peleg and E. Upfal. A trade-off between space and efficiency for routing tables. J. ACM, 36(3):510–
530, 1989.

[SK85] N. Santoro and R. Khatib. Labelling and implicit routing in networks. Comput. J., 28(1):5–8, 1985.

[Tho04] M. Thorup. Compact oracles for reachability and approximate distances in planar digraphs. J. ACM,
51(6):993–1024, 2004.

[TZ01] M. Thorup and U. Zwick. Compact routing schemes. In Proc. of the 13th ACM Symp. on Parallel
Algo. and Architectures (SPAA), pages 1–10, 2001.

11

