
On the Monotonicity of Process Number

Nicolas Nisse a Ronan Pardo Soares a,b

a COATI, INRIA, I3S(CNRS/UNSA), France
b ParGO - Univ. Federal do Ceará, Brazil

Abstract
Graph searching games involve a team of searchers that aims at capturing a fugitive
in a graph. These games have been widely studied for their relationships with tree-
and path-decomposition of graphs. In order to define decompositions for directed
graphs, similar games have been proposed in directed graphs. In this paper, we
consider such a game that has been defined and studied in the context of routing
reconfiguration problems in WDM networks. Namely, in the processing game, the
fugitive is invisible, arbitrary fast, it moves in the opposite direction of the arcs of
a digraph, but only as long as it has access to a strongly connected component free
of searchers. We prove that the processing game is monotone which leads to its
equivalence with a new digraph decomposition.

Keywords: Graph Searching, Process Number, Monotonicity

1 Introduction
During the last few years, an important research effort has been done in order
to design digraph decompositions that are as powerful as path-decomposition
or tree-decomposition in undirected graphs (e.g., see [9]). Because graph
searching games are equivalent to path- and tree-decompositions, several at-
tempts have been done to define such games in directed graphs [2, 3, 11].
Graph Searching and monotonicity. In graph searching games, a team of
searchers aims at capturing a fugitive that stands at the vertices of a graph
G (see [8] for a survey). The fugitive can move arbitrary fast along the paths
of G as long as it does not meet any searcher. A node v ∈ V (G) is clear if
all paths from v to the node occupied by the fugitive contain a node occupied
by a searcher. In particular, a node occupied by a searcher is clear. A vertex

Preprint submitted to LAGOS’13 January 17, 2013

that is not clear is said contaminated. Given a graph G with all nodes initially
contaminated, a strategy for the searchers is a sequence of the following two
possible actions: (R1) place a searcher at a node of G, or (R2) remove a
searcher from a node. A strategy is winning if it allows to capture the fugitive
whatever it does or, equivalently, if all nodes are eventually clear. That is,
in a winning strategy, a searcher eventually occupies the same vertex as the
fugitive and the fugitive cannot move anymore (i.e., all the neighbors of its
current position are occupied by searchers). The number of searchers used by
a strategy is the maximum number of occupied vertices throughout all steps
of the strategy and the search number of a graph G is the smallest integer
k ≥ 1 such that there is a winning strategy using k searchers in G.

There are many variants of this problem arising due to different properties,
or behaviors, given to the fugitive or to the searchers. If the fugitive is visible,
the corresponding search number of a graph equals its tree-width plus one [16].
On the other hand, if the fugitive is invisible, the search number is equal to the
path-width plus one [13]. The relationship between graph decompositions and
search strategies mainly relies on the monotonicity property of these variants
of graph searching. A strategy is said monotone if the area reachable by
the fugitive is never increasing, i.e., once a node is clear it never becomes
contaminated at a later stage. Equivalently, a searcher cannot be removed
from a node if it has a neighbor that is neither occupied nor is clean, i.e.,
once a node has been occupied, the fugitive must not be able to reach it
anymore. A variant of graph searching is said monotone if “recontamination
does not help”, i.e., for any graph with search number k, there is a winning
monotone strategy using k searchers. That is, imposing the monotonicity of
the strategies does not increase the number of required searchers. The visible
and invisible variants of graph searching were proven to be monotone in [4,16].
Graph searching in directed graphs. In [12], Johnson et al. defined
the first variant of graph searching in directed graphs, related to directed
tree-width. This variant, where the visible fugitive can move along directed
cycles that are free of searchers, is however not monotone [1]. In [3], a variant
where the visible fugitive can move along directed paths without searchers is
proposed and, in [14], a variant where the invisible fugitive can move along
directed paths without searchers only when a searcher is about to land at
the node currently occupied by the fugitive is defined. Both these variants,
respectively related to DAG-width and Kelly-width, are not monotone [14].

In the case of an invisible fugitive, more optimistic results have been pro-
vided. Barát defined the directed path-width related to a graph searching
variant where the invisible fugitive is constrained to follow the direction of the
arcs [2]. Barát adapted the framework in [4] to show that, in this variant, the
monotonicity cannot increases the number of searchers by more than one [2].
Hunter improved this result to show that this variant is monotone [10]. Other

2

variants that generalize the edge-graph searching (e.g., see [8]) to directed
graphs have been defined and were proven to be monotone in [17].
Process number. Surprisingly, a variant of graph searching in directed
graphs has been defined in the context of routing reconfiguration in Wave-
length Division Multiplexing (WDM) networks (e.g., [5–7]). Roughly, the
processing game is related to the smallest number of interruptions of traffic
that are required when modifying the routes of requests in a WDM network.

In the processing game, the searchers aim at processing all nodes of a di-
graph. A node is said safe if all its out-neighbors are either occupied or already
processed. Given D = (V,A) where all nodes are initially unoccupied and not
processed, a monotone process strategy is a sequence (s1, . . . , sn) of steps that
results in processing all nodes of D. Each step si is one of the following
moves: place a searcher at a node (M1), process a safe unoccupied node (M2),
or process a safe occupied vertex and remove the searcher from it (M3).

The minimum number of searchers used by a monotone process strategy
of D is the monotone process number, denoted by monpr(D). The problem
to compute the monotone process number is NP-complete [7]. It is polyno-
mial in the class of graphs D with monpr(D) ≤ 2 [7] and in trees [6]. In
undirected graphs (seen as symmetric digraphs 1), the monotone processing
game is equivalent to the monotone graph searching game where the invisible
fugitive is captured if all the neighbors of its position are occupied, i.e., it is
not required that a searcher occupies the same node as the fugitive.

In this work, we consider the more general variant of processing game where
we allow a processed node to become unprocessed. A process strategy for a
digraphD is a sequence (s1, . . . , sn) of steps that results in processing all nodes
of D, where each step si consists of a move M1 or M2 or process an occupied
vertex v and remove the searcher from it (M ′

3). After a removal at v, if v
was not safe then recontamination occurs: successively, all processed vertices
(including v) that have an unoccupied and unprocessed out-neighbor become
unprocessed. The fewest number of searchers used by a process strategy of D
is the process number, denoted by pr(D). Equivalently, pr(D) is the smallest
number of searchers required to capture an invisible arbitrary fast fugitive that
moves backwards the arcs of D and is captured as soon as it cannot access a
strongly connected component of at least two nodes and free of searchers. It
is known that pr(D) = monpr(D) for any symmetric digraph D [6].
Results. In this work 2 , we prove that the result holds for any digraph.
Moreover, our monotonicity result allows us to interpret the processing game
as a new digraph decomposition. Finally, we prove that pr(D) = pr(←−D) for
any digraph D = (V,A), where ←−D = (V,←−A) and ←−A = {(a, b) : (b, a) ∈ A}.

1 A digraph D = (V, A) is symmetric if, for any (a, b) ∈ A, then (b, a) ∈ A.
2 Due to lack of space, proofs have been omitted and can be found in [15]

3

2 Recontamination does not help to process a digraph

In this section, we prove that the process number is monotone, i.e. monpr(D) =
pr(D) for any directed graph D. We follow the framework introduced in [16].
The main idea is to consider a strategy as a sequence of edge-subsets (crusade)
where each subset has some weight. Then, using the submodularity of the ap-
propriate weight function, it is easy to show the monotonicity of crusades.
The main difficulty is to define an auxiliary game that will be equivalent to
the crusade and therefore monotone. Then, the second technicality is to show
the relationship between the auxiliary game and the searching game. The last
part is generally done using a graph transformation.

LetD = (V,A) be a digraph. For anyX ⊆ A, let δ(X) be the set of vertices
that are the head of an arc in X and the tail of an arc in A \X. The function
δ is submodular, that is, for any X, Y ⊆ A(D), |δ(X ∩ Y)| + |δ(X ∪ Y)| ≤
|δ(X)|+ |δ(Y)| [15].

A crusade in D = (V,A) is a sequence (X0, X1, . . . , Xn) of subsets of A
such that X0 = ∅, Xn = E, and |Xi \ Xi−1| ≤ 1, for 1 ≤ i ≤ n. The
crusade has border k if |δ(Xi)| ≤ k for 0 ≤ i ≤ n. A crusade is progressive if
X0 ⊂ X1 ⊂ . . . ⊂ Xn. Using the submodularity of δ, we can prove that
Lemma 1 [15] If there is a crusade of D = (V,A) with border k, then there
is a progressive crusade with border k.

Let D = (V,A) be a digraph whose no arcs are initially processed. A mixed
process strategy of D is a sequence (s1, . . . , sn) that results in processing all
arcs in A, where each step si is one of the following actions: place a searcher
at an unoccupied node (Place), remove a searcher from a node (Remove),
process an arc (u, v) ∈ A if v ∈ V is occupied (Head), slide the searcher at u
along (u, v) ∈ A if u is occupied, v is not occupied and all arcs e 6= (u, v) with
tail u are already processed, this process the arc (u, v) (Slide), and process
an arc (u, v) ∈ A if all arcs with tail v are already processed (Extend).

When a searcher is removed from a node v ∈ V , if there were unprocessed
arcs with tail v and v is now unoccupied, then recontamination occurs. That
is, successively, any processed arc (u,w) ∈ A such that w is unoccupied and
there is an unprocessed arc (w, z) becomes unprocessed.

The mixed process number, denoted by mpr(D), is the fewest number of
searchers used by such a strategy. A mixed process strategy is monotone if no
recontamination occurs, i.e., once an arc has been processed, it must remain
processed until the end of the strategy.

The main part of the proof of Theorem 4 consists of the next two lemmas.
Let D be a digraph and D̃ be obtained from D by replacing each arc by two
“parallel" arcs.
Lemma 2 [15] If mpr(D) ≤ k, then D admits a crusade with border k.

4

If there is a progressive crusade of D with border k, then there is a mono-
tone mixed process strategy using at most k searchers.
By lemma 2, the mixed processing game is monotone, which allows us to prove
Lemma 3 [15] For any digraph D = (V,A), monpr(D) ≤ mpr(D̃) ≤ pr(D).

Since, for any digraph D, pr(D) ≤ monpr(D), Lemma 3 implies:
Theorem 4 [15] Recontamination does not help to process a digraph, i.e.,
for any digraph D, pr(D) = monpr(D).

3 Process Decomposition

We now define a digraph decomposition that is equivalent to (monotone) pro-
cess strategies. This allows us to prove that the process number is invariant
when reversing all arcs of a digraph.

A process decomposition of a digraph D = (V,A) is a sequence P =
((W1, X1), · · · , (Wt, Xt)) of pairs of subsets of V where (1) (X1, · · · , Xt) is a
partition of V \⋃t

i=1 Wi, (2) ∀i ≤ j ≤ k, Wi ∩Wk ⊆ Wj, (3) for any 1 ≤ i ≤ t,
Xi induces a DAG, and (4) ∀(u, v) ∈ A, ∃j ≤ i such that v ∈ Wj ∪ Xj and
u ∈ Wi ∪Xi.

The width of a process decomposition is given by max1≤i≤n |Wi|, and the
process-width, denoted by prw(D), of a digraph D is given by the minimum
width over all process decompositions of D. Thanks to Theorem 4, we can
prove that
Theorem 5 [15] For any digraph D, pr(D) = prw(D).

As a corollary of Theorems 4 and 5, we get that

Corollary 1 For any digraph D, pr(D) = pr(←−D).

4 Conclusion

Both tree-decompositions and path-decompositions have the notion of a dual
structure, brambles and blockages respectively. For instance, the tree-width
of a undirected graph G equals k − 1 iff G has no bramble greater 3 than
k [16]. The monotonicity of a game plays an important role in the relationship
between the width of a decomposition and its dual. Hence, it will be interesting
to use our monotonicity result to define a dual for the process number.

On the other hand, the visible variant of the processing game appears to
be an interesting candidate for providing a tree-decomposition for digraphs
since the ability of a visible fugitive in the processing game is “between" the
ones in the games in [12] and [3] (both having distinct advantages).

3 Measured by the size of its hitting set.

5

References

[1] Adler, I., Directed tree-width examples, JCTB 97 (2007), pp. 718–725.

[2] Barát, J., Directed path-width and monotonicity in digraph searching, Graphs
and Combinatorics 22 (2006), pp. 161–172.

[3] Berwanger, D., A. Dawar, P. Hunter, S. Kreutzer and J. Obdrzálek, The dag-
width of directed graphs, JCTB 102 (2012), pp. 900–923.

[4] Bienstock, D. and P. Seymour, Monotonicity in graph searching, J. Algorithms
12 (1991), pp. 239–245.

[5] Cohen, N., D. Coudert, D. Mazauric, N. Nepomuceno and N. Nisse, Tradeoffs
in process strategy games with application in the wdm reconfiguration problem,
Theor. Comput. Sci. 412 (2011), pp. 4675–4687.

[6] Coudert, D., F. Huc and D. Mazauric, A distributed algorithm for computing
the node search number in trees, Algorithmica 63 (2012), pp. 158–190.

[7] Coudert, D. and J.-S. Sereni, Characterization of graphs and digraphs with small
process number, Discrete Applied Mathematics 159 (2011), pp. 1094–1109.

[8] Fomin, F. and D. Thilikos, An annotated bibliography on guaranteed graph
searching, Theo. Comp. Sci. 399 (2008), pp. 236–245.

[9] Ganian, R., P. Hlinený, J. Kneis, D. Meister, J. Obdrzálek, P. Rossmanith and
S. Sikdar, Are there any good digraph width measures?, in: 5th Int. Symp. on
Parameterized and Exact Computation, LNCS 6478 (2010), pp. 135–146.

[10] Hunter, P., Losing the +1: Directed path-width games are monotone (2006).

[11] Hunter, P. and S. Kreutzer, Digraph measures: Kelly decompositions, games,
and orderings, Theor. Comput. Sci. 399 (2008), pp. 206–219.

[12] Johnson, T., N. Robertson, P. D. Seymour and R. Thomas, Directed tree-width,
J. Comb. Theory, Ser. B 82 (2001), pp. 138–154.

[13] Kirousis, M. and C. Papadimitriou, Searching and pebbling, Theoretical
Computer Science 47 (1986), pp. 205–218.

[14] Kreutzer, S. and S. Ordyniak, Digraph decompositions and monotonicity in
digraph searching, CoRR abs/0802.2228 (2008).

[15] Nisse, N. and R. P. Soares, On the Monotonicity of Process Number, Technical
Report RR-, INRIA (2012), http://hal.inria.fr/hal-00745587.

[16] Seymour, P. D. and R. Thomas, Graph searching and a min-max theorem for
tree-width, J. Comb. Theory Ser. B 58 (1993), pp. 22–33.

[17] Yang, B. and Y. Cao, On the monotonicity of weak searching, in: COCOON,
2008, pp. 52–61.

6

	Introduction
	Recontamination does not help to process a digraph
	Process Decomposition
	Conclusion
	References

